1
|
Liao H, Liu S, Ma Q, Huang H, Goel A, Torabian P, Mohan CD, Duan C. Endoplasmic reticulum stress induced autophagy in cancer and its potential interactions with apoptosis and ferroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119869. [PMID: 39490702 DOI: 10.1016/j.bbamcr.2024.119869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that is a site of the synthesis of proteins and lipids, contributing to the regulation of proteostasis, lipid metabolism, redox balance, and calcium storage/-dependent signaling events. The disruption of ER homeostasis due to the accumulation of misfolded proteins in the ER causes ER stress which activates the unfolded protein response (UPR) system through the activation of IRE1, PERK, and ATF6. Activation of UPR is observed in various cancers and therefore, its association with process of carcinogenesis has been of importance. Tumor cells effectively utilize the UPR system to overcome ER stress. Moreover, ER stress and autophagy are the stress response mechanisms operating together to maintain cellular homeostasis. In human cancers, ER stress-driven autophagy can function as either pro-survival or pro-death in a context-dependent manner. ER stress-mediated autophagy can have crosstalk with other types of cell death pathways including apoptosis and ferroptosis. In this connection, the present review has evaluated the role of ER stress in the regulation of autophagy-mediated tumorigenesis and its interactions with other cell death mechanisms such as apoptosis and ferroptosis. We have also comprehensively discussed the effect of ER stress-mediated autophagy on cancer progression and chemotherapeutic resistance.
Collapse
Affiliation(s)
- Haitang Liao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Intensive Care Unit, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Shuang Liu
- Department of Ultrasound, Chongqing Health Center for Women and Children/Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Qiang Ma
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Pedram Torabian
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Chakrabhavi Dhananjaya Mohan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
2
|
Kongsomros S, Boonyarattanasoonthorn T, Phongphaew W, Kasorndorkbua C, Sunyakumthorn P, Im-Erbsin R, Lugo-Roman LA, Kongratanapasert T, Paha J, Manopwisedjaroen S, Kwankhao P, Supannapan K, Ngamkhae N, Srimongkolpithak N, Vivithanaporn P, Hongeng S, Thitithanyanont A, Khemawoot P. In vivo evaluation of Andrographis paniculata and Boesenbergia rotunda extract activity against SARS-CoV-2 Delta variant in Golden Syrian hamsters: Potential herbal alternative for COVID-19 treatment. J Tradit Complement Med 2024; 14:598-610. [PMID: 39850600 PMCID: PMC11752117 DOI: 10.1016/j.jtcme.2024.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 01/25/2025] Open
Abstract
The ongoing COVID-19 pandemic has triggered extensive research, mainly focused on identifying effective therapeutic agents, specifically those targeting highly pathogenic SARS-CoV-2 variants. This study aimed to investigate the in vivo antiviral efficacy and anti-inflammatory activity of herbal extracts derived from Andrographis paniculata and Boesenbergia rotunda, using a Golden Syrian hamster model infected with Delta, a representative variant associated with severe COVID-19. Hamsters were intranasally inoculated with the SARS-CoV-2 Delta variant and orally administered either vehicle control, B. rotunda, or A. paniculata extract at a dosage of 1000 mg/kg/day. Euthanasia was conducted on days 1, 3, and 7 post-inoculation, with 4 animals per group. The results demonstrated that oral administration of A. paniculata extract significantly alleviated both lethality and infection severity compared with the vehicle control and B. rotunda extract. However, neither extract exhibited direct antiviral activity in terms of reducing viral load in the lungs. Nonetheless, A. paniculata extract treatment significantly reduced IL-6 protein levels in the lung tissue (7278 ± 868.4 pg/g tissue) compared to the control (12,495 ± 1118 pg/g tissue), indicating there was a decrease in local inflammation. This finding is evidenced by the ability of A. paniculata extract to reduce histological lesions in the lungs of infected hamsters. Furthermore, both extracts significantly decreased IL-6 and IP-10 mRNA expression in peripheral blood mononuclear cells of infected hamsters compared to the control group, suggesting systemic anti-inflammatory effects occurred. In conclusion, A. paniculata extract's potential therapeutic application for SARS-CoV-2 arises from its observed capacity to lessen inflammatory cytokine concentrations and mitigate lung pathology.
