1
|
Lian S, Loganathan S, Mayer T, Kraft P, Sayour AA, Georgevici AI, Veres G, Karck M, Szabó G, Korkmaz-Icöz S. In a rat model of bypass DuraGraft ameliorates endothelial dysfunction of arterial grafts. Sci Rep 2024; 14:15174. [PMID: 38956161 PMCID: PMC11220020 DOI: 10.1038/s41598-024-66056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Coronary artery bypass surgery can result in endothelial dysfunction due to ischemia/reperfusion (IR) injury. Previous studies have demonstrated that DuraGraft helps maintain endothelial integrity of saphenous vein grafts during ischemic conditions. In this study, we investigated the potential of DuraGraft to mitigate endothelial dysfunction in arterial grafts after IR injury using an aortic transplantation model. Lewis rats (n = 7-9/group) were divided in three groups. Aortic arches from the control group were prepared and rings were immediately placed in organ baths, while the aortic arches of IR and IR + DuraGraft rats were preserved in saline or DuraGraft, respectively, for 1 h before being transplanted heterotopically. After 1 h after reperfusion, the grafts were explanted, rings were prepared, and mounted in organ baths. Our results demonstrated that the maximum endothelium-dependent vasorelaxation to acetylcholine was significantly impaired in the IR group compared to the control group, but DuraGraft improved it (control: 89 ± 2%; IR: 24 ± 1%; IR + DuraGraft: 48 ± 1%, p < 0.05). Immunohistochemical analysis revealed decreased intercellular adhesion molecule-1, 4-hydroxy-2-nonenal, caspase-3 and caspase-8 expression, while endothelial cell adhesion molecule-1 immunoreactivity was increased in the IR + DuraGraft grafts compared to the IR-group. DuraGraft mitigates endothelial dysfunction following IR injury in a rat bypass model. Its protective effect may be attributed, at least in part, to its ability to reduce the inflammatory response, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Shuo Lian
- Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany
| | - Sivakkanan Loganathan
- Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120, Halle, Germany
| | - Tobias Mayer
- Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany
| | - Patricia Kraft
- Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany
| | - Alex Ali Sayour
- Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany
- Heart and Vascular Center, Semmelweis University, Budapest, 1122, Hungary
| | - Adrian-Iustin Georgevici
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120, Halle, Germany
- Department of Anesthesiology, St. Josef Hospital, Ruhr-University Bochum, 44791, Bochum, Germany
| | - Gábor Veres
- Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120, Halle, Germany
| | - Matthias Karck
- Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany
| | - Gábor Szabó
- Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120, Halle, Germany
| | - Sevil Korkmaz-Icöz
- Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, INF 326, 69120, Heidelberg, Germany.
- Department of Cardiac Surgery, University Hospital Halle (Saale), 06120, Halle, Germany.
| |
Collapse
|
2
|
Jia H, Chang Y, Song J. The pig as an optimal animal model for cardiovascular research. Lab Anim (NY) 2024; 53:136-147. [PMID: 38773343 DOI: 10.1038/s41684-024-01377-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/22/2024] [Indexed: 05/23/2024]
Abstract
Cardiovascular disease is a worldwide health problem and a leading cause of morbidity and mortality. Preclinical cardiovascular research using animals is needed to explore potential targets and therapeutic options. Compared with rodents, pigs have many advantages, with their anatomy, physiology, metabolism and immune system being more similar to humans. Here we present an overview of the available pig models for cardiovascular diseases, discuss their advantages over other models and propose the concept of standardized models to improve translation to the clinical setting and control research costs.
