1
|
Narsana N, Ha D, Ho DY. Treating Adenovirus Infection in Transplant Populations: Therapeutic Options Beyond Cidofovir? Viruses 2025; 17:599. [PMID: 40431613 PMCID: PMC12116135 DOI: 10.3390/v17050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Adenovirus (AdV) infections can lead to significant morbidity and increased mortality in immunocompromised populations such as hematopoietic stem cell and solid organ transplant recipients. This review evaluates currently available and emerging therapies for AdV infections. Cidofovir, while most commonly used, is limited by its variable efficacy and nephrotoxicity. This led to the development of brincidofovir, which has a better safety profile and great in vitro potency against AdV. The use of ribavirin and ganciclovir has been reported in the literature, but their use is limited due to inconsistent efficacy. Immune-based approaches, such as adoptive T-cell therapy, have shown promise in achieving viral clearance and improving survival but remain constrained by challenges related to manufacturing complexity and risks of graft-versus-host disease. This review underscores the need for standardized treatment protocols as well as comparative studies to identify optimal dosing and timing to initiate treatment. Future research should focus on individualized treatment approaches and the development of novel therapeutic agents to address the unmet clinical needs of AdV management.
Collapse
Affiliation(s)
- Niyati Narsana
- Division of Infectious Diseases, UC Davis Medical Center, Sacramento, CA 95817, USA
| | - David Ha
- Stanford Antimicrobial Safety and Sustainability Program, Stanford Health Care, Stanford, CA 94305, USA
- Division of Infectious Diseases & Geographic Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dora Y. Ho
- Division of Infectious Diseases & Geographic Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Kotton CN, Kumar D, Manuel O, Chou S, Hayden RT, Danziger-Isakov L, Asberg A, Tedesco-Silva H, Humar A. The Fourth International Consensus Guidelines on the Management of Cytomegalovirus in Solid Organ Transplantation. Transplantation 2025:00007890-990000000-01056. [PMID: 40200403 DOI: 10.1097/tp.0000000000005374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Affiliation(s)
- Camille N Kotton
- Transplant and Immunocompromised Host Service, Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Deepali Kumar
- Division of Infectious Diseases, Department of Medicine, Ajmera Transplant Center and University of Toronto, Toronto, ON, Canada
| | - Oriol Manuel
- Infectious Diseases Service and Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Sunwen Chou
- Division of Infectious Diseases, Oregon Health and Science University, Portland, OR
| | - Randall T Hayden
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Lara Danziger-Isakov
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Anders Asberg
- Department of Transplantation Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
| | | | - Atul Humar
- Division of Infectious Diseases, Department of Medicine, Ajmera Transplant Center and University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Neller MA, Ambalathingal GR, Hamad N, Sasadeusz J, Pearson R, Holmes-Liew CL, Singhal D, Tunbridge M, Ng WY, Sharplin K, Moore A, Deambrosis D, Soosay-Raj T, McNaughton P, Whyte M, Fraser C, Grigg A, Kliman D, Bajel A, Cummins K, Dowling M, Yeoh ZH, Harrison SJ, Khot A, Tan S, Roos I, Koo RM, Dohrmann S, Ritchie D, Wainstein B, McCleary K, Nelson A, Gardiner B, Inam S, Badoux X, Ma K, Toro C, Hanna D, Hughes D, Conyers R, Cole T, Wang SS, Chee L, Fleming J, Irish A, Purtill D, Cooney J, Shaw P, Tey SK, Hunt S, Subramonia Pillai E, John G, Ng M, Ramachandran S, Hopkins P, Chambers D, Campbell S, Francis R, Isbel N, Marlton P, Reddiex H, Matthews KK, Voogt M, Panikkar A, Beagley L, Rehan S, Best S, Raju J, Le Texier L, Crooks P, Solomon M, Lekieffre L, Srihari S, Smith C, Khanna R. Compassionate access to virus-specific T cells for adoptive immunotherapy over 15 years. Nat Commun 2024; 15:10339. [PMID: 39627190 PMCID: PMC11615211 DOI: 10.1038/s41467-024-54595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024] Open
Abstract
Adoptive T-cell immunotherapy holds great promise for the treatment of viral complications in immunocompromised patients resistant to standard anti-viral strategies. We present a retrospective analysis of 78 patients from 19 hospitals across Australia and New Zealand, treated over the last 15 years with "off-the-shelf" allogeneic T cells directed to a combination of Epstein-Barr virus (EBV), cytomegalovirus (CMV), BK polyomavirus (BKV), John Cunningham virus (JCV) and/or adenovirus (AdV) under the Australian Therapeutic Goods Administration's Special Access Scheme. Most patients had severe post-transplant viral complications, including drug-resistant end-organ CMV disease, BKV-associated haemorrhagic cystitis and EBV-driven post-transplant lymphoproliferative disorder. Adoptive immunotherapy is well tolerated with few adverse effects. Importantly, 46/71 (65%) patients show definitive clinical improvement including reduction in viral load, clinical symptoms and complete resolution of end-organ disease. In addition, seven high-risk patients remain disease free. Based on this long-term encouraging clinical experience, we propose that a dedicated nationally funded centre for anti-viral cellular therapies should be considered to provide T cell therapies for critically ill patients for compassionate use.