Collapse
Affiliation(s)
- Supasek Kongsomros
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, 10540, Thailand
| | - Tussapon Boonyarattanasoonthorn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, 10540, Thailand
| | - Wallaya Phongphaew
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Chaiyan Kasorndorkbua
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Piyanate Sunyakumthorn
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, 10400, Thailand
| | - Rawiwan Im-Erbsin
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, 10400, Thailand
| | - Luis A. Lugo-Roman
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, 10400, Thailand
| | - Teetat Kongratanapasert
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Jiraporn Paha
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Pakakrong Kwankhao
- Chao Phya Abhaibhubejhr Hospital Foundation, Prachinburi, 25000, Thailand
| | | | - Nittaya Ngamkhae
- Chao Phya Abhaibhubejhr Hospital Foundation, Prachinburi, 25000, Thailand
| | - Nitipol Srimongkolpithak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, 10540, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | | | - Phisit Khemawoot
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, 10540, Thailand
| |
Collapse
|
3
|
Rahman MA, Sarker A, Ayaz M, Shatabdy AR, Haque N, Jalouli M, Rahman MDH, Mou TJ, Dey SK, Hoque Apu E, Zafar MS, Parvez MAK. An Update on the Study of the Molecular Mechanisms Involved in Autophagy during Bacterial Pathogenesis. Biomedicines 2024; 12:1757. [PMID: 39200221 PMCID: PMC11351677 DOI: 10.3390/biomedicines12081757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Autophagy is a unique catabolic process that degrades irrelevant or damaged components in eukaryotic cells to maintain homeostasis and eliminate infections from pathogenesis. Pathogenic bacteria have developed many autophagy manipulation techniques that affect host immune responses and intracellular bacterial pathogens have evolved to avoid xenophagy. However, reducing its effectiveness as an innate immune response has not yet been elucidated. Bacterial pathogens cause autophagy in infected cells as a cell-autonomous defense mechanism to eliminate the pathogen. However, harmful bacteria have learned to control autophagy and defeat host defenses. Intracellular bacteria can stimulate and control autophagy, while others inhibit it to prevent xenophagy and lysosomal breakdown. This review evaluates the putative functions for xenophagy in regulating bacterial infection, emphasizing that successful pathogens have evolved strategies to disrupt or exploit this defense, reducing its efficiency in innate immunity. Instead, animal models show that autophagy-associated proteins influence bacterial pathogenicity outside of xenophagy. We also examine the consequences of the complex interaction between autophagy and bacterial pathogens in light of current efforts to modify autophagy and develop host-directed therapeutics to fight bacterial infections. Therefore, effective pathogens have evolved to subvert or exploit xenophagy, although autophagy-associated proteins can influence bacterial pathogenicity outside of xenophagy. Finally, this review implies how the complex interaction between autophagy and bacterial pathogens affects host-directed therapy for bacterial pathogenesis.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Amily Sarker
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Mohammed Ayaz
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Ananya Rahman Shatabdy
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Nabila Haque
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - MD. Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh;
| | - Taslin Jahan Mou
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Shuvra Kanti Dey
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Ehsanul Hoque Apu
- Department of Biomedical Science, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA;
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia;
- School of Dentistry, University of Jordan, Amman 11942, Jordan
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Md. Anowar Khasru Parvez
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| |
Collapse
|
4
|
Catalano A, Ceramella J, Iacopetta D, Marra M, Conforti F, Lupi FR, Gabriele D, Borges F, Sinicropi MS. Aloe vera-An Extensive Review Focused on Recent Studies. Foods 2024; 13:2155. [PMID: 38998660 PMCID: PMC11241682 DOI: 10.3390/foods13132155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Since ancient times, Aloe vera L. (AV) has attracted scientific interest because of its multiple cosmetic and medicinal properties, attributable to compounds present in leaves and other parts of the plant. The collected literature data show that AV and its products have a beneficial influence on human health, both by topical and oral use, as juice or an extract. Several scientific studies demonstrated the numerous biological activities of AV, including, for instance, antiviral, antimicrobial, antitumor, and antifungal. Moreover, its important antidepressant activity in relation to several diseases, including skin disorders (psoriasis, acne, and so on) and prediabetes, is a growing field of research. This comprehensive review intends to present the most significant and recent studies regarding the plethora of AV's biological activities and an in-depth analysis exploring the component/s responsible for them. Moreover, its morphology and chemical composition are described, along with some studies regarding the single components of AV available in commerce. Finally, valorization studies and a discussion about the metabolism and toxicological aspects of this "Wonder Plant" are reported.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca R Lupi
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Domenico Gabriele
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Fernanda Borges
- CIQUP-IMS-Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
5
|
Alkahtani S, Alkahtane AA, Alarifi S. Physiological and Pathogenesis Significance of Chorein in Health and Disease. Physiol Res 2024; 73:189-203. [PMID: 38710051 PMCID: PMC11081191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 05/08/2024] Open
Abstract
This comprehensive review explores the physiological and pathophysiological significance of VPS13A, a protein encoded by the VPS13A gene. The VPS13A gene is associated with Chorea-acanthocytosis (ChAc), a rare hereditary neurodegenerative disorder. The review covers essential aspects, beginning with the genetics of VPS13A, highlighting its role in the pathogenesis of ChAc, and addressing the spectrum of genetic variants involved. It delves into the structure and function of the VPS13A protein, emphasizing its presence in various tissues and its potential involvement in protein trafficking and lipid homeostasis. Molecular functions of VPS13A in the brain tissue and other cell types or tissues with respect to their role in cytoskeletal regulation and autophagy are explored. Finally, it explores the intriguing link between VPS13A mutations, lipid imbalances, and neurodegeneration, shedding light on future research directions. Overall, this review serves as a comprehensive resource for understanding the pivotal role of VPS13A in health and disease, particularly in the context of ChAc. Key words: Chorein , Tumor, Actin, Microfilament, Gene expression, Chorea-acanthocytosis.
