1
|
A translational rat model for ex vivo lung perfusion of pre-injured lungs after brain death. PLoS One 2021; 16:e0260705. [PMID: 34855870 PMCID: PMC8638921 DOI: 10.1371/journal.pone.0260705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022] Open
Abstract
The process of brain death (BD) detrimentally affects donor lung quality. Ex vivo lung perfusion (EVLP) is a technique originally designed to evaluate marginal donor lungs. Nowadays, its potential as a treatment platform to repair damaged donor lungs is increasingly studied in experimental models. Rat models for EVLP have been described in literature before, yet the pathophysiology of BD was not included in these protocols and prolonged perfusion over 3 hours without anti-inflammatory additives was not achieved. We aimed to establish a model for prolonged EVLP of rat lungs from brain-dead donors, to provide a reliable platform for future experimental studies. Rat lungs were randomly assigned to one of four experimental groups (n = 7/group): 1) healthy, directly procured lungs, 2) lungs procured from rats subjected to 3 hours of BD and 1 hour cold storage (CS), 3) healthy, directly procured lungs subjected to 6 hours EVLP and 4), lungs procured from rats subjected to 3 hours of BD, 1 hour CS and 6 hours EVLP. Lungs from brain-dead rats showed deteriorated ventilation parameters and augmented lung damage when compared to healthy controls, in accordance with the pathophysiology of BD. Subsequent ex vivo perfusion for 6 hours was achieved, both for lungs of healthy donor rats as for pre-injured donor lungs from brain-dead rats. The worsened quality of lungs from brain-dead donors was evident during EVLP as well, as corroborated by deteriorated ventilation performance, increased lactate production and augmented inflammatory status during EVLP. In conclusion, we established a stable model for prolonged EVLP of pre-injured lungs from brain-dead donor rats. In this report we describe tips and pitfalls in the establishment of the rat EVLP model, to enhance reproducibility by other researchers.
Collapse
|
2
|
Wang A, Ali A, Keshavjee S, Liu M, Cypel M. Ex vivo lung perfusion for donor lung assessment and repair: a review of translational interspecies models. Am J Physiol Lung Cell Mol Physiol 2020; 319:L932-L940. [PMID: 32996780 DOI: 10.1152/ajplung.00295.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For patients with end-stage lung disease, lung transplantation is a lifesaving therapy. Currently however, the number of patients who require a transplant exceeds the number of donor lungs available. One of the contributing factors to this is the conservative mindset of physicians who are concerned about transplanting marginal lungs due to the potential risk of primary graft dysfunction. Ex vivo lung perfusion (EVLP) technology has allowed for the expansion of donor pool of organs by enabling assessment and reconditioning of these marginal grafts before transplant. Ongoing efforts to optimize the therapeutic potential of EVLP are underway. Researchers have adopted the use of different large and small animal models to generate translational preclinical data. This includes the use of rejected human lungs, pig lungs, and rat lungs. In this review, we summarize some of the key current literature studies relevant to each of the major EVLP model platforms and identify the advantages and disadvantages of each platform. The review aims to guide investigators in choosing an appropriate species model to suit their specific goals of study, and ultimately aid in translation of therapy to meet the growing needs of the patient population.
Collapse
Affiliation(s)
- Aizhou Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Aadil Ali
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Sheng W, Yang H, Niu Z, Yin H. Anti-apoptosis effect of heme oxygenase-1 on lung injury after cardiopulmonary bypass. J Thorac Dis 2020; 12:1393-1403. [PMID: 32395277 PMCID: PMC7212168 DOI: 10.21037/jtd.2020.03.48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background This study aimed to investigate the anti-apoptosis effects of heme oxygenase-1 (HO-1) on lung injury (LI) after cardiopulmonary bypass (CPB) and its probable mechanisms. Methods One hundred and forty-four male Wistar rats were divided into 3 groups randomly: group A (control group), group B (cobalt protoporphyrin, CoPP), and group C [CoPP plus zinc protoporphyrin (ZnPP)]. Lung tissues were harvested at different time: before CPB (T0), 0 min after CPB (T1), 2 h after CPB (T2), 6 h (T3), 12 h (T4), and 24 h (T5). Results The HO-1 protein expressions in lung tissue in group B were higher than those in group A and group C in any given time, and the same as HO-1 activity (P<0.05). The expressions of Bcl-2 protein in group B at all time point after bypass were higher than those in group A and group C, and the difference was statistically significant (P<0.05). Apoptosis index (AI) in group B at any time point after bypass were lower than those in group A and group C (P<0.05). Conclusions CoPP can significantly increase the expression of HO-1 protein in lung tissue. HO-1 is still highly expressed after CPB, so as to play an important part in anti-apoptosis, and reduce LI.
