1
|
Aliabadi S, Lydell C, Kolman L, Bandali MF, Garcia J. Peak regurgitant diastolic wall shear stress increases in bicuspid aortic valve regurgitation: association of regurgitation severities and aortic root dilation. Quant Imaging Med Surg 2025; 15:3384-3400. [PMID: 40235768 PMCID: PMC11994549 DOI: 10.21037/qims-24-2059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/21/2025] [Indexed: 04/17/2025]
Abstract
Background Bicuspid aortic valve (BAV) disease, especially with regurgitation, lacks adequate clinical management. While root aortopathy is often attributed to genetic factors and aortic regurgitation, the diastolic hemodynamic characteristics in BAV patients with varying regurgitation severities are not well understood. Flow-derived velocity-weighted flow displacement (FD) and wall shear stress (WSS) are linked to aortopathy progression. We sought to evaluate peak systolic and peak regurgitant diastolic regional WSS and FD at the aortic root in BAV patients with regurgitation (BAV-REG) and BAV patients without or with trivial regurgitation (BAV-No/Trivial REG). Methods To conduct this retrospective study, a total of 98 subjects (N=38 BAV-No/Trivial REG, age: 48±16 years, N=35 BAV-REG, age: 52±13 years, and N=25 healthy, age: 38±14 years) were recruited. All subjects underwent routine cardiac magnetic resonance imaging (MRI) followed by four-dimensional cardiovascular magnetic resonance flow imaging using a 3.0 Tesla MRI scanner. Regional peak systolic (WSSSys) and peak regurgitant diastolic (WSSDia) WSS as well as FD (FDSys, FDDia) at annulus, sinus of Valsalva, sinotubular junction, and mid ascending aorta planes were calculated by dividing the extracted two-dimensional planes into eight sectors. Patients were also followed for the occurrence of aortic valve surgery. Independent-samples Kruskal-Wallis H test (Bonferroni corrected at a 0.05 significance level), along with univariate and logistic regression analyses statistical tests were used. Results BAV-REG had similar planar WSSSys patterns compared to BAV-No/Trivial REG. However, peak regurgitant planar WSSDia was significantly higher in BAV-REG compared to both healthy controls and BAV-No/Trivial REG at the annulus and sinus of Valsalva planes (P<0.05) in specific left-sided octants. Normalized peak regurgitant FDDia was significantly higher only in BAV-REG compared to healthy controls (P=0.03). WSSDia showed a significant association with the regurgitation severities at the annulus (ρ=0.34, P<0.001), sinus of Valsalva (ρ=0.34, P<0.001), sinotubular junction (ρ=0.48, P<0.001) planes. Furthermore, logistic regression analysis highlighted the potential role of peak regurgitant WSSDia in the likelihood of requiring surgery (β=5.49, P=0.009). Conclusions Higher WSSDia in BAV patients, particularly in BAV-REG, and the significant association between WSSDia and regurgitation severity underscore its potential pathophysiological role in aortic root dilation.
Collapse
Affiliation(s)
- Shirin Aliabadi
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Carmen Lydell
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Louis Kolman
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Murad F. Bandali
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Julio Garcia
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Saisho H, Balks MF, Scharfschwerdt M, Schaller T, Sadat N, Aboud A, Ensminger S, Frydrychowicz A, Fujita B, Oechtering TH. Comprehensive assessment of aortic flow before and after aortic valve replacement in an ex vivo porcine model with four-dimensional flow magnetic resonance imaging. INTERDISCIPLINARY CARDIOVASCULAR AND THORACIC SURGERY 2025; 40:ivaf087. [PMID: 40205585 PMCID: PMC12022217 DOI: 10.1093/icvts/ivaf087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/03/2025] [Accepted: 04/07/2025] [Indexed: 04/11/2025]
Abstract
OBJECTIVES Aortic valve replacement (AVR) has shown to induce secondary flow patterns deviating from main flow. It is impossible to analyse the impact of surgical access and different AVR techniques under standardized conditions in patients or silicone models. Therefore, we developed an ex vivo swine model to analyse the impact of surgical access and to compare flow patterns after different AVR techniques within the ascending aorta. METHODS Porcine aortas (n = 6) were anastomosed to a custom-made piston pump. The pulse duplicator perfused the aortas with a blood-mimicking fluid at 2.5 l/min and 64 bpm. 4D flow magnetic resonance imaging of each aorta was acquired prior to surgery (NAV, n = 6), after sham surgery (aortotomy and closure thereof without valve replacement, NAV-A, n = 6) and after Ozaki procedure (AVneo, n = 2), biological valve (BV, n = 2) or mechanical valve (MV, n = 2). Secondary flow patterns and peak velocity were analysed with GTFlow (GyroTools, Switzerland). RESULTS Sham surgery alone induced secondary flow patterns in the ascending aorta in all specimens. After AVR, more secondary flow patterns were observed distal to BV compared to AVneo or MV. Three flow patterns developed after BV, two after AVneo and one after MV. In addition, peak velocity within the aortic sinuses of Valsalva increased after all AVR procedures, most strikingly after BV (NAV = 75 ± 22 cm/s, NAV-A = 79 ± 29 cm/s, AVneo = 115 ± 36 cm/s, BV = 142 ± 21 cm/s, MV = 107 ± 4 cm/s; mean±standard deviation). CONCLUSIONS We successfully established an ex vivo model suggesting that flow alterations not only depend on the type of AVR but are associated with surgical access. The strongest secondary flow patterns developed after BV followed by AVneo and MV.
