1
|
Mayer J, Mückschel M, Talebi N, Hommel B, Beste C. Directed connectivity in theta networks supports action-effect integration. Neuroimage 2025; 305:120965. [PMID: 39645157 DOI: 10.1016/j.neuroimage.2024.120965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024] Open
Abstract
The ability to plan and carry out goal-directed behavior presupposes knowledge about the contingencies between movements and their effects. Ideomotor accounts of action control assume that agents integrate action-effect contingencies by creating action-effect bindings, which associate movement patterns with their sensory consequences. However, the neurophysiological underpinnings of action-effect binding are not yet well understood. Given that theta band activity has been linked to information integration, we thus studied action-effect integration in an electrophysiological study with N = 31 healthy individuals with a strong focus on theta band activity. We examined how information between functional neuroanatomical structures is exchanged to enable action planning. We show that theta band activity in a network encompassing the insular cortex (IC), the anterior temporal lobe (ATL), and the inferior frontal cortex (IFC) supports the establishment of action-effect bindings. All regions revealed bi-directional effective connectivities, indicating information transfer between these regions. The IC and ATL create a loop for information integration and the conceptual abstraction of it. The involvement of anterior regions of the IFC, particularly during the acquisition phase of the action-effect, likely reflects episodic control mechanisms in which a past event defines a "template" of what action-effect is to be expected. Taken together, the current findings connect well with major cognitive concepts. Our study suggests a functional relevance of theta band activity in an IC-ATL-IFC network, which in turn implies that basic ideomotor action-effect integration is implemented through theta band activity and effective connectivities between temporo-frontal structures.
Collapse
Affiliation(s)
- Jasmin Mayer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Bernhard Hommel
- School of Psychology, Shandong Normal University, Jinan, China
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; School of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
2
|
Wang X, Talebi N, Zhou X, Hommel B, Beste C. Neurophysiological dynamics of metacontrol states: EEG insights into conflict regulation. Neuroimage 2024; 302:120915. [PMID: 39489408 DOI: 10.1016/j.neuroimage.2024.120915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
Understanding the neural mechanisms underlying metacontrol and conflict regulation is crucial for insights into cognitive flexibility and persistence. This study employed electroencephalography (EEG), EEG-beamforming and directed connectivity analyses to explore how varying metacontrol states influence conflict regulation at a neurophysiological level. Metacontrol states were manipulated by altering the frequency of congruent and incongruent trials across experimental blocks in a modified flanker task, and both behavioral and electrophysiological measures were analyzed. Behavioral data confirmed the experimental manipulation's efficacy, showing an increase in persistence bias and a reduction in flexibility bias during increased conflict regulation. Electrophysiologically, theta band activity paralleled the behavioral data, suggesting that theta oscillations reflect the mismatch between expected metacontrol bias and actual task demands. Alpha and beta band dynamics differed across experimental blocks, though these changes did not directly mirror behavioral effects. Post-response alpha and beta activity were more pronounced in persistence-biased states, indicating a neural reset mechanism preparing for future cognitive demands. By using a novel artificial neural networks method, directed connectivity analyses revealed enhanced inter-regional communication during persistence states, suggesting stronger top-down control and sensorimotor integration. Overall, theta band activity was closely tied to metacontrol processes, while alpha and beta bands played a role in resetting the neural system for upcoming tasks. These findings provide a deeper understanding of the neural substrates involved in metacontrol and conflict monitoring, emphasizing the distinct roles of different frequency bands in these cognitive processes.
Collapse
Affiliation(s)
- Xi Wang
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Xianzhen Zhou
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Bernhard Hommel
- School of Psychology, Shandong Normal University, Jinan, China.
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany; School of Psychology, Shandong Normal University, Jinan, China; German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Dresden, Germany
| |
Collapse
|
3
|
Jamous R, Ghorbani F, Mükschel M, Münchau A, Frings C, Beste C. Neurophysiological principles underlying predictive coding during dynamic perception-action integration. Neuroimage 2024; 301:120891. [PMID: 39419422 DOI: 10.1016/j.neuroimage.2024.120891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/16/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024] Open
Abstract
A major concept in cognitive neuroscience is that brains are "prediction machines". Yet, conceptual frameworks on how perception and action become integrated still lack the concept of predictability and it is unclear how neural processes may implement predictive coding during dynamic perception-action integration. We show that distinct neurophysiological mechanisms of nonlinearly directed connectivities in the theta and alpha band between cortical structures underlie these processes. During the integration of perception and motor codes, especially theta band activity in the insular cortex and temporo-hippocampal structures is modulated by the predictability of upcoming information. Here, the insular cortex seems to guide processes. Conversely, the retrieval of such integrated perception-action codes during actions heavily relies on alpha band activity. Here, directed top-down influence of alpha band activity from inferior frontal structures on insular and temporo-hippocampal structures is key. This suggests that these top-down effects reflect attentional shielding of retrieval processes operating in the same neuroanatomical structures previously involved in the integration of perceptual and motor codes. Through neurophysiology, the present study connects predictive coding mechanisms with frameworks specifying the dynamic integration of perception and action.