Collapse
Affiliation(s)
- Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
| |
Collapse
|
3
|
Hu Z, Dai M, Chang Y, Hua X, Zhang N, Chen X, Sheng Y, Xu Z, Zhang H, Zhang Y, Cui H, Jia H, Wang XJ, Song J. Strategies for arterial graft optimization at the single-cell level. NATURE CARDIOVASCULAR RESEARCH 2024; 3:541-557. [PMID: 39195932 DOI: 10.1038/s44161-024-00464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 03/21/2024] [Indexed: 08/29/2024]
Abstract
Common arterial grafts used in coronary artery bypass grafting include internal thoracic artery (ITA), radial artery (RA) and right gastroepiploic artery (RGA) grafts; of these, the ITA has the best clinical outcome. Here, by analyzing the single-cell transcriptome of different arterial grafts, we suggest optimization strategies for the RA and RGA based on the ITA as a reference. Compared with the ITA, the RA had more lipid-handling-related CD36+ endothelial cells. Vascular smooth muscle cells from the RGA were more susceptible to spasm, followed by those from the RA; comparison with the ITA suggested that potassium channel openers may counteract vasospasm. Fibroblasts from the RA and RGA highly expressed GDF10 and CREB5, respectively; both GDF10 and CREB5 are associated with extracellular matrix deposition. Cell-cell communication analysis revealed high levels of macrophage migration inhibitory factor signaling in the RA. Administration of macrophage migration inhibitory factor inhibitor to mice with partial carotid artery ligation blocked neointimal hyperplasia induced by disturbed flow. Modulation of identified targets may have protective effects on arterial grafts.
Collapse
Affiliation(s)
- Zhan Hu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Dai
- Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningning Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Chen
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yixuan Sheng
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenyu Xu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hang Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Cui
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiu-Jie Wang
- Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of the Chinese Academy of Sciences, Beijing, China.
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Benke K, Stengl R, Stark KA, Bai Y, Radovits T, Loganathan S, Korkmaz-Icöz S, Csonka M, Karck M, Szabó G, Veres G. Zinc-aspirin preconditioning reduces endothelial damage of arterial grafts in a rodent model of revascularization. Front Cardiovasc Med 2024; 10:1288128. [PMID: 38239873 PMCID: PMC10794572 DOI: 10.3389/fcvm.2023.1288128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Coronary artery bypass grafting (CABG) is the most common cardiac surgical procedure. The prognosis of revascularization via CABG is determined by the patency of the used grafts, for which an intact endothelium is essential. The degree of ischemia-reperfusion injury (IRI), which occurs during the harvest and implantation of the grafts, is an important determinant of graft patency. Preconditioning with aspirin, a nonsteroidal anti-inflammatory drug has been shown to reduce the functional and molecular damage of arterial grafts in a rodent model. Studies have found that the zinc-aspirin complex may be able to exert an even better protective effect in pathological cardiovascular conditions. Thus, our aim was to characterize the protective effect of zinc-aspirin complex on free arterial grafts in a rodent model of revascularization. Methods Donor Lewis rats were treated with either zinc-aspirin, aspirin, or placebo (n = 8) for 5 days, then the aortic arches were harvested and stored in cold preservation solution and implanted heterotopically in the abdominal cavity of the recipient rats, followed by 2 h of reperfusion. There was also a non-ischemia-reperfusion control group (n = 8). Functional measurements using organ bath and histomorphological changes using immunohistochemistry were analyzed. Results The endothelium dependent maximal vasorelaxation was improved (non-transplanted control group: 82% ± 3%, transplanted control group: 14% ± 2%, aspirin group: 31% ± 4%, zinc-aspirin group: 52% ± 4%), the nitro-oxidative stress and cell apoptosis decreased, and significant endothelial protection was shown in the groups preconditioned with aspirin or zinc-aspirin. However, zinc-aspirin proved to be more effective in the reduction of IRI, than aspirin alone. Discussion Preconditioning with zinc-aspirin could be a promising way to protect the function and structural integrity of free arterial grafts, thus improving the outcomes of CABG.