Collapse
Affiliation(s)
- Wei Sheng
- Department of Cardiovascular Surgery, Qingdao Municipal Hospital, Medical College of Qingdao University, Qingdao 266071, China
| | - Haiqin Yang
- Department of Mental Intervention, Qingdao Preferential Hospital, Qingdao 266071, China
| | - Zhaozhuo Niu
- Department of Cardiovascular Surgery, Qingdao Municipal Hospital, Medical College of Qingdao University, Qingdao 266071, China
| | - Hong Yin
- Department of Cardiovascular Surgery, Qingdao Municipal Hospital, Medical College of Qingdao University, Qingdao 266071, China
| |
Collapse
|
4
|
Li J, Dou X, Li D, He M, Han M, Zhang H. Dexmedetomidine Ameliorates Post-CPB Lung Injury in Rats by Activating the PI3K/Akt Pathway. J INVEST SURG 2019; 33:576-583. [PMID: 30913929 DOI: 10.1080/08941939.2018.1529839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose: To investigate the protective effects of dexmedetomidine (Dex) on post cardiopulmonary bypass (CPB) lung injury in rats and to explore the possibility of underlying mechanisms involving phosphatidylinositol 3-kinase (PI3K)/Akt. Materials and Methods: Forty healthy male Sprague-Dawley rats were randomly divided into five groups (n = 8 for each). A left lung ischemia-reperfusion injury model of CPB was established in all five groups. Rats were given saline, dexmedetomidine (Dex), dimethyl sulfoxide (DMSO), wortmannin (Wtm), and Dex plus Wtm during the CPB process, in Group Saline, Dex, DMSO, Wtm, and Dex + Wtm, respectively. Mean arterial pressure, oxygenation index (OI), and respiratory index (RI) were measured at the following three timepoints: before CPB (T1), at the onset of opening of the left hilus pulmonis (T2), and at the end of the CPB process (T3). At T3, hematoxylin and eosin (H&E) staining was conducted to evaluate pathology of lung injury. The rate of lung tissue apoptosis was determined by flow-cytometry. The expression of Akt, p-Akt, caspase-3, and caspase-9 was assessed by Western blot. Results: Dex treatment during CPB protected rat lungs from post-CPB lung injury, manifested by improved lung function, mitigated pathological damage, and reduced lung tissue apoptosis. The expression and phosphorylation of Akt was significantly enhanced by Dex treatment compared to the saline/DMSO-treated group. Wtm, a recognized PI3K inhibitor, abolished the protective effect of Dex. The levels of caspase-3 and caspase-9 were also significantly elevated in the Wtm-treated group. Conclusions: Dex reduces post-CPB lung injury in rats, at least partially, by activating the PI3K/Akt pathway and inhibiting lung tissue apoptosis.