Collapse
Affiliation(s)
- Hiroyuki Saisho
- Department of Cardiac and Thoracic Vascular Surgery, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Maren Friederike Balks
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
- Section of Pediatric Radiology, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Scharfschwerdt
- Department of Cardiac and Thoracic Vascular Surgery, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Tim Schaller
- Department of Cardiac and Thoracic Vascular Surgery, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Najla Sadat
- Department of Cardiac and Thoracic Vascular Surgery, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Anas Aboud
- Department of Cardiac and Thoracic Vascular Surgery, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Stephan Ensminger
- Department of Cardiac and Thoracic Vascular Surgery, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Alex Frydrychowicz
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Buntaro Fujita
- Department of Cardiac and Thoracic Vascular Surgery, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Thekla Helene Oechtering
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
3
|
Bhatt N, Seo H, Hanneman K, Burris N, Simmons CA, Chung JCY. Imaging-based biomechanical parameters for assessing risk of aortic dissection and rupture in thoracic aortic aneurysms. Eur J Cardiothorac Surg 2025; 67:ezaf128. [PMID: 40234250 DOI: 10.1093/ejcts/ezaf128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/23/2025] [Accepted: 04/13/2025] [Indexed: 04/17/2025] Open
Abstract
OBJECTIVES Imaging-based methods of measuring aortic biomechanics may provide superior and a more personalized in vivo risk assessment of patients with thoracic aortic aneurysms compared to traditional aortic size criteria such as maximal aortic diameter. We aim to summarize the data on in vivo imaging techniques for evaluation of aortic biomechanics. METHODS A thorough search of literature was conducted in MEDLINE, EMBASE and Google Scholar for evidence of various imaging-based biomechanics techniques. All imaging modalities were included. Data involving preclinical/animal models or exclusively focussed on abdominal aortic aneurysms were excluded. RESULTS The various imaging-based biomechanical parameters can be divided into categories of increasing complexity: strain-based, stiffness-based and computational modelling-derived. Strain-based and stiffness-based parameters are more simply calculated and can be derived using multiple imaging modalities. Initial studies are promising towards linking these parameters with clinically relevant end-points, including aortic dissection, though work is required for standardization. Computationally derived parameters provide detail of stress exerted on the aortic wall with great spatial resolution. However, they are highly dependent on the assumptions applied to the models, such as material properties of the aortic wall. CONCLUSIONS Imaging-based aortic biomechanics represent a major technical advancement for personalized in vivo risk stratification of patients with ascending thoracic aortic aneurysm. The next steps in clinical translation require large-scale validation of these markers towards predicting aortic dissections and comparison against the gold standard ex vivo aortic biomechanics as well as development of a user-friendly, low-cost algorithm that can be widely adopted.