Collapse
Affiliation(s)
- S Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | | | | |
Collapse
|
6
|
Hu C. Marine natural products and human immunity: novel biomedical resources for anti-infection of SARS-CoV-2 and related cardiovascular disease. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:12. [PMID: 38282092 PMCID: PMC10822835 DOI: 10.1007/s13659-024-00432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Marine natural products (MNPs) and marine organisms include sea urchin, sea squirts or ascidians, sea cucumbers, sea snake, sponge, soft coral, marine algae, and microalgae. As vital biomedical resources for the discovery of marine drugs, bioactive molecules, and agents, these MNPs have bioactive potentials of antioxidant, anti-infection, anti-inflammatory, anticoagulant, anti-diabetic effects, cancer treatment, and improvement of human immunity. This article reviews the role of MNPs on anti-infection of coronavirus, SARS-CoV-2 and its major variants (such as Delta and Omicron) as well as tuberculosis, H. Pylori, and HIV infection, and as promising biomedical resources for infection related cardiovascular disease (irCVD), diabetes, and cancer. The anti-inflammatory mechanisms of current MNPs against SARS-CoV-2 infection are also discussed. Since the use of other chemical agents for COVID-19 treatment are associated with some adverse effects in cardiovascular system, MNPs have more therapeutic advantages. Herein, it's time to protect this ecosystem for better sustainable development in the new era of ocean economy. As huge, novel and promising biomedical resources for anti-infection of SARS-CoV-2 and irCVD, the novel potential mechanisms of MNPs may be through multiple targets and pathways regulating human immunity and inhibiting inflammation. In conclusion, MNPs are worthy of translational research for further clinical application.
Collapse
Affiliation(s)
- Chunsong Hu
- Department of Cardiovascular Medicine, Jiangxi Academy of Medical Science, Nanchang University, Hospital of Nanchang University, No. 461 Bayi Ave, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
7
|
Ghosh S, Singha PS, Das LK, Ghosh D. Systematic Review on Major Antiviral Phytocompounds from Common Medicinal Plants against SARS-CoV-2. Med Chem 2024; 20:613-629. [PMID: 38317467 DOI: 10.2174/0115734064262843231120051452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/02/2023] [Accepted: 09/14/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Viral infections are rising around the globe and with evolving virus types and increasing varieties of viral invasions; the human body is developing antimicrobial resistance continuously. This is making the fight of mankind against viruses weak and unsecured. On the other hand, changing lifestyle, globalization and human activities adversely affecting the environment are opening up risks for new viral predominance on human race. In this context the world has witnessed the pandemic of the human Coronavirus disease (COVID-19) recently. The disease is caused by the Coronavirus namely Severe Acute Respiratory Syndrome Coronavirus 2 (SARSCoV- 2). METHODS AND MATERIALS Developing potential and effective vaccine is also time consuming and challenging. The huge resource of plants around us has rich source of potent antiviral compounds. Some of these molecules may serve as tremendously potent lead molecules whose slight structural modifications may give us highly bioactive antiviral derivatives of phytocompounds. Every geographical region is rich in unique plant biodiversity and hence every corner of the world with rich plant biodiversity can serve as abode for potential magical phytocompounds most of which have not been extensively explored for development of antiviral drug formulations against various viruses like the HIV, HPV etc., and the Coronavirus, also known as SARS-CoV-2 which causes the disease COVID-19. RESULTS Several phytocompounds from various medicinal plants have already been screened using in silico tools and some of them have yielded promising results establishing themselves as potent lead molecules for development of drugs against the highly mutating SARS-CoV-2 virus and thus these phytocompounds may be beneficial in treating COVID-19 and help human to win the life threatening battle against the deadly virus. CONCLUSION The best advantage is that these phytocompounds being derived from nature in most of the cases, come with minimum or no side effects compared to that of chemically synthesized conventional bioactive compounds and are indigenously available hence are the source of cost effective drug formulations with strong therapeutic potentials.