Collapse
Affiliation(s)
- Jian Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xuejiao Dou
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dongdong Li
- Department of Anesthesiology, Yi Du Central Hospital, Weifang, China
| | - Miao He
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ming Han
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hong Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
5
|
Liu X, Chen Q, Luo Y, Hu Y, Lai D, Zhang X, Zhang X, Yu J, Fang X, Shu Q. Plasma levels of alarmin HNPs 1-3 associate with lung dysfunction after cardiac surgery in children. BMC Pulm Med 2017; 17:218. [PMID: 29282039 PMCID: PMC5745992 DOI: 10.1186/s12890-017-0558-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 12/07/2017] [Indexed: 11/10/2022] Open
Abstract
Background Early onset of lung injury is considerable common after cardiac surgery and is associated with increasing in morbidity and mortality, but current clinical predictors for the occurrence of this complication always have limited positive warning value. This study aimed to evaluate whether elevated plasma levels of human neutrophil peptides (HNPs) 1–3 herald impaired lung function in infants and young children after cardiac surgery necessitating cardiopulmonary bypass (CPB). Methods Consecutive children younger than 3 years old who underwent cardiac surgery were prospectively enrolled. Plasma concentrations of HNPs 1–3 and inflammatory cytokines were measured before, and immediately after CPB, as well as at 1 h, 12 h, and 24 h after CPB. Results Thirty patients were enrolled, 18 (60%) of whom were infants. Plasma levels of HNPs 1–3 and the pro-inflammatory cytokine interleukin-6 (IL-6) significantly increased immediately after CPB (P < 0.001), while IL-8 increased 1 h after the CPB operation (P = 0.002). The anti-inflammatory cytokine IL-10 levels were also significantly elevated immediately after CPB compared with the baseline (P < 0.001). The stepwise multiple linear regression analysis showed that the plasma HNPs 1–3 levels immediately after CPB was independent correlated with the declined lung function, as reflected by the PaO2/FiO2 ratio on the first 2 days after operation (for the first day: OR, −1.067, 95% CI, −0.548 to −1.574; P < 0.001; for the second day: OR, −0.667, 95% CI, −0.183 to −1.148; P = 0.009) and prolonged mechanical ventilation time (OR, 0.039, 95% CI, 0.005 to 0.056; P = 0.011). Plasma levels of HNPs 1–3 and IL-10 returned to the baseline values, while IL-6 and IL-8 levels remained significantly higher than baseline 24 h after CPB (P ≤ 0.01). Conclusions Elevated HNPs 1–3 levels immediately after CPB correlate with impaired lung function, and HNPs 1–3 could serve as a quantifiable early alarmin biomarker for onset of lung injury in infants and young children undergoing cardiac surgery with CPB. Electronic supplementary material The online version of this article (10.1186/s12890-017-0558-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- XiWang Liu
- Department of Thoracic & Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, 3333 Binsheng Road, Hangzhou, 310003, China
| | - QiXing Chen
- Department of Thoracic & Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, 3333 Binsheng Road, Hangzhou, 310003, China
| | - YuJia Luo
- Department of Thoracic & Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, 3333 Binsheng Road, Hangzhou, 310003, China
| | - YaoQin Hu
- Department of Thoracic & Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, 3333 Binsheng Road, Hangzhou, 310003, China
| | - DengMing Lai
- Department of Thoracic & Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, 3333 Binsheng Road, Hangzhou, 310003, China
| | - XiaoLe Zhang
- Department of Thoracic & Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, 3333 Binsheng Road, Hangzhou, 310003, China
| | - XiangHong Zhang
- Department of Thoracic & Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, 3333 Binsheng Road, Hangzhou, 310003, China
| | - JianGen Yu
- Department of Thoracic & Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, 3333 Binsheng Road, Hangzhou, 310003, China
| | - XiangMing Fang
- Department of Anesthesiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Qiang Shu
- Department of Thoracic & Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, 3333 Binsheng Road, Hangzhou, 310003, China.