Collapse
Affiliation(s)
- Nitish Bhatt
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Hijun Seo
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Kate Hanneman
- Department of Medical Imaging, University Medical Imaging Toronto, University of Toronto, Toronto, ON, Canada
| | - Nicholas Burris
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Jennifer C-Y Chung
- Division of Cardiovascular Surgery, University Health Network, Toronto, ON, Canada
| |
Collapse
|
4
|
Liu Y, Mu X, Wang Y, Xu Z, Song Y. The Role of 4D Flow MRI-derived Wall Shear Stress in Aortic Disease: A Comprehensive Review. Rev Cardiovasc Med 2025; 26:26735. [PMID: 40160589 PMCID: PMC11951489 DOI: 10.31083/rcm26735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 04/02/2025] Open
Abstract
Aortic diseases, such as aortic dissection and aortic rupture, often lead to catastrophic complications, significantly increasing morbidity and mortality. Population-based screening for early detection in asymptomatic individuals is not feasible due to high costs and practical challenges. However, recent advancements in four dimensions (4D) Flow magnetic resonance imaging (MRI) offer a comprehensive tool for evaluating hemodynamic changes within the aortic lumen. This technology allows for the quantification and visualization of flow patterns and the calculation of advanced hemodynamic parameters, such as wall shear stress (WSS). WSS is crucial in the development, risk stratification, and surgical outcomes of aortic diseases and their complications, enabling noninvasive and quantitative screening of high-risk populations. This review explores the current status and limitations of 4D flow MRI-derived WSS imaging for aortic disease.
Collapse
Affiliation(s)
- Ying Liu
- Department of Radiology, Central Hospital of Dalian University of Technology, 116033 Dalian, Liaoning, China
- Department of Graduate School, Dalian Medical University, 116044 Dalian, Liaoning, China
| | - Xiaolin Mu
- Department of Radiology, Central Hospital of Dalian University of Technology, 116033 Dalian, Liaoning, China
| | - Yixin Wang
- Department of Radiology, Central Hospital of Dalian University of Technology, 116033 Dalian, Liaoning, China
| | - Zhe Xu
- Department of Radiology, Central Hospital of Dalian University of Technology, 116033 Dalian, Liaoning, China
| | - Yang Song
- Department of Radiology, Central Hospital of Dalian University of Technology, 116033 Dalian, Liaoning, China
| |
Collapse
|
5
|
Catalano C, Crascì F, Puleo S, Scuoppo R, Pasta S, Raffa GM. Computational fluid dynamics in cardiac surgery and perfusion: A review. Perfusion 2025; 40:362-370. [PMID: 38850015 DOI: 10.1177/02676591241239277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Cardiovascular diseases persist as a leading cause of mortality and morbidity, despite significant advances in diagnostic and surgical approaches. Computational Fluid Dynamics (CFD) represents a branch of fluid mechanics widely used in industrial engineering but is increasingly applied to the cardiovascular system. This review delves into the transformative potential for simulating cardiac surgery procedures and perfusion systems, providing an in-depth examination of the state-of-the-art in cardiovascular CFD modeling. The study first describes the rationale for CFD modeling and later focuses on the latest advances in heart valve surgery, transcatheter heart valve replacement, aortic aneurysms, and extracorporeal membrane oxygenation. The review underscores the role of CFD in better understanding physiopathology and its clinical relevance, as well as the profound impact of hemodynamic stimuli on patient outcomes. By integrating computational methods with advanced imaging techniques, CFD establishes a quantitative framework for understanding the intricacies of the cardiac field, providing valuable insights into disease progression and treatment strategies. As technology advances, the evolving synergy between computational simulations and clinical interventions is poised to revolutionize cardiovascular care. This collaboration sets the stage for more personalized and effective therapeutic strategies. With its potential to enhance our understanding of cardiac pathologies, CFD stands as a promising tool for improving patient outcomes in the dynamic landscape of cardiovascular medicine.
Collapse
Affiliation(s)
- Chiara Catalano
- Department of Engineering, Università degli Studi di Palermo, Palermo, Italy
| | - Fabrizio Crascì
- Department of Engineering, Università degli Studi di Palermo, Palermo, Italy
- Department of Research, IRCCS-ISMETT, Palermo, Italy
| | - Silvia Puleo
- Department of Engineering, Università degli Studi di Palermo, Palermo, Italy
| | - Roberta Scuoppo
- Department of Engineering, Università degli Studi di Palermo, Palermo, Italy
| | - Salvatore Pasta
- Department of Engineering, Università degli Studi di Palermo, Palermo, Italy
- Department of Research, IRCCS-ISMETT, Palermo, Italy
| | - Giuseppe M Raffa
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
| |
Collapse
|
6
|
Nadel J, Rodríguez-Palomares J, Phinikaridou A, Prieto C, Masci PG, Botnar R. The future of cardiovascular magnetic resonance imaging in thoracic aortopathy: blueprint for the paradigm shift to improve management. J Cardiovasc Magn Reson 2025; 27:101865. [PMID: 39986653 PMCID: PMC12020840 DOI: 10.1016/j.jocmr.2025.101865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/28/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025] Open
Abstract
Thoracic aortopathies result in aneurysmal expansion of the aorta that can lead to rapidly fatal aortic dissection or rupture. Despite the availability of abundant non-invasive imaging tools, the greatest contemporary challenge in the management of thoracic aortic aneurysm (TAA) is the lack of reliable metrics for risk stratification, with absolute aortic diameter, growth rate, and syndromic factors remaining the primary determinants by which prophylactic surgical intervention is adjudged. Advanced cardiovascular magnetic resonance (CMR) techniques present a potential key to unlocking insights into TAA that could guide disease surveillance and surgical intervention. CMR has the capacity to encapsulate the aorta as a complex biomechanical structure, permitting the determination of aortic volume, morphology, composition, distensibility, and fluid dynamics in a time-efficient manner. Nevertheless, current standard-of-care imaging protocols do not harness its full capacity. This state-of-the-art review explores the emerging role of CMR in the assessment of TAA and presents a blueprint for the required paradigm shift away from aortic size as the sole metric for risk-stratifying TAA.