Collapse
Affiliation(s)
- Suvendu Ghosh
- Department of Physiology, Hooghly Mohsin College, Chinsura, Hooghly 712 101, West Bengal, India
| | - Partha Sarathi Singha
- Department of Chemistry, Government General Degree College, Kharagpur II, P.O Madpur, Dist, Paschim Medinipur, Pin: 721149, West Bengal, India
| | - Lakshmi Kanta Das
- Department of Chemistry, Government General Degree College, Kharagpur II, P.O Madpur, Dist, Paschim Medinipur, Pin: 721149, West Bengal, India
| | - Debosree Ghosh
- Department of Physiology, Government General Degree College, Kharagpur II, P.O Madpur, Dist, Paschim Medinipur, Pin: 721149, West Bengal, India
| |
Collapse
|
8
|
Loi LK, Yang CC, Lin YC, Su YF, Juan YC, Chen YH, Chang HC. Decoy peptides effectively inhibit the binding of SARS-CoV-2 to ACE2 on oral epithelial cells. Heliyon 2023; 9:e22614. [PMID: 38107325 PMCID: PMC10724569 DOI: 10.1016/j.heliyon.2023.e22614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
The entry of SARS-CoV-2 into host cells involves the interaction between the viral spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor. Given that the spike protein evolves rapidly to evade host immunity, therapeutics that block ACE2 accessibility, such as spike decoys, could serve as an alternative strategy for attenuating viral infection. Here, we constructed a drug screening platform based on oral epithelial cells to rapidly identify peptides or compounds capable of blocking the spike-ACE2 interaction. We engineered short decoy peptides, 8 to 14 amino acids in length, using the spike protein's receptor-binding motif (RBM) and demonstrated that these peptides can effectively inhibit virus attachment to host cells. Additionally, we discovered that diminazene aceturate (DIZE), an ACE2 activator, similarly inhibited virus binding. Our research thus validates the potential of decoy peptides as a new therapeutic strategy against SARS-CoV-2 infections, opening avenues for further development and study.
Collapse
Affiliation(s)
- Lai-Keng Loi
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chieh Yang
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Oral & Maxillofacial Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Cheng Lin
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yee-Fun Su
- iStat Biomedical Co., Ltd, New Taipei City, Taiwan
| | - Yi-Chen Juan
- iStat Biomedical Co., Ltd, New Taipei City, Taiwan
| | - Yi-Hsin Chen
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiu-Chuan Chang
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
9
|
Tang P, Shen T, Wang H, Zhang R, Zhang X, Li X, Xiao W. Challenges and opportunities for improving the druggability of natural product: Why need drug delivery system? Biomed Pharmacother 2023; 164:114955. [PMID: 37269810 DOI: 10.1016/j.biopha.2023.114955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
Bioactive natural products (BNPs) are the marrow of medicinal plants, which are the secondary metabolites of organisms and have been the most famous drug discovery database. Bioactive natural products are famous for their enormous number and great safety in medical applications. However, BNPs are troubled by their poor druggability compared with synthesis drugs and are challenged as medicine (only a few BNPs are applied in clinical settings). In order to find a reasonable solution to improving the druggability of BNPs, this review summarizes their bioactive nature based on the enormous pharmacological research and tries to explain the reasons for the poor druggability of BNPs. And then focused on the boosting research on BNPs loaded drug delivery systems, this review further concludes the advantages of drug delivery systems on the druggability improvement of BNPs from the perspective of their bioactive nature, discusses why BNPs need drug delivery systems, and predicts the next direction.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Tianze Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Hairong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xingjie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
10
|
Tan H, Cao L. Acinetobacter baumannii outer membrane protein A induces autophagy in bone marrow-derived dendritic cells involving the PI3K/mTOR pathway. Immun Inflamm Dis 2023; 11:e830. [PMID: 37102650 PMCID: PMC10091376 DOI: 10.1002/iid3.830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Outer membrane protein A (OmpA) is the major virulence factor of Acinetobacter baumannii and plays a wide role in the pathogenesis and antimicrobial resistance of A. baumannii. Dendritic cells (DCs) are the most effective antigen-presenting cells and play a crucial role in regulating the immune response to multiple antigens and immune sentries. We aimed to study the role and molecular mechanisms of OmpA-induced mouse bone marrow-derived dendritic cells (BMDCs) autophagy in the immune response of A. baumannii. METHODS First, purified A. baumannii OmpA was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot. OmpA effect on BMDCs viability was evaluated by MTT assay. BMDCs were pretreated with autophagy