Collapse
Affiliation(s)
- Kálmán Benke
- Department of Cardiac Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Roland Stengl
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Klára Aliz Stark
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Yang Bai
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Sivakkanan Loganathan
- Department of Cardiac Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Máté Csonka
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Matthias Karck
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gábor Veres
- Department of Cardiac Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Spadaccio C, Nenna A, Rose D, Piccirillo F, Nusca A, Grigioni F, Chello M, Vlahakes GJ. The Role of Angiogenesis and Arteriogenesisin Myocardial Infarction and Coronary Revascularization. J Cardiovasc Transl Res 2022; 15:1024-1048. [PMID: 35357670 DOI: 10.1007/s12265-022-10241-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/18/2022] [Indexed: 12/25/2022]
Abstract
Surgical myocardial revascularization is associated with long-term survival benefit in patients with multivessel coronary artery disease. However, the exact biological mechanisms underlying the clinical benefits of myocardial revascularization have not been elucidated yet. Angiogenesis and arteriogenesis biologically leading to vascular collateralization are considered one of the endogenous mechanisms to preserve myocardial viability during ischemia, and the presence of coronary collateralization has been regarded as one of the predictors of long-term survival in patients with coronary artery disease (CAD). Some experimental studies and indirect clinical evidence on chronic CAD confirmed an angiogenetic response induced by myocardial revascularization and suggested that revascularization procedures could constitute an angiogenetic trigger per se. In this review, the clinical and basic science evidence regarding arteriogenesis and angiogenesis in both CAD and coronary revascularization is analyzed with the aim to better elucidate their significance in the clinical arena and potential therapeutic use.
Collapse
Affiliation(s)
- Cristiano Spadaccio
- Cardiac Surgery, Massachusetts General Hospital & Harvard Medical School, Boston, USA. .,Cardiac Surgery, Golden Jubilee National Hospital & University of Glasgow, Glasgow, UK.
| | - Antonio Nenna
- Cardiac Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - David Rose
- Cardiac Surgery, Lancashire Cardiac Centre, Blackpool Victoria Hospital, Blackpool, UK
| | | | | | | | - Massimo Chello
- Cardiac Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Gus J Vlahakes
- Cardiac Surgery, Massachusetts General Hospital & Harvard Medical School, Boston, USA
| |
Collapse
|
6
|
Aspirin Reduces Ischemia-Reperfusion Injury Induced Endothelial Cell Damage of Arterial Grafts in a Rodent Model. Antioxidants (Basel) 2022; 11:antiox11020177. [PMID: 35204060 PMCID: PMC8868254 DOI: 10.3390/antiox11020177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 12/10/2022] Open
Abstract
Long-term graft patency determines the prognosis of revascularization after coronary artery bypass grafting (CABG). Ischemia-reperfusion (I/R) injury of the graft suffered during harvesting and after implantation might influence graft patency. Aspirin, a nonsteroidal anti-inflammatory drug improves the long-term patency of vein grafts. Whether aspirin has the same effect on arterial grafts is questionable. We aimed to characterize the beneficial effects of aspirin on arterial bypass grafts in a rodent revascularization model. We gave Lewis rats oral pretreatment of either aspirin (n = 8) or saline (n = 8) for 5 days, then aortic arches were explanted and stored in cold preservation solution. The third group (n = 8) was a non-ischemia-reperfusion control. Afterwards the aortic arches were implanted into the abdominal aorta of recipient rats followed by 2 h of reperfusion. Endothelium-dependent vasorelaxation was examined with organ bath experiments. Immunohistochemical staining were carried out. Endothelium-dependent maximal vasorelaxation improved, nitro-oxidative stress and cell apoptosis decreased, and significant endothelial protection was shown in the aspirin preconditioned group, compared to the transplanted control group. Significantly improved endothelial function and reduced I/R injury induced structural damage were observed in free arterial grafts after oral administration of aspirin. Aspirin preconditioning before elective CABG might be beneficial on free arterial graft patency.