Collapse
Affiliation(s)
- Michelle A Neller
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - George R Ambalathingal
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Nada Hamad
- Department of Haematology, St Vincent's Hospital, School of Clinical Medicine, University of New South Wales and School of Medicine, University of Notre Dame, Sydney, New South Wales, Australia
| | - Joe Sasadeusz
- Department of Haematology, St Vincent's Hospital, School of Clinical Medicine, University of New South Wales and School of Medicine, University of Notre Dame, Sydney, New South Wales, Australia
| | - Rebecca Pearson
- Department of Haematology, St Vincent's Hospital, School of Clinical Medicine, University of New South Wales and School of Medicine, University of Notre Dame, Sydney, New South Wales, Australia
| | | | - Deepak Singhal
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | | | - Wei Yang Ng
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Kirsty Sharplin
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Andrew Moore
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - David Deambrosis
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Trisha Soosay-Raj
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Peter McNaughton
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Morag Whyte
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Chris Fraser
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Andrew Grigg
- Austin Hospital, Heidelberg, Victoria, Australia
| | - David Kliman
- Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Ashish Bajel
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Katherine Cummins
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Mark Dowling
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Zhi Han Yeoh
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Simon J Harrison
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Amit Khot
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Sarah Tan
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Izanne Roos
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Ray Mun Koo
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Sara Dohrmann
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - David Ritchie
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Brynn Wainstein
- Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Karen McCleary
- Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Adam Nelson
- Sydney Children's Hospital, Randwick, New South Wales, Australia
| | | | - Shafqat Inam
- The Alfred Hospital, Melbourne, Victoria, Australia
| | - Xavier Badoux
- St George Public Hospital, Kogarah, New South Wales, Australia
| | - Kris Ma
- Westmead Hospital, Westmead, New South Wales, Australia
| | - Claudia Toro
- Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Diane Hanna
- Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - David Hughes
- Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Rachel Conyers
- Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Theresa Cole
- Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | | | - Lynette Chee
- Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | | | - Ashley Irish
- Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Duncan Purtill
- Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Julian Cooney
- Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Peter Shaw
- The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Siok-Keen Tey
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Stewart Hunt
- Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | | | - George John
- Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Michelle Ng
- Perth Children's Hospital, Nedlands, Western Australia, Australia
| | | | - Peter Hopkins
- The Prince Charles Hospital, Chermside, Queensland, Australia
- The University of Queensland Medical School, Herston, Queensland, Australia
| | - Daniel Chambers
- The Prince Charles Hospital, Chermside, Queensland, Australia
| | - Scott Campbell
- Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Ross Francis
- Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Nicole Isbel
- Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Paula Marlton
- Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Hilary Reddiex
