1
|
Sun X, Mao C, Xie Y, Zhong Q, Zhang R, Jiang D, Song Y. Therapeutic Potential of Hydrogen Sulfide in Reproductive System Disorders. Biomolecules 2024; 14:540. [PMID: 38785947 PMCID: PMC11117696 DOI: 10.3390/biom14050540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Hydrogen sulfide (H2S), previously regarded as a toxic exhaust and atmospheric pollutant, has emerged as the third gaseous signaling molecule following nitric oxide (NO) and carbon monoxide (CO). Recent research has revealed significant biological effects of H2S in a variety of systems, such as the nervous, cardiovascular, and digestive systems. Additionally, H2S has been found to impact reproductive system function and may have therapeutic implications for reproductive disorders. This paper explores the relationship between H2S and male reproductive disorders, specifically erectile dysfunction, prostate cancer, male infertility, and testicular damage. Additionally, it examines the impact of H2S regulation on the pathophysiology of the female reproductive system, including improvements in preterm birth, endometriosis, pre-eclampsia, fetal growth restriction, unexplained recurrent spontaneous abortion, placental oxidative damage, embryo implantation, recovery of myometrium post-delivery, and ovulation. The study delves into the regulatory functions of H2S within the reproductive systems of both genders, including its impact on the NO/cGMP pathway, the activation of K+ channels, and the relaxation mechanism of the spongy smooth muscle through the ROCK pathway, aiming to broaden the scope of potential therapeutic strategies for treating reproductive system disorders in clinical settings.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China;
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China; (C.M.); (Q.Z.); (R.Z.)
| | - Ying Xie
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China;
| | - Qing Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China; (C.M.); (Q.Z.); (R.Z.)
| | - Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China; (C.M.); (Q.Z.); (R.Z.)
| | - Deyou Jiang
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China;
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China; (C.M.); (Q.Z.); (R.Z.)
| |
Collapse
|
2
|
Fashina O, Abbasciano RG, McQueen LW, Ladak S, George SJ, Suleiman S, Punjabi PP, Angelini GD, Zakkar M. Large animal model of vein grafts intimal hyperplasia: A systematic review. Perfusion 2022:2676591221091200. [PMID: 35624557 DOI: 10.1177/02676591221091200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Coronary artery bypass grafting remains the treatment of choice for a large cohort of patients with significant coronary disease. Despite the increased use of arterial grafts, the long saphenous vein remains the most commonly used conduit. Long-term graft patency continues to be the Achilles heel of saphenous vein grafts. This is due to the development of intimal hyperplasia, a chronic inflammatory disease that results in the narrowing and occlusion of a significant number of vein grafts. Research models for intimal hyperplasia are essential for a better understanding of pathophysiological processes of this condition. Large animal models resemble human anatomical structures and have been used as a surrogate to study disease development and prevention over the years. In this paper, we systematically review all published studies that utilized large animal models of vein graft disease with a focus on the type of model and any therapeutic intervention, specifically the use of external stents/mesh.
Collapse
Affiliation(s)
- Oluwatomini Fashina
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Riccardo G Abbasciano
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Liam W McQueen
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Shameem Ladak
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Sarah J George
- Bristol Heart Institute and Translational Biomedical Research Centre, Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Bristol, UK
| | - Sadeeh Suleiman
- Bristol Heart Institute and Translational Biomedical Research Centre, Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Bristol, UK
| | - Prakash P Punjabi
- Department of Cardiovascular Sciences, Imperial College, Hammersmith Hospital, London, UK
| | - Gianni D Angelini
- Bristol Heart Institute and Translational Biomedical Research Centre, Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Bristol, UK
| | - Mustafa Zakkar
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, UK
| |
Collapse
|
3
|
Wan S, Cheng ZY. Taking care of the soldiers. J Thorac Dis 2019; 10:S4002-S4005. [PMID: 30631539 DOI: 10.21037/jtd.2018.09.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Song Wan
- Division of Cardiothoracic Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Zhao-Yun Cheng
- Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Zhengzhou 450046, China
| |
Collapse
|
4
|
Saphenous vein: advances. Indian J Thorac Cardiovasc Surg 2018; 34:251-257. [PMID: 33060946 DOI: 10.1007/s12055-018-0753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022] Open
Abstract
Although the saphenous vein (SV) is a widely used conduit for coronary artery bypass graft surgery (CABG), lower long-term graft patency rates and worse clinical outcomes have been reported after CABG performed with SV grafts compared with CABG performed with internal thoracic artery (ITA) grafts. Of various efforts to overcome the limitations of SV that are resulting from structural and functional differences from arterial conduit, recent improvement in harvesting techniques including no-touch technique, surgical strategy of using the SV as part of a composite graft over an aortocoronary bypass graft, and external stenting of the SV will be discussed in this topic.