Collapse
Affiliation(s)
- Roula Jamous
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | - Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | - Moritz Mükschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | | | | | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany.
| |
Collapse
|
4
|
Talebi N, Prochnow A, Frings C, Münchau A, Mückschel M, Beste C. Neural mechanisms of adaptive behavior: Dissociating local cortical modulations and interregional communication patterns. iScience 2024; 27:110995. [PMID: 39635122 PMCID: PMC11615187 DOI: 10.1016/j.isci.2024.110995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/20/2024] [Accepted: 09/17/2024] [Indexed: 12/07/2024] Open
Abstract
Adaptive behavior is based on flexibly managing and integrating perceptual and motor processes, and the reconfiguration thereof. Such adaptive behavior is also relevant during inhibitory control. Although research has demonstrated local activity modulations in theta and alpha frequency bands during behavioral adaptation, the communication of brain regions is insufficiently studied. Examining directed connectivity between brain regions using a machine learning approach, a generally increased activity, but decreased connectivity within a temporo-occipital theta band network was revealed during the reconfiguration of perception-action associations during inhibitory control. Additionally, a fronto-occipital alpha-theta interplay yielded a decrease in directed connectivity during reconfiguration processes, which was associated with lower error rates in behavior. Thus, adaptive behavior relies on both local increases and decreases of activity depending on the frequency band, and concomitant decreases in communication between frontal and sensory cortices. The findings reframe common conceptualizations about how adaptive behavior is supported by neural processes.
Collapse
Affiliation(s)
- Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01309 Dresden, Germany
| | - Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01309 Dresden, Germany
| | | | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, 23562 Lübeck, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01309 Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01309 Dresden, Germany
| |
Collapse
|
5
|
Ghorbani F, Zhou X, Talebi N, Roessner V, Hommel B, Prochnow A, Beste C. Neural connectivity patterns explain why adolescents perceive the world as moving slow. Commun Biol 2024; 7:759. [PMID: 38909084 PMCID: PMC11193795 DOI: 10.1038/s42003-024-06439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/11/2024] [Indexed: 06/24/2024] Open
Abstract
That younger individuals perceive the world as moving slower than adults is a familiar phenomenon. Yet, it remains an open question why that is. Using event segmentation theory, electroencephalogram (EEG) beamforming and nonlinear causal relationship estimation using artificial neural network methods, we studied neural activity while adolescent and adult participants segmented a movie. We show when participants were instructed to segment a movie into meaningful units, adolescents partitioned incoming information into fewer encapsulated segments or episodes of longer duration than adults. Importantly, directed communication between medial frontal and lower-level perceptual areas and between occipito-temporal regions in specific neural oscillation spectrums explained behavioral differences between groups. Overall, the study reveals that a different organization of directed communication between brain regions and inefficient transmission of information between brain regions are key to understand why younger people perceive the world as moving slow.
Collapse
Affiliation(s)
- Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Xianzhen Zhou
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Bernhard Hommel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
- School of Psychology, Shandong Normal University, Jinan, China
| | - Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany.