Collapse
|
7
|
Graft Preservation Solution DuraGraft ® Alleviates Vascular Dysfunction Following In Vitro Ischemia/Reperfusion Injury in Rats. Pharmaceuticals (Basel) 2021; 14:ph14101028. [PMID: 34681252 PMCID: PMC8538682 DOI: 10.3390/ph14101028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Vascular ischemia/reperfusion injury (IRI) in patients undergoing coronary artery bypass grafting can result in graft failure and the need for repeat revascularization procedures. DuraGraft® has been shown to protect structure and function in saphenous vein grafts against IRI. We compared the effect of DuraGraft® to saline solution on arterial grafts submitted to IRI. Rat thoracic aortic rings were harvested and immediately mounted in organ bath chambers (control, n = 7 rats) or underwent cold ischemic preservation either in saline (IR, n = 9 rats) or DuraGraft® (IR+Dura, n = 9 rats). Vascular function was measured ex vivo and immunohistochemistry was performed. Impaired maximum vasorelaxation (Rmax) to ACh in the IR-group compared to controls was ameliorated by DuraGraft®, indicating an improvement in endothelial function (Rmax to ACh (%): IR + Dura 73 ± 2 vs. IR 48 ± 3, p < 0.05). Additionally, decreased aortic ring sensitivity to ACh (pD2-value: -log 50% maximum response) seen after IR in the saline group was increased by DuraGraft® (pD2 to ACh: IR+Dura 7.1 ± 0.1 vs. IR 6.3 ± 0.2, p < 0.05). Impaired maximum contractile response to phenylephrine and high potassium chloride concentrations in the IR group compared to controls was significantly improved by DuraGraft®. DuraGraft® alleviates vascular dysfunction following IRI by reducing nitro-oxidative stress and the expression of ICAM-1, without leukocytes engagement.
Collapse
|
8
|
Saemann L, Korkmaz-Icöz S, Hoorn F, Veres G, Kraft P, Georgevici AI, Brune M, Guo Y, Loganathan S, Wenzel F, Karck M, Szabó G. Reconditioning of circulatory death hearts by ex-vivo machine perfusion with a novel HTK-N preservation solution. J Heart Lung Transplant 2021; 40:1135-1144. [PMID: 34420849 DOI: 10.1016/j.healun.2021.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/29/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Warm ischemia followed by blood reperfusion is associated with reduced myocardial contractility. Circulatory death (CD) hearts are maintained by machine perfusion (MP) with blood. However, the impact of MP with histidine-tryptophane-ketoglutarate (HTK) or novel HTK-N solution on reconditioning of CD-heart contractility is unknown. METHODS In a porcine model, native hearts were directly harvested (control), or CD was induced before harvesting, followed by left ventricular (LV) contractile assessment. In MP-groups, CD-hearts were maintained for 4 h by MP with blood (CD-B), cold oxygenated HTK (CD-HTK) or HTK-N (CD-HTK-N) before contractile evaluation (all groups n = 8). We performed immunohistochemistry of LV myocardial samples. We profiled myocardial expression of 84 oxidative stress-related genes and correlated the findings with myocardial contractility via a machine learning algorithm. RESULTS HTK-N improved end-systolic pressure (ESP=172±10 vs 132±5 mmHg, p = 0.02) and maximal slope of pressure increment (dp/dtmax=2161±214 vs 1240±167 mmHg/s, p = 0.005) compared to CD, whereas CD-B failed to improve contractility. Dp/dtmax (2161±214 vs 1177±156, p = 0.08) and maximal rate of pressure decrement (dp/dtmin=-1501±228 vs -637±79, p = 0.005) were also superior in CD-HTK-N compared to CD-B. In CD-HTK-N, myocardial 4-hydroxynonenal (marker for oxidative stress; p<0.001), nitrotyrosine (marker for nitrosative stress; p = 0.004), poly(adenosine diphosphate-ribose)polymerase (marker for necrosis; p = 0.028) immunoreactivity and cell swelling (p = 0.008) were decreased compared to CD-B. Strong correlation of gene expression with ESP was identified for oxidative stress defense genes in CD-HTK-N. CONCLUSION During harvesting procedure, MP with HTK-N reconditions CD-heart systolic and diastolic function by reducing oxidative and nitrosative stress and preventing cardiomyocytes from cell swelling and necrosis.