Collapse
|
5
|
A randomized comparison of the Saphenous Vein Versus Right Internal Thoracic Artery as a Y-Composite Graft (SAVE RITA) trial: One-year angiographic results and mid-term clinical outcomes. J Thorac Cardiovasc Surg 2014; 148:901-7; discussion 907-8. [DOI: 10.1016/j.jtcvs.2014.03.057] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/02/2014] [Accepted: 03/12/2014] [Indexed: 11/15/2022]
|
6
|
Low nanomolar thapsigargin inhibits the replication of vascular smooth muscle cells through reversible endoplasmic reticular stress. Eur J Pharmacol 2013; 714:210-7. [PMID: 23751510 DOI: 10.1016/j.ejphar.2013.05.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/13/2013] [Accepted: 05/29/2013] [Indexed: 01/23/2023]
Abstract
Thapsigargin (TG), an inhibitor of Ca(2+) ATPase pumps in the endoplasmic reticulum (ER), inhibits replication of human vascular smooth muscle cell (hVSMC) at low nM concentrations. TG blocks replication of other cell types through promotion of ER stress (ERS). In order to determine whether ERS may mediate the cytostatic effect of TG in hVSMCs, the effect of TG on ERS in hVSMCs was studied by assessing markers of ERS: Immunoglobulin Heavy Chain Binding Protein (BiP), growth inhibitory transcription factor, GADD153, phosphorlylated eukaryotic initiation factor 2α (p-eIF2α) and phosphorlylated protein kinase R (p-PKR). hVSMCs derived from saphenous veins were rendered quiescent with serum-free medium for 96 h incubated with 10 nM TG at 37 °C for 24 h, then washed free of TG and incubated with 10% foetal calf serum (FCS) for a further 24 h. At selected times, BiP, GADD153, p-eIF2α, p-PKR and cyclin D1 expression was assessed. TG promoted a marked increase in BiP and GADD153, but suppressed cyclin D1 mRNA and protein expression. Under serum-free conditions p-eIF2α and p-PKR expression was not enhanced by TG. 15-24 h After removal of TG all these factors returned to levels seen in control cells. These data demonstrate that the inhibitory effect of 10nM TG on hVSMC replication is mediated through induction of ERS and associated factors that cessate replication and is reversible. These observations have implications in the aetiology and treatment of diseases that include atherogenesis, vein graft failure and restenosis.