- School of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
6
|
Wang ZJ, Noh BH, Kim ES, Yang D, Yang S, Kim NY, Hur YJ, Kim HD. Brain network analysis of interictal epileptiform discharges from ECoG to identify epileptogenic zone in pediatric patients with epilepsy and focal cortical dysplasia type II: A retrospective study. Front Neurol 2022; 13:901633. [PMID: 35989902 PMCID: PMC9388828 DOI: 10.3389/fneur.2022.901633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Objective For patients with drug-resistant focal epilepsy, intracranial monitoring remains the gold standard for surgical intervention. Focal cortical dysplasia (FCD) is the most common cause of pharmacoresistant focal epilepsy in pediatric patients who usually develop seizures in early childhood. Timely removal of the epileptogenic zone (EZ) is necessary to achieve lasting seizure freedom and favorable developmental and cognitive outcomes to improve the quality of life. We applied brain network analysis to investigate potential biomarkers for the diagnosis of EZ that will aid in the resection for pediatric focal epilepsy patients with FCD type II. Methods Ten pediatric patients with focal epilepsy diagnosed as FCD type II and that had a follow-up after resection surgery (Engel class I [n = 9] and Engel class II [n = 1]) were retrospectively included. Time-frequency analysis of phase transfer entropy, graph theory analysis, and power spectrum compensation were combined to calculate brain network parameters based on interictal epileptiform discharges from ECoG. Results Clustering coefficient, local efficiency, node out-degree, and node out-strength with higher values are the most reliable biomarkers for the delineation of EZ, and the differences between EZ and margin zone (MZ), and EZ and normal zone (NZ) were significant (p < 0.05; Mann-Whitney U-test, two-tailed). In particular, the difference between MZ and NZ was significant for patients with frontal FCD (MZ > NZ; p < 0.05) but was not significant for patients with extra-frontal FCD. Conclusions Brain network analysis, based on the combination of time-frequency analysis of phase transfer entropy, graph theory analysis, and power spectrum compensation, can aid in the diagnosis of EZ for pediatric focal epilepsy patients with FCD type II.
Collapse
Affiliation(s)
- Zhi Ji Wang
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- Radio Frequency Integrated Circuit (RFIC), Kwangwoon University, Seoul, South Korea
| | - Byoung Ho Noh
- Department of Pediatrics, Kangwon National University Hospital, Chuncheon-si, South Korea
| | - Eun Seong Kim
- Radio Frequency Integrated Circuit (RFIC), Kwangwoon University, Seoul, South Korea
| | - Donghwa Yang
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- Division of Pediatric Neurology, Department of Pediatrics, National Health Insurance Service Ilsan Hospital, Goyang-si, South Korea
| | - Shan Yang
- Radio Frequency Integrated Circuit (RFIC), Kwangwoon University, Seoul, South Korea
| | - Nam Young Kim
- Radio Frequency Integrated Circuit (RFIC), Kwangwoon University, Seoul, South Korea
| | - Yun Jung Hur
- Department of Pediatrics, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Heung Dong Kim
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Robinson PA. Discrete spectral eigenmode-resonance network of brain dynamics and connectivity. Phys Rev E 2021; 104:034411. [PMID: 34654199 DOI: 10.1103/physreve.104.034411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/02/2021] [Indexed: 12/27/2022]
Abstract
The problem of finding a compact natural representation of brain dynamics and connectivity is addressed using an expansion in terms of physical spatial eigenmodes and their frequency resonances. It is demonstrated that this discrete expansion via the system transfer function enables linear and nonlinear dynamics to be analyzed in compact form in terms of natural dynamic "atoms," each of which is a frequency resonance of an eigenmode. Because these modal resonances are determined by the system dynamics, not the investigator, they are privileged over widely used phenomenological patterns, and obviate the need for artificial discretizations and thresholding in coordinate space. It is shown that modal resonances participate as nodes of a discrete spectral network, are noninteracting in the linear regime, but are linked nonlinearly by wave-wave coalescence and decay processes. The modal resonance formulation is shown to be capable of speeding numerical calculations of strongly nonlinear interactions. Recent work in brain dynamics, especially based on neural field theory (NFT) approaches, allows eigenmodes and their resonances to be estimated from data without assuming a specific brain model. This means that dynamic equations can be inferred using system identification methods from control theory, rather than being assumed, and resonances can be interpreted as control-systems data filters. The results link brain activity and connectivity with control-systems functions such as prediction and attention via gain control and can also be linked to specific NFT predictions if desired, thereby providing a convenient bridge between physiologically based theories and experiment. Amplitudes of modes and resonances can also be tracked to provide a more direct and temporally localized representation of the dynamics than correlations and covariances, which are widely used in the field. By synthesizing many different lines of research, this work provides a way to link quantitative electrophysiological and imaging measurements, connectivity, brain dynamics, and function. This underlines the need to move between coordinate and spectral representations as required. Moreover, standard theoretical-physics approaches and mathematical methods can be used in place of ad hoc statistical measures such as those based on graph theory of artificially discretized and decimated networks, which are highly prone to selection effects and artifacts.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|