Collapse
Affiliation(s)
- Lars Saemann
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany; Department of Cardiac Surgery, University Hospital Halle (Saale), University of Halle, Halle (Saale), Germany; Faculty Medical ,and Life Sciences, Furtwangen University, Villingen-Schwenningen, Germany.
| | - Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Fabio Hoorn
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany; Faculty Medical ,and Life Sciences, Furtwangen University, Villingen-Schwenningen, Germany
| | - Gábor Veres
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany; Department of Cardiac Surgery, University Hospital Halle (Saale), University of Halle, Halle (Saale), Germany
| | - Patricia Kraft
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Adrian-Iustin Georgevici
- Department of Cardiac Surgery, University Hospital Halle (Saale), University of Halle, Halle (Saale), Germany; Department of Anaesthesiology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Maik Brune
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | - Yuxing Guo
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany; Department of Cardiac Surgery, University Hospital Halle (Saale), University of Halle, Halle (Saale), Germany
| | - Sivakkanan Loganathan
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany; Department of Cardiac Surgery, University Hospital Halle (Saale), University of Halle, Halle (Saale), Germany
| | - Folker Wenzel
- Faculty Medical ,and Life Sciences, Furtwangen University, Villingen-Schwenningen, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany; Department of Cardiac Surgery, University Hospital Halle (Saale), University of Halle, Halle (Saale), Germany
| |
Collapse
|
9
|
Saemann L, Zubarevich A, Wenzel F, Soethoff J, Loganathan S, Korkmaz-Icöz S, Karck M, Szabó G, Veres G. Impact of skeletonized harvesting of the internal thoracic artery on intrasternal microcirculation considering preparation quality. Interact Cardiovasc Thorac Surg 2021; 33:779-783. [PMID: 34195825 DOI: 10.1093/icvts/ivab160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/15/2021] [Accepted: 04/12/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Previous studies have demonstrated the impact of internal thoracic artery (ITA) harvesting on microcirculation in parasternal tissues. However, the impact of skeletonized ITA harvesting on intrasternal microcirculation is unknown. Intraskeletal tissue perfusion has been proven to be crucial for deep wound healing. Furthermore, the impact of different levels of surgical preparation quality on intrasternal microcirculation has not been investigated yet. METHODS Sternal microcirculation (sLDP) was monitored with a novel Laser Doppler Perfusion needle probe, while the ITA was skeletonized in a pig model. To mimic different levels of preparation quality, satellite veins were either coagulated or not during preparation. To show the effect of ideally avoiding any surgical manipulation on sLDP, the ITA was clipped in a third sham-harvested group. RESULTS sLDP was reduced highly significant to 71 [standard deviation (SD): 9]% (P < 0.001) after skeletonized harvesting of the ITA. Coagulation of the satellite veins as a detrimental surgical factor resulted in a significantly stronger reduction of sLDP to 56 (SD: 11)% (P < 0.05) compared to sLDP with non-coagulated satellite veins. ITA clipping reduced sLDP highly significant to 71 (SD: 8)% (P < 0.001) in the sham-operated group. CONCLUSIONS ITA harvesting markedly impairs microcirculation of the sternum but remains unavoidable when coronary artery bypass grafting should be performed. Nevertheless, excessive surgical damage and coagulation of satellite veins is avoidable and should be reduced to a minimum to minimize the risk of deep sternal wound healing complications.