Collapse
|
7
|
A randomized comparison of the Saphenous Vein Versus Right Internal Thoracic Artery as a Y-Composite Graft (SAVE RITA) trial: Early results. J Thorac Cardiovasc Surg 2012; 144:1027-33. [DOI: 10.1016/j.jtcvs.2012.07.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/08/2012] [Accepted: 07/26/2012] [Indexed: 11/20/2022]
|
8
|
Hwang HY, Kim MA, Seo JW, Kim KB. Endothelial preservation of the minimally manipulated saphenous vein composite graft: Histologic and immunohistochemical study. J Thorac Cardiovasc Surg 2012; 144:690-6. [DOI: 10.1016/j.jtcvs.2012.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/22/2011] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
|
9
|
Chung JW, Kim JB, Jung SH, Choo SJ, Song H, Chung CH, Lee JW. Mid-term outcomes of total arterial revascularization versus conventional coronary surgery in isolated three-vessel coronary disease. J Korean Med Sci 2012; 27:1051-6. [PMID: 22969251 PMCID: PMC3429822 DOI: 10.3346/jkms.2012.27.9.1051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/08/2012] [Indexed: 11/24/2022] Open
Abstract
Whether arterial conduits are superior to venous grafts in coronary artery bypassing has been debated. The aim of this study was to investigate clinical outcomes after total arterial revascularization versus conventional coronary bypassing using both arterial and venous conduits in isolated three-vessel coronary disease. Between 2003 and 2005, 503 patients who underwent isolated coronary artery bypass grafting for three-vessel coronary disease were enrolled. A total of 117 patients underwent total arterial revascularization (Artery group) whereas 386 patients were treated with arterial and venous conduits (Vein group). Major adverse outcomes (death, myocardial infarction, stroke and repeat revascularization) were compared. Clinical follow-up was complete in all patients with a mean duration of 6.1 ± 0.9 yr. After adjustment for differences in baseline risk factors, risks of death (hazard ratio [HR] 0.96; 95% confidence interval [CI] 0.51-1.82, P = 0.90), myocardial infarction (HR 0.20, 95% CI 0.02-2.63, P = 0.22), stroke (HR 1.29, 95% CI 0.35-4.72, P = 0.70), repeat revascularization (HR 0.64, 95% CI 0.26-1.55, P = 0.32) and the composite outcomes (HR 0.83, 95% CI 0.50-1.36, P = 0.45) were similar between two groups. Since the use of veins does not increase the risks of adverse outcomes compared with total arterial revascularization, a selection of the conduit should be more liberal.
Collapse
Affiliation(s)
- Jin Woo Chung
- Department of Thoracic and Cardiovascular Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Joon Bum Kim
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Ho Jung
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Suk Jung Choo
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Song
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Cheol Hyun Chung
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Won Lee
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Shukla N, Jeremy JY. Pathophysiology of saphenous vein graft failure: a brief overview of interventions. Curr Opin Pharmacol 2012; 12:114-20. [PMID: 22321569 DOI: 10.1016/j.coph.2012.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/05/2012] [Accepted: 01/06/2012] [Indexed: 12/01/2022]
Abstract
Coronary artery bypass graft surgery (CABG) is widely used for the treatment of atheromatous stenosis of coronary arteries. However, as many as 50% of grafts fail within 10 years after CABG due to neointima (NI) formation, a process involving the proliferation of vascular smooth muscle cells (VSMCs) and superimposed atherogenesis. To date no therapeutic intervention has proved successful in treating late vein graft failure. However, several diverse approaches aimed at preventing neointimal formation have been devised which have yielded promising results. In this review, therefore, we will summarise the pathophysiology of vein graft disease and then briefly consider interventional approaches to prevent late vein graft failure which include surgical technique, conventional pharmacology, external sheaths, cytostatic drugs and gene transfer.
Collapse
Affiliation(s)
- Nilima Shukla
- Bristol Heart Institute, The University of Bristol, UK.