inhibitor chloroquine or transfected with overexpression plasmids (oe-NC or oe-PI3K). Then BMDCs apoptosis, inflammatory cytokines, protein kinase B (PI3K)/mammalian target of rapamycin (mTOR) pathway, and autophagy-related factors levels were evaluated. RESULTS SDS-PAGE and western blot verified the successful purification of OmpA. BMDCs viability repressed gradually with the increase of OmpA concentration. OmpA treatment of BMDCs led to apoptosis and inflammation in BMDCs. OmpA caused incomplete autophagy in BMDCs, and light chain 3 (LC3), Beclin1, P62, and LC3II/I levels were significantly elevated with the increase of the time and concentration of OmpA treatment. Chloroquine reversed OmpA effects on autophagy in BMDCs, that was, LC3, Beclin1, and LC3II/I levels were reduced, while P62 level was elevated. Furthermore, chloroquine reversed OmpA effects on apoptosis and inflammation in BMDCs. PI3K/mTOR pathway-related factor expression was affected by OmpA treatment of BMDCs. After overexpression of PI3K, these effects were reversed. CONCLUSIONS A. baumannii OmpA induced autophagy in BMDCs involving the PI3K/mTOR pathway. Our study may provide a novel therapeutic target and theoretical basis for treating infections caused by A. baumannii.
Collapse
Affiliation(s)
- Hongyi Tan
- Department of Pulmonary and Critical Care Medicine, Huizhou Central People's HospitalGuangdong Medical UniversityHuizhouChina
| | - Liyan Cao
- Department of Healthcare Associated Affection ManagementChangsha Central HospitalChangshaChina
| |
Collapse
|
11
|
Hanai T. Further quantitative in silico analysis of SARS-CoV-2 S-RBD Omicron BA.4, BA.5, BA.2.75, BQ.1, and BQ.1.1 transmissibility. Talanta 2023; 254:124127. [PMID: 36462284 PMCID: PMC9682881 DOI: 10.1016/j.talanta.2022.124127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
The Covid-19 variants' transmissibility was further quantitatively analyzed in silico to study the binding strength with ACE-2 and find the binding inhibitors. The molecular interaction energy values of their optimized complex structures (MIFS) demonstrated that Omicron BA.4 and 5's MIFS value (344.6 kcal mol-1) was equivalent to wild-type MIFS (346.1 kcal mol-1), that of Omicron BQ.1 and BQ. 1.1's MIFS value (309.9 and 364.6 kcal mol-1). Furthermore, the MIFS value of Omicron BA.2.75 (515.1 kcal mol-1) was about Delta-plus (511.3 kcal mol-1). The binding strength of Omicron BA.4, BA. 5, and BQ.1.1 may be neglectable, but that of Omicron BA.2.75 was urging. Furthermore, the 79 medicine candidates were analyzed as the binding inhibitors from binding strength with ACE-2. Only carboxy compounds were repulsed from the ACE-2 binding site indicating that further modification of medical treatment candidates may produce an effective binding inhibitor.
Collapse
Affiliation(s)
- Toshihiko Hanai
- Health Research Foundation, Research Institute for Production Development 4F, Sakyo-Ku, Kyoto, 606-0805, Japan.
| |
Collapse
|
12
|
Bellavite P, Ferraresi A, Isidoro C. Immune Response and Molecular Mechanisms of Cardiovascular Adverse Effects of Spike Proteins from SARS-CoV-2 and mRNA Vaccines. Biomedicines 2023; 11:451. [PMID: 36830987 PMCID: PMC9953067 DOI: 10.3390/biomedicines11020451] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The SARS-CoV-2 (severe acute respiratory syndrome coronavirus responsible for the COVID-19 disease) uses the Spike proteins of its envelope for infecting target cells expressing on the membrane the angiotensin converting enzyme 2 (ACE2) enzyme that acts as a receptor. To control the pandemic, genetically engineered vaccines have been designed for inducing neutralizing antibodies against the Spike proteins. These vaccines do not act like traditional protein-based vaccines, as they deliver the message in the form of mRNA or DNA to host cells that then produce and expose the Spike protein on the membrane (from which it can be shed in soluble form) to alert the immune system. Mass vaccination has brought to light various adverse effects associated with these genetically based vaccines, mainly affecting the circulatory and cardiovascular system. ACE2 is present as membrane-bound on several cell types, including the mucosa of the upper respiratory and of the gastrointestinal tracts, the endothelium, the platelets, and in soluble form in the plasma. The ACE2 enzyme converts the vasoconstrictor angiotensin II into peptides with vasodilator properties. Here we review the pathways for immunization and the molecular mechanisms through which the Spike protein, either from SARS-CoV-2 or encoded by the mRNA-based vaccines, interferes with the Renin-Angiotensin-System governed by ACE2, thus altering the homeostasis of the circulation and of the cardiovascular system. Understanding the molecular interactions of the Spike protein with ACE2 and the consequent impact on cardiovascular system homeostasis will direct the diagnosis and therapy of the vaccine-related adverse effects and provide information for development of a personalized vaccination that considers pathophysiological conditions predisposing to such adverse events.