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Katherine K Matthews
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Meggie Voogt
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Archana Panikkar
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Leone Beagley
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Sweera Rehan
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Shannon Best
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Jyothy Raju
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Laetitia Le Texier
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Pauline Crooks
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Matthew Solomon
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Lea Lekieffre
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Sriganesh Srihari
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Corey Smith
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Rajiv Khanna
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| |
Collapse
|
4
|
Schweitzer L, Muranski P. Virus-specific T cell therapy to treat refractory viral infections in solid organ transplant recipients. Am J Transplant 2024; 24:1558-1566. [PMID: 38857784 DOI: 10.1016/j.ajt.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Solid organ transplant recipients require ongoing immunosuppression to prevent acute rejection, which puts them at risk of opportunistic infections. Viral infections are particularly challenging to prevent and treat as many establish latency and thus cannot be eliminated, whereas targets for small molecule antiviral medications are limited. Resistance to antivirals and unacceptable toxicity also complicate treatment. Virus-specific T cell therapies aim to restore host-specific immunity to opportunistic viruses that is lacking due to ongoing immunosuppressive therapy. This minireview will provide a state-of-the-art update of the current virus-specific T cell pipeline and translational research that is likely to lead to further treatment options for viral infections in solid organ transplant recipients.
Collapse
Affiliation(s)
- Lorne Schweitzer
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, USA; Columbia Center for Translational Immunology, New York, New York, USA
| | - Pawel Muranski
- Department of Medicine, Division of Hematology, Columbia University Irving Medical Center, New York, New York, USA; Columbia Center for Translational Immunology, New York, New York, USA.
| |
Collapse
|
5
|
Taherian MR, Azarbar P, Barkhordar M, Toufani S, Aliabadi LS, Bahri T, Ahmadvand M, Yaghmaie M, Daneshvar A, Vaezi M. Efficacy and safety of adoptive T-cell therapy in treating cytomegalovirus infections post-haematopoietic stem cell transplantation: A systematic review and meta-analysis. Rev Med Virol 2024; 34:e2558. [PMID: 38878003 DOI: 10.1002/rmv.2558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/05/2024] [Accepted: 06/03/2024] [Indexed: 11/07/2024]
Abstract
Cytomegalovirus (CMV) infection poses significant risks in allogeneic haematopoietic stem cell transplant (allo-HSCT) recipients. Despite advances in antiviral therapies, issues such as drug resistance, side effects, and inadequate immune reconstitution remain. This systematic review and meta-analysis aim to evaluate the efficacy and safety of adoptive cell therapy (ATC) in managing CMV infections in allo-HSCT recipients. Adhering to preferred reporting items for systematic reviews and meta-analyses guidelines, we conducted a comprehensive database search through July 2023. A systematic review and meta-analysis were conducted on studies involving HSCT patients with CMV infections treated with ATC. The primary outcome was the response rate to ATC, and secondary outcomes included adverse events associated with ATC. The Freeman-Tukey transformation was applied for analysis. In the meta-analysis of 40 studies involving 953 participants, ATC achieved an overall integrated response rate of 90.16%, with a complete response of 82.59% and a partial response of 22.95%. ATC source, HLA matching, steroid intake, and age group markedly influenced response rates. Donor-derived T-cell treatments exhibited a higher response rate (93.66%) compared to third-party sources (88.94%). HLA-matched patients demonstrated a response rate of 92.90%, while mismatched patients had a lower rate. Children showed a response rate of 83.40%, while adults had a notably higher rate of 98.46%. Adverse events were minimal, with graft-versus-host disease occurring in 24.32% of patients. ATC shows promising response rates in treating CMV infections post-HSCT, with an acceptable safety profile. However, to establish its efficacy conclusively and compare it with other antiviral treatments, randomised controlled trials are essential. Further research should prioritise such trials over observational and one-arm studies to provide robust evidence for clinical decision-making.