| | | |
Collapse
|
11
|
Kang N, Ng CSH, Hu J, Qiu ZB, Underwood MJ, Jeremy JY, Wan S. Role of osteopontin in the development of neointimal hyperplasia in vein grafts. Eur J Cardiothorac Surg 2011; 41:1384-9. [DOI: 10.1093/ejcts/ezr200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
George SJ, Wan S, Hu J, MacDonald R, Johnson JL, Baker AH. Sustained reduction of vein graft neointima formation by ex vivo TIMP-3 gene therapy. Circulation 2011; 124:S135-42. [PMID: 21911803 DOI: 10.1161/circulationaha.110.012732] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Coronary artery vein graft failure, resulting from thrombosis, intimal thickening, and atherosclerosis, is a significant clinical problem, with approximately 50% of vein grafts failing within 10 years. Intimal thickening is caused by migration of vascular smooth muscle cells from the media to the intima, where they proliferate. Interventions using gene transfer to inhibit vascular smooth muscle cells proliferation and migration are attractive because ex vivo access to the graft is possible. The involvement of matrix-degrading metalloproteinases in intimal thickening is well established, and we previously showed that adenoviral-delivered overexpression of an endogenous inhibitor, the tissue inhibitor of metalloproteinases-3 (TIMP-3), significantly retarded intimal thickening in short-term autologous porcine arteriovenous interposition grafts (28 days). However, it is essential to determine whether this approach will provide longer-term benefits. METHODS AND RESULTS We assessed whether a recombinant adenovirus that overexpresses TIMP-3 (RAdTIMP-3) affects vein graft intimal thickening in the longer term (at 3 months). Porcine saphenous veins were subjected to luminal infection with 2.5×10(10) pfu/mL RAdTIMP-3 or RAd60 (control virus) or vehicle control, for 30 minutes before implantation into the carotid artery. Analysis of grafts harvested 3 months after delivery revealed that RAdTIMP-3-infected grafts had significantly reduced intimal areas compared with both controls (3.2 ± 0.4 mm(2) versus 5.6 ± 0.7 mm(2) and 5.9 ± 0.5 mm(2), RAdTIMP-3, RAd60, and vehicle, respectively). Medial areas were also significantly decreased by TIMP-3 (3.8 ± 0.3 mm(2) versus 6.7 ± 1.0 mm(2) and 5.2 ± 0.4 mm(2), RAdTIMP-3, RAd60, and vehicle, respectively). CONCLUSIONS Overexpression of TIMP-3 provides a sustained retardation of vein graft intimal thickening and highlights the translational potential for ex vivo TIMP-3 gene therapy.
Collapse
Affiliation(s)
- Sarah J George
- Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | |
Collapse
|
13
|
Kei AA, Florentin M, Mikhailidis DP, Elisaf MS, Liberopoulos EN. Review: Antiplatelet Drugs: What Comes Next? Clin Appl Thromb Hemost 2010; 17:9-26. [DOI: 10.1177/1076029610385222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Antiplatelet drugs are important components in the management of atherothrombotic vascular disease. However, several limitations restrict the safety and efficacy of current antiplatelet therapy in clinical practice. Interpatient variability and resistance to aspirin and/or clopidogrel has spurred efforts for the development of novel agents. Indeed, several antiplatelet drugs are at various stages of evaluation; those at advanced stage of development are the focus of this review.
Collapse
Affiliation(s)
- Anastazia A. Kei
- Department of Internal Medicine, University of Ioannina Medical School, Ioannina, Greece
| | - Matilda Florentin
- Department of Internal Medicine, University of Ioannina Medical School, Ioannina, Greece, Department of Clinical Biochemistry (Vascular Disease Prevention Clinics), Royal Free Campus, University College London Medical School, University College London (UCL), London, UK
| | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry (Vascular Disease Prevention Clinics), Royal Free Campus, University College London Medical School, University College London (UCL), London, UK
| | - Moses S. Elisaf
- Department of Internal Medicine, University of Ioannina Medical School, Ioannina, Greece
| | | |
Collapse
|
14
|
Muto A, Model L, Ziegler K, Eghbalieh SD, Dardik A. Mechanisms of vein graft adaptation to the arterial circulation: insights into the neointimal algorithm and management strategies. Circ J 2010; 74:1501-12. [PMID: 20606326 PMCID: PMC3662001 DOI: 10.1253/circj.cj-10-0495] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
For patients with coronary artery disease or limb ischemia, placement of a vein graft as a conduit for a bypass is an important and generally durable strategy among the options for arterial reconstructive surgery. Vein grafts adapt to the arterial environment, and the limited formation of intimal hyperplasia in the vein graft wall is thought to be an important component of successful vein graft adaptation. However, it is also known that abnormal, or uncontrolled, adaptation may lead to abnormal vessel wall remodeling with excessive neointimal hyperplasia, and ultimately vein graft failure and clinical complications. Therefore, understanding the venous-specific pathophysiological and molecular mechanisms of vein graft adaptation are important for clinical vein graft management. Of particular importance, it is currently unknown whether there exist several specific distinct molecular differences in the venous mechanisms of adaptation that are distinct from arterial post-injury responses; in particular, the participation of the venous determinant Eph-B4 and the vascular protective molecule Nogo-B may be involved in mechanisms of vessel remodeling specific to the vein. This review describes (1) venous biology from embryonic development to the mature quiescent state, (2) sequential pathologies of vein graft neointima formation, and (3) novel candidates for strategies of vein graft management. Scientific inquiry into venous-specific adaptation mechanisms will ultimately provide improvements in vein graft clinical outcomes.