Collapse
Affiliation(s)
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
13
|
Belal A, Elsayed A, Gharib AF, Ali Alqarni MA, Soliman AM, Mehany ABM, Elanany MA. Toward the Discovery of SARS-CoV-2 Main Protease Inhibitors: Exploring Therapeutic Potentials of Evodiamine and Its Derivatives, Virtual Screening, Molecular Docking, and Molecular Dynamic Studies. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221143082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Continuous scientific research is necessary to help in the discovery of new promising remedies for the treatment of COVID-19, caused by the SARS-CoV-2 virus. This current research was aimed at identifying potential novel inhibitors of the SARS-CoV-2 main protease, which represents one of the most important targets in the viral life cycle. Protein data bank file ID: 7JQ2 was used containing the co-crystallized inhibitor MPI5 with the Main protease. A virtual screening process for natural evodiamine compounds was performed through absorption, distribution, metabolism, elimination, and toxicity studies, and the promising hits were docked into the binding site of the enzyme. 13-(4-Chlorobenzoyl)-10-hydroxy-14-methyl-8,13,13 b,14-tetrahydroindolo[2′,3′:3,4]pyrido[2,1- b]-quinazolin-5(7 H)-one (29) interacted favorably with the enzyme; it showed high similarity to MPI5. Molecular dynamic simulations for 29 proved the stability of its binding to SARS-CoV-2 protease over 100 ns; subsequent MMGBSA analysis also supported this principle. Furthermore, 29 elucidated higher limiting action on enzymatic behavior throughout the whole process when compared to MPI5. This provides sufficient evidence for the potential of evodiamine compounds in modern antiviral research, especially compound 29, against the modern COVID-19 pandemic.
Collapse
Affiliation(s)
- Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Amani Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Amal F. Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | | | - Aiten M. Soliman
- Drug Radiation Research, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ahmed B. M. Mehany
- Department of Zoology, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed A. Elanany
- School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo, Cairo, Egypt
| |
Collapse
|
14
|
Jahangiri B, Saei AK, Obi PO, Asghari N, Lorzadeh S, Hekmatirad S, Rahmati M, Velayatipour F, Asghari MH, Saleem A, Moosavi MA. Exosomes, autophagy and ER stress pathways in human diseases: Cross-regulation and therapeutic approaches. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166484. [PMID: 35811032 DOI: 10.1016/j.bbadis.2022.166484] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/01/2022] [Accepted: 07/03/2022] [Indexed: 02/08/2023]
Abstract
Exosomal release pathway and autophagy together maintain homeostasis and survival of cells under stressful conditions. Autophagy is a catabolic process through which cell entities, such as malformed biomacromolecules and damaged organelles, are degraded and recycled via the lysosomal-dependent pathway. Exosomes, a sub-type of extracellular vesicles (EVs) formed by the inward budding of multivesicular bodies (MVBs), are mostly involved in mediating communication between cells. The unfolded protein response (UPR) is an adaptive response that is activated to sustain survival in the cells faced with the endoplasmic reticulum (ER) stress through a complex network that involves protein synthesis, exosomes secretion and autophagy. Disruption of the critical crosstalk between EVs, UPR and autophagy may be implicated in various human diseases, including cancers and neurodegenerative diseases, yet the molecular mechanism(s) behind the coordination of these communication pathways remains obscure. Here, we review the available information on the mechanisms that control autophagy, ER stress and EV pathways, with the view that a better understanding of their crosstalk and balance may improve our knowledge on the pathogenesis and treatment of human diseases, where these pathways are dysregulated.
Collapse
Affiliation(s)
- Babak Jahangiri
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Ali Kian Saei
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Patience O Obi
- Applied Health Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg R3T 2N2, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada
| | - Narjes Asghari
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Shirin Hekmatirad
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Velayatipour
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Mohammad Hosseni Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ayesha Saleem
- Applied Health Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg R3T 2N2, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada.