Collapse
Affiliation(s)
- Lars Saemann
- Department of Cardiac Surgery, University of Halle, Halle, Germany.,Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany.,Faculty Medical and Life Sciences, Furtwangen University, Villingen-Schwenningen, Germany
| | - Alina Zubarevich
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany, Heidelberg
| | - Folker Wenzel
- Faculty Medical and Life Sciences, Furtwangen University, Villingen-Schwenningen, Germany
| | - Jasmin Soethoff
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Sivakkanan Loganathan
- Department of Cardiac Surgery, University of Halle, Halle, Germany.,Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, University of Halle, Halle, Germany.,Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gábor Veres
- Department of Cardiac Surgery, University of Halle, Halle, Germany.,Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Relationship between fractional flow reserve and graft patency after coronary artery bypass grafting. Gen Thorac Cardiovasc Surg 2021; 69:1453-1459. [PMID: 33683577 DOI: 10.1007/s11748-021-01608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Bypass for moderately stenosed coronary arteries may cause graft failure (string phenomenon or occlusion). We examined the effects of fractional flow reserve (FFR) on the efficacy of coronary artery bypass grafting (CABG) in preventing graft failure. METHODS Between January 2013 and December 2017, 48 patients underwent CABG after FFR was measured. Twenty-five grafts in 23 patients were evaluated for graft patency after the procedure. We studied stenosis of native coronary arteries, FFR, graft flow, graft patency, and the presence of pre-procedure and post-procedure myocardial ischemia. RESULTS Three internal thoracic arteries showed the string sign, and two saphenous vein grafts showed occlusion. All target coronary arteries for these grafts had moderate (50-75%) stenosis. Of the 25 grafts, five failed, and 20 were successful. All grafts with the string sign had been bypassed for target coronary arteries with the gray-zone FFR value (0.75-0.80). No difference in graft flow was observed between the failed and successful grafts. Patients with graft failure had no postoperative myocardial ischemia in target areas despite graft condition. CONCLUSION Internal thoracic artery graft for coronary arteries with the gray-zone FFR value may exhibit the string phenomenon. We believe that graft failure occurred because the target area had no ischemia before CABG. FFR is useful in pre-operative ischemic evaluation including scintigraphy and will influence the success of revascularization, including the selection of grafts.
Collapse
|
11
|
Sef D, Raja SG. Bilateral internal thoracic artery use in coronary artery bypass grafting in the post-ART era - Perspective. Int J Surg 2021; 86:1-4. [PMID: 33388437 DOI: 10.1016/j.ijsu.2020.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 12/22/2020] [Indexed: 11/26/2022]
Abstract
There is still lack of convincing evidence about the superiority of bilateral internal thoracic artery (BITA) use in coronary artery bypass grafting (CABG) and BITA grafts continue to be underutilized. Arterial Revascularization Trial (ART) did not demonstrate the superiority of BITA versus single ITA grafting after 10 years. We have reviewed the most recent literature, assessed the current status as well as indications of BITA grafting in the post-ART era. We believe that BITA grafting is not appropriate for all patients especially in light of the findings of ART. However, the use of BITA is justified in patients of younger age and those without comorbidities (poorly controlled diabetes, obesity, chronic obstructive pulmonary disease, previous mediastinal irradiation, long-term steroid use, elderly women). Further prospective randomized studies with long-term follow-up are needed to validate the benefits of BITA grafting.
Collapse
Affiliation(s)
- Davorin Sef
- Department of Cardiac Surgery, Harefield Hospital, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom.