Collapse
Affiliation(s)
- Mohammad Reza Taherian
- Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pouya Azarbar
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Maryam Barkhordar
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Toufani
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leyla Sharifi Aliabadi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tanaz Bahri
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ahmadvand
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Marjan Yaghmaie
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Daneshvar
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Rudilla F, Carrasco-Benso MP, Pasamar H, López-Montañés M, Andrés-Rozas M, Tomás-Marín M, Company D, Moya C, Larrea L, Guerreiro M, Barba P, Arbona C, Querol S. Development and characterization of a cell donor registry for virus-specific T cell manufacture in a blood bank. HLA 2024; 103:e15419. [PMID: 38450972 DOI: 10.1111/tan.15419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/19/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024]
Abstract
Adoptive cell therapy using virus-specific T cells (VST) is a strategy for treating common opportunistic viral infections after transplantation, particularly when these infections do not resolve through antiviral drug therapy. The availability of third-party healthy donors allows for the immediate use of cells for allogeneic therapy in cases where patients lack an appropriate donor. Here, we present the creation of a cell donor registry of human leukocyte antigen (HLA)-typed blood donors, REDOCEL, a strategic initiative to ensure the availability of compatible cells for donation when needed. Currently, the registry consists of 597 healthy donors with a median age of 29 years, 54% of whom are women. The most represented blood groups were A positive and O positive, with 36.52% and 34.51%, respectively. Also, donors were screened for cytomegalovirus (CMV) and Epstein-Barr virus (EBV). Almost 65% of donors were CMV-seropositive, while less than 5% were EBV-seronegative. Of the CMV-seropositive donors, 98% were also EBV-seropositive. High-resolution HLA-A, -B, -C, -DRB1 and -DQB1 allele and haplotype frequencies were determined in the registry. Prevalent HLA alleles and haplotypes were well represented to ensure donor-recipient HLA-matching, including alleles reported to present viral immunodominant epitopes. Since the functional establishment of REDOCEL, in May 2019, 87 effective donations have been collected, and the effective availability of donors with the first call has been greater than 75%. Thus, almost 89% of patients receiving an effective donation had available at least 5/10 HLA-matched cell donors (HLA-A, -B, -C, -DRB1, and -DQB1). To summarize, based on our experience, a cell donor registry from previously HLA-typed blood donors is a useful tool for facilitating access to VST therapy.
Collapse
Affiliation(s)
- Francesc Rudilla
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma of Barcelona (VHIR-UAB), Barcelona, Spain
- Immunogenetics and Histocompatibility Laboratory, Blood and Tissue Bank, Barcelona, Spain
| | - María Paz Carrasco-Benso
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (Fisabio), Valencia, Spain
| | - Helena Pasamar
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma of Barcelona (VHIR-UAB), Barcelona, Spain
- Advanced & Cell Therapy Services, Blood and Tissue Bank, Barcelona, Spain
| | - María López-Montañés
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma of Barcelona (VHIR-UAB), Barcelona, Spain
- Advanced & Cell Therapy Services, Blood and Tissue Bank, Barcelona, Spain
| | - María Andrés-Rozas
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma of Barcelona (VHIR-UAB), Barcelona, Spain
- Advanced & Cell Therapy Services, Blood and Tissue Bank, Barcelona, Spain
| | - Maria Tomás-Marín
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma of Barcelona (VHIR-UAB), Barcelona, Spain
- Advanced & Cell Therapy Services, Blood and Tissue Bank, Barcelona, Spain
| | - Desirée Company
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (Fisabio), Valencia, Spain