Collapse
Affiliation(s)
- Akihito Muto
- Interdepartmental Program in Vascular Biology and Therapeutics
- the Section of Vascular Surgery, Yale University School of Medicine, New Haven, CT
| | - Lynn Model
- Interdepartmental Program in Vascular Biology and Therapeutics
- the Section of Vascular Surgery, Yale University School of Medicine, New Haven, CT
| | - Kenneth Ziegler
- Interdepartmental Program in Vascular Biology and Therapeutics
- the Section of Vascular Surgery, Yale University School of Medicine, New Haven, CT
| | - Sammy D.D. Eghbalieh
- Interdepartmental Program in Vascular Biology and Therapeutics
- St. Mary's Hospital, Waterbury, CT
| | - Alan Dardik
- Interdepartmental Program in Vascular Biology and Therapeutics
- the Section of Vascular Surgery, Yale University School of Medicine, New Haven, CT
- the VA Connecticut Healthcare System, West Haven, CT
| |
Collapse
|
15
|
Bloor J, Shukla N, Smith FCT, Angelini GD, Jeremy JY. Folic acid administration reduces neointimal thickening, augments neo-vasa vasorum formation and reduces oxidative stress in saphenous vein grafts from pigs used as a model of diabetes. Diabetologia 2010; 53:980-8. [PMID: 20182861 PMCID: PMC3596781 DOI: 10.1007/s00125-010-1680-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 12/14/2009] [Indexed: 01/13/2023]
Abstract
AIMS/HYPOTHESIS There is evidence that plasma homocysteine augments vein graft failure and that it augments both micro- and macro-angiopathy in patients with diabetes mellitus. It is therefore suggested that homocysteine may augment vein graft thickening, a major cause of vein graft failure, in diabetic patients, as well as impairing adaptive growth of a new vasa vasorum, possibly through overproduction of superoxide. In order to test these proposals, the effect of folic acid administration, which lowers plasma homocysteine, on vein graft thickening and microvessel density was studied in pigs used as a model of diabetes. METHODS Non-ketotic hyperglycaemia was induced in Landrace pigs by intravenous injection of streptozotocin, and folic acid was fed daily for 1 month. Vein grafts were excised and the thickness of the neointima and media and microvessel density were assessed by planimetry and superoxide formation. RESULTS Plasma total homocysteine was significantly reduced by folic acid in both control and diabetic pigs, whereas glucose was unchanged. Compared with controls, diabetic pigs showed increased neointimal thickness and superoxide formation and decreased adventitial microvessel density. Folic acid reduced neointimal thickness and superoxide formation and augmented microvessel density in diabetic but not in control pigs. CONCLUSIONS Folic acid administration reduces neointimal thickening, augments vasa vasorum neoformation and reduces oxidative stress in saphenous vein grafts from diabetic pigs. Folic acid may therefore be particularly effective in reducing vein graft failure in diabetic patients.
Collapse
Affiliation(s)
- J. Bloor
- Department of Vascular Surgery, University of Bristol, Bristol, UK
| | - N. Shukla
- Bristol Heart Institute, Bristol Royal Infirmary, Marlborough Street, Bristol BS2 8HW, UK
| | - F. C. T. Smith
- Department of Vascular Surgery, University of Bristol, Bristol, UK
| | - G. D. Angelini
- Bristol Heart Institute, Bristol Royal Infirmary, Marlborough Street, Bristol BS2 8HW, UK
| | - J. Y. Jeremy
- Bristol Heart Institute, Bristol Royal Infirmary, Marlborough Street, Bristol BS2 8HW, UK,
| |
Collapse
|