| |
Collapse
|
6
|
Yan N, Yang W, Dong X, Fang Q, Gong Y, Zhou JL, Xu JJ. Promotion of anoxia-reoxygenation-induced inflammation and permeability enhancement by nicotinamide phosphoribosyltransferase-activated MAPK signaling in human umbilical vein endothelial cells. Exp Ther Med 2017; 14:4595-4601. [PMID: 29104667 DOI: 10.3892/etm.2017.5083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/19/2017] [Indexed: 01/02/2023] Open
Abstract
Previous studies have demonstrated that nicotinamide phosphoribosyltransferase (NAMPT) promoted inflammation and permeability of vascular endothelial cells following cardiopulmonary bypass (CPB). In addition, mitogen-activated protein kinase (MAPK) signaling was activated and contributed to these cell responses. However, the mechanism by which NAMPT regulates cellular inflammation and permeability remains unknown, and whether NAMPT regulates MAPK signaling during this process is also not clear. The present study established an anoxia-reoxygenation (A-R) model using human umbilical vein endothelial cells (HUVECs) and investigated the regulation of MAPK signaling by NAMPT by using small RNA transfection, ELISA and western blot analysis. The results demonstrated that A-R significantly induced the expression levels of NAMPT and cellular permeability-associated proteins, and the release of several inflammatory factors. Furthermore, calcium and MAPK signaling were evidently increased. When the A-R cells were transfected with NAMPT small interfering RNA, the expression of cellular permeability-associated proteins was downregulated, the release of inflammatory factors was decreased, and calcium and MAPK signaling was blocked. These data suggest that NAMPT may activate MAPK signaling to promote A-R-induced inflammation and permeability enhancement of HUVECs. Therefore, the current study indicates that NAMPT may be a potential drug target for A-R-induced endothelial cell injury subsequent to CPB.
Collapse
Affiliation(s)
- Nao Yan
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Yang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao Dong
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiao Fang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yi Gong
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian-Liang Zhou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian-Jun Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
7
|
Bassani GA, Lonati C, Brambilla D, Rapido F, Valenza F, Gatti S. Ex Vivo Lung Perfusion in the Rat: Detailed Procedure and Videos. PLoS One 2016; 11:e0167898. [PMID: 27936178 PMCID: PMC5148015 DOI: 10.1371/journal.pone.0167898] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022] Open
Abstract
Ex vivo lung perfusion (EVLP) is a promising procedure for evaluation, reconditioning, and treatment of marginal lungs before transplantation. Small animal models can contribute to improve clinical development of this technique and represent a substantial platform for bio-molecular investigations. However, to accomplish this purpose, EVLP models must sustain a prolonged reperfusion without pharmacological interventions. Currently available protocols only partly satisfy this need. The aim of the present research was accomplishment and optimization of a reproducible model for a protracted rat EVLP in the absence of anti-inflammatory treatment. A 180 min, uninjured and untreated perfusion was achieved through a stepwise implementation of the protocol. Flow rate, temperature, and tidal volume were gradually increased during the initial reperfusion phase to reduce hemodynamic and oxidative stress. Low flow rate combined with open atrium and protective ventilation strategy were applied to prevent lung damage. The videos enclosed show management of the most critical technical steps. The stability and reproducibility of the present procedure were confirmed by lung function evaluation and edema assessment. The meticulous description of the protocol provided in this paper can enable other laboratories to reproduce it effortlessly, supporting research in the EVLP field.