| | - Cristina Moya
- Blood Donors Management Department, Blood and Tissue Bank, Barcelona, Spain
| | - Luis Larrea
- Centro de Transfusión de la Comunitat Valenciana, Valencia, Spain
| | - Manuel Guerreiro
- Department of Hematology, La Fe Polytechnic and University Hospital, Valencia, Spain
| | - Pere Barba
- Hospital Vall d'Hebron, Barcelona, Spain
| | - Cristina Arbona
- Centro de Transfusión de la Comunitat Valenciana, Valencia, Spain
| | - Sergio Querol
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma of Barcelona (VHIR-UAB), Barcelona, Spain
- Advanced & Cell Therapy Services, Blood and Tissue Bank, Barcelona, Spain
| |
Collapse
|
7
|
Green A, Rubinstein JD, Grimley M, Pfeiffer T. Virus-Specific T Cells for the Treatment of Systemic Infections Following Allogeneic Hematopoietic Cell and Solid Organ Transplantation. J Pediatric Infect Dis Soc 2024; 13:S49-S57. [PMID: 38417086 DOI: 10.1093/jpids/piad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 03/01/2024]
Abstract
Viral infections are a major source of morbidity and mortality in the context of immune deficiency and immunosuppression following allogeneic hematopoietic cell (allo-HCT) and solid organ transplantation (SOT). The pharmacological treatment of viral infections is challenging and often complicated by limited efficacy, the development of resistance, and intolerable side effects. A promising strategy to rapidly restore antiviral immunity is the adoptive transfer of virus-specific T cells (VST). This therapy involves the isolation and ex vivo expansion or direct selection of antigen-specific T cells from healthy seropositive donors, followed by infusion into the patient. This article provides a practical guide to VST therapy by reviewing manufacturing techniques, donor selection, and treatment indications. The safety and efficacy data of VSTs gathered in clinical trials over nearly 30 years is summarized. Current challenges and limitations are discussed, as well as opportunities for further research and development.
Collapse
Affiliation(s)
- Abby Green
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeremy D Rubinstein
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Michael Grimley
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Thomas Pfeiffer
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Becken BA, Lamson DM, Gonzalez G, Patel S, St. George K, Kajon AE. A Fulminant Case of Adenovirus Genotype C108 Infection in a Pediatric Stem Cell Transplant Recipient with x-Linked Lymphoproliferative Syndrome Type 1. Viruses 2024; 16:137. [PMID: 38257837 PMCID: PMC10819400 DOI: 10.3390/v16010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
A 3-year-old male with X-linked lymphoproliferative syndrome type 1 underwent an unrelated umbilical cord blood transplant (UUCBT). The week prior to transplant the patient tested positive for adenovirus (HAdV) with a viral load of <190 copies/mL and was started on cidofovir. UUCBT proceeded as scheduled, and the patient engrafted on day +19. The patient's HAdV load in serum continued to rise with resulting hepatic dysfunction, despite ongoing therapy with cidofovir and HAdV specific T-cell infusions. The patient died 6 months after transplantation having never cleared the virus. Next generation whole genome sequencing and sequence data analyses identified an intertypic recombinant HAdV-C P1H2F2 closely related (99.6% similarity) to genotype C108 in the isolates from three blood specimens obtained during the last week of life. Incidentally, the de novo assembly strategy enabled the detection of an adeno-associated virus type 2 (AAV2) genome in the DNA purified from the plasma isolates. Proteotyping analysis revealed minor differences in the predicted amino acid sequences for E1A, E1B 19K, E1B 55K, DNA polymerase, penton base, and fiber. None of the mutations previously described for HAdV-C5 variants resistant to cidofovir were identified. In silico restriction enzyme analysis revealed a distinct Sac I profile for the identified virus, supporting its designation as a C108 variant.
