1
|
Schmid M, Rueffler C, Lehmann L, Mullon C. Resource Variation Within and Between Patches: Where Exploitation Competition, Local Adaptation, and Kin Selection Meet. Am Nat 2024; 203:E19-E34. [PMID: 38207145 DOI: 10.1086/727483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
AbstractIn patch- or habitat-structured populations, different processes can favor adaptive polymorphism at different scales. While spatial heterogeneity can generate spatially disruptive selection favoring variation between patches, local competition can lead to locally disruptive selection promoting variation within patches. So far, almost all theory has studied these two processes in isolation. Here, we use mathematical modeling to investigate how resource variation within and between habitats influences the evolution of variation in a consumer population where individuals compete in finite patches connected by dispersal. We find that locally and spatially disruptive selection typically act in concert, favoring polymorphism under a wider range of conditions than when in isolation. But when patches are small and dispersal between them is low, kin competition inhibits the emergence of polymorphism, especially when the latter is driven by local competition for resources. We further use our model to clarify what comparisons between trait and neutral genetic differentiation (Q ST / F ST comparisons) can tell about the nature of selection. Overall, our results help us understand the interaction between two major drivers of polymorphism: locally and spatially disruptive selection, and how this interaction is modulated by the unavoidable effects of kin selection under limited dispersal.
Collapse
|
2
|
Parvinen K, Ohtsuki H, Wakano JY. Evolution of dispersal under spatio-temporal heterogeneity. J Theor Biol 2023; 574:111612. [PMID: 37659573 DOI: 10.1016/j.jtbi.2023.111612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/30/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
Theoretical studies over the past decades have revealed various factors that favor or disfavor the evolution of dispersal. Among these, environmental heterogeneity is one driving force that can impact dispersal traits, because dispersing individuals can obtain a fitness benefit through finding better environments. Despite this potential benefit, some previous works have shown that the existence of spatial heterogeneity hinders evolution of dispersal. On the other hand, temporal heterogeneity has been shown to promote dispersal through a bet-hedging mechanism. When they are combined in a patch-structured population in which the quality of each patch varies over time independently of the others, it has been shown that spatiotemporal heterogeneity can favor evolution of dispersal. When individuals can use patch quality information so that dispersal decision is conditional, the evolutionary outcome can be different since individuals have options to disperse more/less offspring from bad/good patches. In this paper, we generalize the model and results of previous studies. We find richer dynamics including bistable evolutionary dynamics when there is arrival bias towards high-productivity patches. Then we study the evolution of conditional dispersal strategy in this generalized model. We find a surprising result that no offspring will disperse from a patch whose productivity was low when these offspring were born. In addition to mathematical proofs, we also provide intuition behind this initially counter-intuitive result based on reproductive-value arguments. Dispersal from high-productivity patches can evolve, and its parameter dependence behaves similarly, but not identically, to the case of unconditional dispersal. Our results unveil an importance of whether or not individuals can use patch quality information in dispersal evolution.
Collapse
Affiliation(s)
- Kalle Parvinen
- Department of Mathematics and Statistics, FI-20014, University of Turku, Finland; Advancing Systems Analysis Program, International Institute for Applied Systems Analysis (IIASA), A-2361 Laxenburg, Austria; Okinawa Institute of Science and Technology, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| | - Hisashi Ohtsuki
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan; Research Center for Integrative Evolutionary Science, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Joe Yuichiro Wakano
- School of Interdisciplinary Mathematical Sciences, Meiji University, Tokyo 164-8525, Japan; Meiji Institute for Advanced Study of Mathematical Sciences, Tokyo 164-8525, Japan
| |
Collapse
|
3
|
Prigent I, Mullon C. The molding of intraspecific trait variation by selection under ecological inheritance. Evolution 2023; 77:2144-2161. [PMID: 37459126 DOI: 10.1093/evolut/qpad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/04/2023] [Accepted: 05/29/2023] [Indexed: 10/05/2023]
Abstract
Organisms continuously modify their environment, often impacting the fitness of future conspecifics due to ecological inheritance. When this inheritance is biased toward kin, selection favors modifications that increase the fitness of downstream individuals. How such selection shapes trait variation within populations remains poorly understood. Using mathematical modelling, we investigate the coevolution of multiple traits in a group-structured population when these traits affect the group environment, which is then bequeathed to future generations. We examine when such coevolution favors polymorphism as well as the resulting associations among traits. We find in particular that two traits become associated when one trait affects the environment while the other influences the likelihood that future kin experience this environment. To illustrate this, we model the coevolution of (a) the attack rate on a local renewable resource, which deteriorates environmental conditions, with (b) dispersal between groups, which reduces the likelihood that kin suffers from such deterioration. We show this often leads to the emergence of two highly differentiated morphs: one that readily disperses and depletes local resources, and another that maintains these resources and tends to remain philopatric. More broadly, we suggest that ecological inheritance can contribute to phenotypic diversity and lead to complex polymorphism.