Collapse
Affiliation(s)
- Giulia Alessandra Bassani
- Center for Surgical Research, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
- Center for Preclinical Investigation, Dipartimento di Anestesia, Rianimazione ed Emergenza Urgenza, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
- * E-mail:
| | - Caterina Lonati
- Center for Surgical Research, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
- Center for Preclinical Investigation, Dipartimento di Anestesia, Rianimazione ed Emergenza Urgenza, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Brambilla
- Center for Surgical Research, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Rapido
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Franco Valenza
- Center for Preclinical Investigation, Dipartimento di Anestesia, Rianimazione ed Emergenza Urgenza, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefano Gatti
- Center for Surgical Research, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
8
|
Nehra S, Bhardwaj V, Bansal A, Saraswat D. Nanocurcumin accords protection against acute hypobaric hypoxia induced lung injury in rats. J Physiol Biochem 2016; 72:763-779. [PMID: 27534650 DOI: 10.1007/s13105-016-0515-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
Decline in oxygen availability experienced under hypobaric hypoxia (HH) mediates imbalance in lung fluid clearance and is a causative agent of acute lung injury. Here, we investigate the pathological events behind acute HH mediated lung injury and assess the therapeutic efficacy of nanocurcumin in its amelioration. We assess the protective efficacy of nanotized curcumin (nanocurcumin) in ameliorating HH induced lung injury and compare to curcumin. Rats exposed to acute HH (6, 12, 24, 48 and 72 h) were subjected to histopathology, blood-gas analysis and clinical biochemistry, cytokine response and redox damage. HH induced lung injury was analysed using markers of lung injury due to pulmonary vasoconstriction (ET-1/2/3 and endothelin receptors A and B) and trans-vascular fluid balance mediator (Na+/K+ ATPase). The protective efficacy of nanocurcumin was analysed by examination of Akt/Erk signalling cascade by western blot. HH induced lung injury was associated with discrete changes in blood analytes, differential circulatory cytokine response and severe pulmonary redox damages. Up-regulation of ET-1/2/3 and its receptors along with down-regulation of Na+/K+ ATPase confirmed defective pulmonary fluid clearance which promoted edema formation. Nanocurcumin treatment prevented lung edema formation and restored expression levels of ET-1/2/3 and its receptors while restoring the blood analytes, circulatory cytokines and pulmonary redox status better than curcumin. Modulation in Akt/Erk signalling pathway in rat lungs under HH confirmed the protective efficacy of nanocurcumin.
Collapse
Affiliation(s)
- Sarita Nehra
- Experimental Biology Division, Department of Experimental Biology, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi-54, India
| | - Varun Bhardwaj
- Experimental Biology Division, Department of Experimental Biology, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi-54, India
| | - Anju Bansal
- Experimental Biology Division, Department of Experimental Biology, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi-54, India
| | - Deepika Saraswat
- Experimental Biology Division, Department of Experimental Biology, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi-54, India.
| |
Collapse
|
9
|
Fei Y, Zong GQ, Chen J, Liu RM. Fast-track protocols in devascularization for cirrhotic portal hypertension. Rev Assoc Med Bras (1992) 2015; 61:250-7. [PMID: 26248248 DOI: 10.1590/1806-9282.61.03.250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/22/2014] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION/OBJECTIVE fast-tract surgery (FTS) has been rapidly embraced by surgeons as a mechanism for improving patient care and driving down complications and costs. The aim of this study was to determine if any improvement in outcomes occurred after FTS protocol for selective double portazygous disconnection with preserving vagus (SDPDPV) compared with non-FTS postoperative care. METHODS patients eligible for SDPDPV in the period January 2012-April 2014 were randomly selected for the FTS group or non-FTS group. A designed protocol was used in the FTS group with emphasis on an interdisciplinary approach. The non-FTS group was treated using previously established standard procedures. The number of postoperative complications, time of functional recovery and duration of hospital stay were recorded. RESULTS patients in the FTS group (n=59) and non-FTS group (n=57) did not differ in terms of preoperative data and operative details (p>0.05). The FTS procedure led to significantly better control and faster restoration of gastrointestinal functions, food tolerance, rehabilitation and hospital discharge (p<0.05). Postoperative complications, including nausea/vomiting, severe ascites, wound infection, urinary tract infection and pulmonary infection were all significantly lower in the FTS group (p<0.05). According to the postoperative morbidity classification used by Clavien, overall complications and grade I complications were both significantly lower in the FTS group compared with the non-FTS group (p<0.05). CONCLUSION adopting the FTS protocol helped to recover gastrointestinal functions, to reduce frequency of postoperative complications and to reduce hospital stay. The FTS strategy is safe and effective in improving postoperative outcomes.
Collapse
Affiliation(s)
- Yang Fei
- Department of General Surgery, 81st Hospital of P.L.A., Nanjing, China
| | - Guang-quan Zong
- Department of General Surgery, 81st Hospital of P.L.A., Nanjing, China
| | - Jian Chen
- Department of General Surgery, 81st Hospital of P.L.A., Nanjing, China
| | - Ren-min Liu
- Department of General Surgery, 81st Hospital of P.L.A., Nanjing, China
| |
Collapse
|