Collapse
Affiliation(s)
- Bradford A. Becken
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.A.B.); (S.P.)
| | - Daryl M. Lamson
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; (D.M.L.); (K.S.G.)
| | - Gabriel Gonzalez
- UCD National Virus Reference Laboratory, Dublin, Ireland;
- Japan Initiative for World-Leading Vaccine Research and Development Centers, Institute for Vaccine Research and Development, Hokkaido University, Hokkaido, Japan
| | - Sachit Patel
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.A.B.); (S.P.)
| | - Kirsten St. George
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; (D.M.L.); (K.S.G.)
| | - Adriana E. Kajon
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA
| |
Collapse
|
9
|
O’Reilly RJ, Prockop S, Oved JH. Virus-specific T-cells from third party or transplant donors for treatment of EBV lymphoproliferative diseases arising post hematopoietic cell or solid organ transplantation. Front Immunol 2024; 14:1290059. [PMID: 38274824 PMCID: PMC10808771 DOI: 10.3389/fimmu.2023.1290059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
EBV+ lymphomas constitute a significant cause of morbidity and mortality in recipients of allogeneic hematopoietic cell (HCT) and solid organ transplants (SOT). Phase I and II trials have shown that in HCT recipients, adoptive transfer of EBV-specific T-cells from the HCT donor can safely induce durable remissions of EBV+ lymphomas including 70->90% of patients who have failed to respond to treatment with Rituximab. More recently, EBV-specific T-cells generated from allogeneic 3rd party donors have also been shown to induce durable remission of EBV+ lymphomas in Rituximab refractory HCT and SOT recipients. In this review, we compare results of phase I and II trials of 3rd party and donor derived EBV-specific T-cells. We focus on the attributes and limitations of each product in terms of access, safety, responses achieved and durability. The limited data available regarding donor and host factors contributing to T cell persistence is also described. We examine factors contributing to treatment failures and approaches to prevent or salvage relapse. Lastly, we summarize strategies to further improve results for virus-specific immunotherapies for post-transplant EBV lymphomas.
Collapse
Affiliation(s)
- Richard J. O’Reilly
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Susan Prockop
- Pediatric Stem Cell Transplantation, Boston Children’s Hospital/Dana-Farber Cancer Institute, Boston, MA, United States
| | - Joseph H. Oved
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
10
|
Cuvelier GDE, Paulson K, Bow EJ. Updates in hematopoietic cell transplant and cellular therapies that enhance the risk for opportunistic infections. Transpl Infect Dis 2023; 25 Suppl 1:e14101. [PMID: 37461887 DOI: 10.1111/tid.14101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Infectious disease physicians may be asked to evaluate and manage a variety of infections in immunocompromised hosts undergoing hematopoietic cell transplant (HCT) and cellular therapies. Over the last decade, several advances in cellular therapy have occurred, with implications for the types of infectious complications that may be seen. AIMS The purpose of this review is to update the infectious disease physician on newer advances in HCT and cellular therapy, including haploidentical transplant, expanding indications for transplant in older individuals and children, and chimeric antigen receptor T-cells. We will review how these advances might influence infectious disease complications following HCT. We will also provide a perspective that infectious disease physicians can use to evaluate the degree of immune suppression in an individual patient to help determine the type of infections that may be encountered.