Collapse
Affiliation(s)
- Iris Prigent
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Charles Mullon
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Avila P, Mullon C. Evolutionary game theory and the adaptive dynamics approach: adaptation where individuals interact. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210502. [PMID: 36934752 PMCID: PMC10024992 DOI: 10.1098/rstb.2021.0502] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/16/2023] [Indexed: 03/21/2023] Open
Abstract
Evolutionary game theory and the adaptive dynamics approach have made invaluable contributions to understanding how gradual evolution leads to adaptation when individuals interact. Here, we review some of the basic tools that have come out of these contributions to model the evolution of quantitative traits in complex populations. We collect together mathematical expressions that describe directional and disruptive selection in class- and group-structured populations in terms of individual fitness, with the aims of bridging different models and interpreting selection. In particular, our review of disruptive selection suggests there are two main paths that can lead to diversity: (i) when individual fitness increases more than linearly with trait expression; (ii) when trait expression simultaneously increases the probability that an individual is in a certain context (e.g. a given age, sex, habitat, size or social environment) and fitness in that context. We provide various examples of these and more broadly argue that population structure lays the ground for the emergence of polymorphism with unique characteristics. Beyond this, we hope that the descriptions of selection we present here help see the tight links among fundamental branches of evolutionary biology, from life history to social evolution through evolutionary ecology, and thus favour further their integration. This article is part of the theme issue 'Half a century of evolutionary games: a synthesis of theory, application and future directions'.
Collapse
Affiliation(s)
- Piret Avila
- Institute for Advanced Studies in Toulouse, Université Toulouse 1 Capitole, 31080 Toulouse, France
| | - Charles Mullon
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Doria HB, Hannappel P, Pfenninger M. Whole genome sequencing and RNA-seq evaluation allowed to detect Cd adaptation footprint in Chironomus riparius. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152843. [PMID: 35033566 DOI: 10.1016/j.scitotenv.2021.152843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Evolutionary adaptation and phenotypic plasticity are important processes on how organisms respond to pollutant exposure. We dissected here the contribution of both processes to increased tolerance in Chironomus riparius to cadmium (Cd) exposure in a multi-generation experiment and inferred the underlying genomic basis. We simulated environmentally realistic conditions by continuously increasing contaminant concentration in six replicates initiated with 1000 larvae each, three pre-exposed to Cd and three not exposed to Cd (no-Cd) over eight generations. We measured life-cycle traits, transcriptomic responses and genome-wide allele frequency changes from this evolve and resequencing (E&R) experiment. Overall, life cycle tests revealed little phenotypic adaptation to Cd exposure, but a slightly increase in survival in the first larval stage was observed. Population genomic analyses showed a strong genome-wide selective response in all replicates, highlighting two main biological functions involved in development and growth of the chironomids. Emphasizing that laboratory conditions continually exert selective pressure. However, the integration of the transcriptomic to the genomic data allowed to distinguish pathways specifically selected by the Cd exposure related to microtubules and organelles and cellular movement. Those pathways could be functionally related to an excretion of metals. Thus, our results indicate that genetic adaptation to Cd in C. riparius can happen within few generations under an environmentally relevant exposure scenario, but substantial phenotypic tolerance might take more time to arise. With our approach, we introduce an experimental setup to fill the existing gap in evolutionary ecotoxicology to investigate these early signs of genetic adaptation.
Collapse
Affiliation(s)
- Halina Binde Doria
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany; Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany.
| | - Pauline Hannappel
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany
| | - Markus Pfenninger
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany; Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany; Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 7, 55128 Mainz, Germany
| |
Collapse
|
6
|
Lion S, Boots M, Sasaki A. Multi-morph eco-evolutionary dynamics in structured populations. Am Nat 2022; 200:345-372. [DOI: 10.1086/720439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Priklopil T, Lehmann L. Metacommunities, fitness and gradual evolution. Theor Popul Biol 2021; 142:12-35. [PMID: 34530032 DOI: 10.1016/j.tpb.2021.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022]
Abstract
We analyze the evolution of a multidimensional quantitative trait in a class-structured focal species interacting with other species in a wider metacommunity. The evolutionary dynamics in the focal species as well as the ecological dynamics of the whole metacommunity is described as a continuous-time process with birth, physiological development, dispersal, and death given as rates that can depend on the state of the whole metacommunity. This can accommodate complex local community and global metacommunity environmental feedbacks owing to inter- and intra-specific interactions, as well as local environmental stochastic fluctuations. For the focal species, we derive a fitness measure for a mutant allele affecting class-specific trait expression. Using classical results from geometric singular perturbation theory, we provide a detailed proof that if the effect of the mutation on phenotypic expression is small ("weak selection"), the large system of dynamical equations needed to describe selection on the mutant allele in the metacommunity can be reduced to a single ordinary differential equation on the arithmetic mean mutant allele frequency that is of constant sign. This invariance on allele frequency entails the mutant either dies out or will out-compete the ancestral resident (or wild) type. Moreover, the directional selection coefficient driving arithmetic mean allele frequency can be expressed as an inclusive fitness effect calculated from the resident metacommunity alone, and depends, as expected, on individual fitness differentials, relatedness, and reproductive values. This formalizes the Darwinian process of gradual evolution driven by random mutation and natural selection in spatially and physiologically class-structured metacommunities.
Collapse
Affiliation(s)
- Tadeas Priklopil
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | - Laurent Lehmann
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|