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran.
| |
Collapse
|
15
|
Smith CD, Maines LW, Keller SN, Katz Ben-Yair V, Fathi R, Plasse TF, Levitt ML. Recent Progress in the Development of Opaganib for the Treatment of Covid-19. Drug Des Devel Ther 2022; 16:2199-2211. [PMID: 35855741 PMCID: PMC9288228 DOI: 10.2147/dddt.s367612] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/02/2022] [Indexed: 12/15/2022] Open
Abstract
The Covid-19 pandemic driven by the SARS-CoV-2 virus continues to exert extensive humanitarian and economic stress across the world. Although antivirals active against mild disease have been identified recently, new drugs to treat moderate and severe Covid-19 patients are needed. Sphingolipids regulate key pathologic processes, including viral proliferation and pathologic host inflammation. Opaganib (aka ABC294640) is a first-in-class clinical drug targeting sphingolipid metabolism for the treatment of cancer and inflammatory diseases. Recent work demonstrates that opaganib also has antiviral activity against several viruses including SARS-CoV-2. A recently completed multinational Phase 2/3 clinical trial of opaganib in patients hospitalized with Covid-19 demonstrated that opaganib can be safely administered to these patients, and more importantly, resulted in a 62% decrease in mortality in a large subpopulation of patients with moderately severe Covid-19. Furthermore, acceleration of the clearance of the virus was observed in opaganib-treated patients. Understanding the biochemical mechanism for the anti-SARS-CoV-2 activity of opaganib is essential for optimizing Covid-19 treatment protocols. Opaganib inhibits three key enzymes in sphingolipid metabolism: sphingosine kinase-2 (SK2); dihydroceramide desaturase (DES1); and glucosylceramide synthase (GCS). Herein, we describe a tripartite model by which opaganib suppresses infection and replication of SARS-CoV-2 by inhibiting SK2, DES1 and GCS. The potential impact of modulation of sphingolipid signaling on multi-organ dysfunction in Covid-19 patients is also discussed.
Collapse
Affiliation(s)
- Charles D Smith
- Apogee Biotechnology Corporation, Hummelstown, PA, USA
- Correspondence: Charles D Smith, Apogee Biotechnology Corporation, 1214 Research Blvd, Suite 2015, Hummelstown, PA, 17036, USA, Tel +1 843 814 9257, Email
| | - Lynn W Maines
- Apogee Biotechnology Corporation, Hummelstown, PA, USA
| | | | | | | | | | | |
Collapse
|
16
|
Truzzi F, Whittaker A, D’Amen E, Tibaldi C, Abate A, Valerii MC, Spisni E, Dinelli G. Wheat Germ Spermidine and Clove Eugenol in Combination Stimulate Autophagy In Vitro Showing Potential in Supporting the Immune System against Viral Infections. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113425. [PMID: 35684363 PMCID: PMC9182079 DOI: 10.3390/molecules27113425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022]
Abstract
Impaired autophagy, responsible for increased inflammation, constitutes a risk factor for the more severe COVID-19 outcomes. Spermidine (SPD) is a known autophagy modulator and supplementation for COVID-19 risk groups (including the elderly) is recommended. However, information on the modulatory effects of eugenol (EUG) is scarce. Therefore, the effects of SPD and EUG, both singularly and in combination, on autophagy were investigated using different cell lines (HBEpiC, SHSY5Y, HUVEC, Caco-2, L929 and U937). SPD (0.3 mM), EUG (0.2 mM) and 0.3 mM SPD + 0.2 mM EUG, significantly increased autophagy using the hallmark measure of LC3-II protein accumulation in the cell lines without cytotoxic effects. Using Caco-2 cells as a model, several crucial autophagy proteins were upregulated at all stages of autophagic flux in response to the treatments. This effect was verified by the activation/differentiation and migration of U937 monocytes in a three-dimensional reconstituted intestinal model (Caco-2, L929 and U937 cells). Comparable benefits of SPD, EUG and SPD + EUG in inducing autophagy were shown by the protection of Caco-2 and L929 cells against lipopolysaccharide-induced inflammation. SPD + EUG is an innovative dual therapy capable of stimulating autophagy and reducing inflammation in vitro and could show promise for COVID-19 risk groups.
Collapse
Affiliation(s)
- Francesca Truzzi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (A.W.); (E.D.); (C.T.); (A.A.); (G.D.)