Collapse
Affiliation(s)
- Geoffrey D E Cuvelier
- Department of Paediatrics and Child Health, Section of Paediatric Haematology/Oncology-BMT, Max Rady College of Medicine, the University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Paediatric Haematology/Oncology-BMT, CancerCare Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Blood and Marrow Transplant Programme, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Kristjan Paulson
- Manitoba Blood and Marrow Transplant Programme, CancerCare Manitoba, Winnipeg, Manitoba, Canada
- Section of Haematology/Oncology, Department of Internal Medicine, Max Rady College of Medicine, the University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Oncology and Haematology, CancerCare Manitoba, Winnipeg, Manitoba, Winnipeg, Manitoba, Canada
| | - Eric J Bow
- Manitoba Blood and Marrow Transplant Programme, CancerCare Manitoba, Winnipeg, Manitoba, Canada
- Section of Haematology/Oncology, Department of Internal Medicine, Max Rady College of Medicine, the University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Oncology and Haematology, CancerCare Manitoba, Winnipeg, Manitoba, Winnipeg, Manitoba, Canada
- Section of Infectious Diseases, Department of Internal Medicine, Max Rady College of Medicine, The University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
11
|
Grasa C, Monteagudo-Vilavedra E, Pérez-Arenas E, Falces-Romero I, Mozo Del Castillo Y, Schüffelmann-Gutiérrez C, Del Rosal T, Méndez-Echevarría A, Baquero-Artigao F, Zarauza Santoveña A, Serrano Fernández P, Sainz T, Calvo C. Adenovirus Infection in Hematopoietic and Solid Organ Paediatric Transplant Recipients: Treatment, Outcomes, and Use of Cidofovir. Microorganisms 2023; 11:1750. [PMID: 37512922 PMCID: PMC10386416 DOI: 10.3390/microorganisms11071750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/20/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND human adenovirus (hAdV) infection constitutes an important cause of morbidity and mortality in transplant recipients, due to their immune status. Among drugs currently available, cidofovir (CDF) is the most prescribed. METHODS Retrospective study of hAdV infection in paediatric transplant recipients from a tertiary paediatric centre, describing characteristics, management, and outcomes, and focused on the role of CDF. RESULTS 49 episodes of infection by hAdV were detected during a four-year period: 38 episodes in patients that received allogeneic hematopoietic stem cell transplantation (77.6%) and 11 in solid organ transplant recipients (22.4%). Twenty-five patients (52.1%) were symptomatic, presenting mainly fever and/or diarrhoea. CDF was prescribed in 24 patients (49%), with modest results. CDF use was associated with the presence of symptoms resulting in lower lymphocyte count, paediatric intensive care unit admission, and high viral load. Other therapeutic measures included administration of intravenous immunoglobulin, reducing immunosuppression, and T-lymphocyte infusion. Despite treatment, 22.9% of patients did not resolve the infection and there were three deaths related to hAdV infection. All-cause mortality was 16.7% (8 episodes) by 30 days, and 32.7% (16 episodes) by 90 days, of which, 3 episodes (3/16, 18.8%) were attributed to hAdV directly. CONCLUSIONS hAdV infection had high morbidity and mortality in our series. CDF use is controversial, and available therapeutic options are limited. Transplant patients with low lymphocyte count are at higher risk of persistent positive viremias, and short-term survival of these patients was influenced by the resolution of hAdV infection.
Collapse
Affiliation(s)
- Carlos Grasa
- Pediatric Infectious Diseases Department, Instituto de Investigación Sanitaria del Hospital Universitario la Paz (IdiPAZ), Hospital Universitario la Paz, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III-ISCIII, 28029 Madrid, Spain
| | | | - Elena Pérez-Arenas
- Pediatric Infectious Diseases Department, Instituto de Investigación Sanitaria del Hospital Universitario la Paz (IdiPAZ), Hospital Universitario la Paz, 28046 Madrid, Spain
| | - Iker Falces-Romero
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III-ISCIII, 28029 Madrid, Spain
- Microbiology Department, Instituto de Investigación Sanitaria del Hospital Universitario la Paz (IdiPAZ), Hospital Universitario la Paz, 28041 Madrid, Spain
| | - Yasmina Mozo Del Castillo
- Pediatric Hematology and Oncology Department, Instituto de Investigación Sanitaria del Hospital Universitario la Paz (IdiPAZ), Hospital Universitario la Paz, 28046 Madrid, Spain