| | - Shahzad G Raja
- Department of Cardiac Surgery, Harefield Hospital, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
12
|
Veres G, Bai Y, Stark KA, Schmidt H, Radovits T, Loganathan S, Korkmaz-Icöz S, Szabó G. Pharmacological activation of soluble guanylate cyclase improves vascular graft function. Interact Cardiovasc Thorac Surg 2021; 32:803-811. [PMID: 33515043 DOI: 10.1093/icvts/ivaa329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Ischaemia-reperfusion injury impairs the nitric oxide/soluble guanylate cyclase/cyclic guanosine monophosphate (cGMP) signalling pathway and leads to vascular dysfunction. We assessed the hypothesis that the soluble guanylate cyclase activator cinaciguat would protect the vascular graft against ischaemia-reperfusion injury. METHODS In the treatment groups, rats (n = 8/group) were pretreated with either intravenous saline or intravenous cinaciguat (10 mg/kg) 2 h before an aortic transplant. Aortic grafts were stored for 2 h in saline and transplanted into the abdominal aorta of the recipients. Two hours after the transplant, the grafts were harvested and mounted in an organ bath. Vascular function of the grafts was investigated in the organ bath. Terminal deoxynucleotidyl transferase dUTP nick end labelling, cluster of differentiation 31, caspase-3, endothelial nitric oxide synthase, cGMP, nitrotyrosine and vascular cell adhesion molecule 1 immunochemical reactions were also investigated. RESULTS Pretreatment with cinaciguat significantly improved endothelium-dependent maximal relaxation 2 h after reperfusion compared with the saline group (maximal relaxation control: 96.5 ± 1%, saline: 40.4 ± 3% vs cinaciguat: 54.7 ± 2%; P < 0.05). Pretreatment with cinaciguat significantly reduced DNA fragmentation and nitro-oxidative stress; decreased the caspase-3 and vascular cell adhesion molecule 1 scores; and increased endothelial nitric oxide synthase, cGMP and cluster of differentiation 31 scores. CONCLUSIONS Our results demonstrated that enhancement of cGMP signalling by pharmacological activation of the soluble guanylate cyclase activator cinaciguat might represent a beneficial therapy for treating endothelial dysfunction of arterial bypass graft during cardiac surgery.
Collapse
Affiliation(s)
- Gábor Veres
- Department of Cardiac Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Yang Bai
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Klára Aliz Stark
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Harald Schmidt
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | | | - Sivakkanan Loganathan
- Department of Cardiac Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Pooria A, Pourya A, Gheini A. Application of tissue-engineered interventions for coronary artery bypass grafts. Future Cardiol 2020; 16:675-685. [PMID: 32643391 DOI: 10.2217/fca-2019-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Coronary artery bypass graft is one of the extensively conducted procedures to release occlusion in the coronary vessel. Various biological grafts are used for this purpose, superiorly, saphenous vein graft, if unavailable, other vessels in the body, with likewise characteristics are exploited for the purpose. The choice of graft is yet under discovery that could impeccably meet all the requirements. Variation in perioperative and postoperative results have given uneven clinical inferences of these conduits. Alternatively, tissue-engineering is also being applied in this area for clinical improvements. This review underlines some of the commonly used grafts for coronary artery bypass graft and advancements in tissue engineering for this purpose.
Collapse
Affiliation(s)
- Ali Pooria
- Department of Cardiology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Afsoun Pourya
- Student of Research Committee, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Gheini
- Department of Cardiology, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
14
|
Marzouk M, Kalavrouziotis D, Grazioli V, Meneas C, Nader J, Simard S, Mohammadi S. Long-term outcome of the in situ versus free internal thoracic artery as the second arterial graft. J Thorac Cardiovasc Surg 2020; 162:1744-1752.e7. [DOI: 10.1016/j.jtcvs.2020.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 02/21/2020] [Accepted: 03/02/2020] [Indexed: 11/15/2022]
|
15
|
Sako EY. Coronary artery bypass as a transplant process. J Thorac Cardiovasc Surg 2018; 156:1470. [PMID: 29970230 DOI: 10.1016/j.jtcvs.2018.05.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 10/14/2022]
Affiliation(s)
- Edward Y Sako
- Department of Cardiothoracic Surgery, University of Texas Health Science Center at San Antonio, San Antonio, Tex.
| |
Collapse
|