- Correspondence: ; Tel.: +39-051-2096674
| | - Anne Whittaker
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (A.W.); (E.D.); (C.T.); (A.A.); (G.D.)
| | - Eros D’Amen
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (A.W.); (E.D.); (C.T.); (A.A.); (G.D.)
| | - Camilla Tibaldi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (A.W.); (E.D.); (C.T.); (A.A.); (G.D.)
| | - Antonella Abate
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (A.W.); (E.D.); (C.T.); (A.A.); (G.D.)
| | - Maria Chiara Valerii
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (M.C.V.); (E.S.)
| | - Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (M.C.V.); (E.S.)
| | - Giovanni Dinelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (A.W.); (E.D.); (C.T.); (A.A.); (G.D.)
| |
Collapse
|
17
|
Vardhan S, Sahoo SK. Computational studies on the interaction of SARS-CoV-2 Omicron SGp RBD with human receptor ACE2, limonin and glycyrrhizic acid. Comput Biol Med 2022; 144:105367. [PMID: 35247766 PMCID: PMC8886687 DOI: 10.1016/j.compbiomed.2022.105367] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/06/2023]
Abstract
On November 24, 2021, the SARS-CoV-2 Omicron variant (B.1.1.529) was first identified in South Africa. The World Health Organization (WHO) declared the Omicron as a variant of concern (VoC) because of the unexpected and large numbers of mutations occurred in the genome, higher viral transmission and immune evasions. The present study was performed to explore the interactions of SARS-CoV-2 spike glycoprotein receptor-binding domain (SGp RBD) of the three variants (Omicron, Delta, and WT) with the receptor hACE2. The structural changes occurred in Omicron due to the mutations at key positions improved the ability to mediate SARS-CoV-2 viral infection compared to other VoCs. The phytochemicals limonin and glycyrrhizic acid were docked with the SGp RBD of the variants WT, Delta and Omicron. The computed dock score revealed that limonin and glycyrrhizic acid binds effectively at the SGp RBD of all three variants, and showed almost similar binding affinity at the binding interface of ACE2. Therefore, despite the multiple mutations occurred in Omicron and its viral transmission is comparatively high, the computed binding affinity of the phytochemicals limonin and glycyrrhizic acid supported that the traditional medicines can be useful in formulating adjuvant therapies to fight against the SARS-CoV-2 Omicron.
Collapse
Affiliation(s)
- Seshu Vardhan
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, 395007, Gujarat, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, 395007, Gujarat, India.
| |
Collapse
|
18
|
Vardhan S, Sahoo SK. Exploring the therapeutic nature of limonoids and triterpenoids against SARS-CoV-2 by targeting nsp13, nsp14, and nsp15 through molecular docking and dynamic simulations. J Tradit Complement Med 2021; 12:44-54. [PMID: 34926189 PMCID: PMC8666293 DOI: 10.1016/j.jtcme.2021.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/28/2022] Open
Abstract
Background and aim The ongoing global pandemic due to SARS-CoV-2 caused a medical emergency. Since December 2019, the COVID-19 disease is spread across the globe through physical contact and respiratory droplets. Coronavirus caused a severe effect on the human immune system where some of the non-structural proteins (nsp) are involved in virus-mediated immune response and pathogenesis. To suppress the viral RNA replication mechanism and immune-mediated responses, we aimed to identify limonoids and triterpenoids as antagonists by targeting helicases (nsp13), exonuclease (nsp14), and endoribonuclease (nsp15) of SARS-CoV-2 as therapeutic proteins. Experimental procedure In silico molecular docking and drug-likeness of a library of 369 phytochemicals from limonoids and triterpenoids were performed to screen the potential hits that binds effectively at the active site of the proteins target. In addition, the molecular dynamics simulations of the proteins and their complexes with the potential hits were performed for 100 ns by using GROMACS. Results and conclusion The potential compounds 26-deoxyactein and 25-O-anhydrocimigenol 3-O-beta-d-xylopyranoside posing strong interactions with a minimum binding energy of -10.1 and -9.5 kcal/mol, respectively and sustained close contact with nsp13 for 100 ns. The nsp14 replication fork activity was hindered by the tomentosolic acid, timosaponin A-I, and shizukaol A with the binding affinity score of -9.2, -9.2, and -9.0 kcal/mol, respectively. The nsp15 endoribonuclease catalytic residues were inhibited potentially by limonin, 25-O-anhydrocimigenol 3-O-alpha-l-arabinopyranoside, and asperagenin posing strong binding affinity scores of -9.0, -8.8, and -8.7 kcal/mol, respectively. Computationally predicted potential phytochemicals for SARS-CoV-2 are known to possess various medicinal properties.
Collapse
Affiliation(s)
- Seshu Vardhan
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, 395007, Gujarat, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, 395007, Gujarat, India
| |
Collapse
|