| | - Cristina Schüffelmann-Gutiérrez
- Pediatric Intensive Care Department, Instituto de Investigación Sanitaria del Hospital Universitario la Paz (IdiPAZ), Hospital Universitario la Paz, 28046 Madrid, Spain
| | - Teresa Del Rosal
- Pediatric Infectious Diseases Department, Instituto de Investigación Sanitaria del Hospital Universitario la Paz (IdiPAZ), Hospital Universitario la Paz, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III-ISCIII, 28029 Madrid, Spain
- Red de Investigación Traslacional en Infectología Pediátrica (RITIP), 28046 Madrid, Spain
| | - Ana Méndez-Echevarría
- Pediatric Infectious Diseases Department, Instituto de Investigación Sanitaria del Hospital Universitario la Paz (IdiPAZ), Hospital Universitario la Paz, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III-ISCIII, 28029 Madrid, Spain
- Red de Investigación Traslacional en Infectología Pediátrica (RITIP), 28046 Madrid, Spain
- Medicine Faculty, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Fernando Baquero-Artigao
- Pediatric Infectious Diseases Department, Instituto de Investigación Sanitaria del Hospital Universitario la Paz (IdiPAZ), Hospital Universitario la Paz, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III-ISCIII, 28029 Madrid, Spain
| | | | | | - Talía Sainz
- Pediatric Infectious Diseases Department, Instituto de Investigación Sanitaria del Hospital Universitario la Paz (IdiPAZ), Hospital Universitario la Paz, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III-ISCIII, 28029 Madrid, Spain
- Red de Investigación Traslacional en Infectología Pediátrica (RITIP), 28046 Madrid, Spain
- Medicine Faculty, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Cristina Calvo
- Pediatric Infectious Diseases Department, Instituto de Investigación Sanitaria del Hospital Universitario la Paz (IdiPAZ), Hospital Universitario la Paz, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III-ISCIII, 28029 Madrid, Spain
- Red de Investigación Traslacional en Infectología Pediátrica (RITIP), 28046 Madrid, Spain
- Medicine Faculty, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
12
|
Slatter MA, Maschan MA, Gennery AR. T-lymphocyte depleted transplants for inborn errors of immunity. Expert Rev Clin Immunol 2023; 19:1315-1324. [PMID: 37554030 DOI: 10.1080/1744666x.2023.2245146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
INTRODUCTION Hematopoietic stem cell transplantation is a curative treatment for many inborn errors of immunity (IEI). Incremental improvements and advances in care have led to high rates of >85% survival and cure in many of these diseases. Improvements in HLA-classification and matching have led to increased survival using HLA-matched donors, but survival using T-lymphocyte-depleted mismatched grafts remained significantly worse until fairly recently. Advances in T-lymphocyte depletion methods and graft engineering, although not specific to IEI, have been widely adopted and instrumental in changing the landscape of donor selection, such that a donor should now be possible for every patient. AREAS COVERED A literature review focusing on T-lymphocyte depletion methodologies and treatment results was performed. The importance of early T-lymphocyte immunoreconstitution to protect against viral infection is reviewed. Two main platforms now dominate the field - immune-magnetic selection of specific cell types and post-transplant chemotherapeutic targeting of rapidly proliferating allo-reactive T-lymphocytes - the emerging literature on these reports, focusing on IEI, is explored, as well as the impact of serotherapy on early immunoreconstitution. EXPERT OPINION Pharmacokinetic monitoring of serotherapy agents, and use of co-stimulatory molecule blockade are likely to become more widespread. Post-transplant cyclophosphamide or TCR depletion strategies are likely to become the dominant methods of transplantation for nonmalignant diseases.
Collapse
Affiliation(s)
- M A Slatter
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Upon Tyne, UK
| | - M A Maschan
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Department of Hematology, Oncology and Radiation Therapy, Pirogov Russian National Research Medical University, Moscow, Russia
| | - A R Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Upon Tyne, UK
| |
Collapse
|
13
|
Affiliation(s)
- Richard J O'Reilly
- Memorial Sloan Kettering Cancer Center, 1275 York Ave. New York, NY 10065
| |
Collapse
|