Collapse
Affiliation(s)
- James Nadel
- Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Clinical Cardiology Group, Heart Research Institute, Newtown, Australia; Department of Cardiology, St. Vincent's Hospital, Darlinghurst, Australia.
| | - José Rodríguez-Palomares
- Department of Cardiology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Cardiovascular Diseases, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Claudia Prieto
- Biomedical Engineering and Imaging Sciences, King's College London, London, UK; School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| | - Pier-Giorgio Masci
- Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - René Botnar
- Biomedical Engineering and Imaging Sciences, King's College London, London, UK; School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile; Institute of Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute for Advanced Study, Technical University of Munich, Garching, Germany
| |
Collapse
|
7
|
Dushfunian D, Maroun A, Berhan H, Baraboo J, Johnson EM, Jarvis K, Allen BD, Markl M. Robustness of 4D flow MRI derived aortic wall shear stress and pulse wave velocity across different protocols in healthy controls and in patients with bicuspid aortic valve. Int J Cardiovasc Imaging 2025; 41:137-149. [PMID: 39652207 PMCID: PMC11995425 DOI: 10.1007/s10554-024-03299-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/27/2024] [Indexed: 01/19/2025]
Abstract
PURPOSE To evaluate the reproducibility of important biomarkers like wall shear stress (WSS), pulse wave velocity (PWV), and net flow across two 4D flow MRI imaging protocols with different coverages: aorta-targeted 4D flow MRI (AT4D) and whole-heart 4D flow (WH4D) protocols. METHODS Thirty-eight control subjects (43.2 ± 10.1 years old; 22 males) and ten patients (45.7 ± 8.9 years old; 7 males) with bicuspid aortic valve (BAV) were included. Each subject underwent AT4D and WH4D scans. Absolute WSS, PWV, and net flow were assessed for each patient across both protocols and compared using Bland-Altman analysis. Areas of elevated WSS were assessed for BAV patients across different WSS thresholds that define WSS to be elevated compared to a normal population average. A sensitivity analysis was conducted to determine the best WSS threshold at which WH4D-derived areas most closely resemble AT4D-derived areas. Inter-rater reproducibility was evaluated in twenty-four subjects. RESULTS AT4D and WH4D PWV and WSS estimates demonstrated good agreement (PWV: -0.12 ± 1.84 m/s, p = 0.4; Median WSS: 0.06 ± 0.13 Pa, p < 0.01; Maximum WSS: 0.04 ± 0.27 Pa, p = 0.07). Good agreement was also found for AAo net flow (8.14 ± 24.86 mL/cycle, p < 0.01). PWV correlated with age across protocols (AT4D: r = 0.68, p < 0.01; WH4D: r = 0.72, p < 0.01). Sensitivity analysis identified a WSS threshold where WH4D-derived areas of elevated WSS most closely resembled AT4D-derived areas. Inter-rater assessment of the tested parameters resulted in a small mean difference percentage of < 3%. DATA CONCLUSION PWV, WSS, and net flow demonstrated good agreement across protocols. The WSS threshold should be adjusted for WH4D estimates to optimally match AT4D-derived output. Reproducibility analysis showed good test-retest agreement. This study demonstrates the reproducibility of certain hemodynamic parameters across two 4D flow MRI protocol.
Collapse
Affiliation(s)
- David Dushfunian
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Anthony Maroun
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Haben Berhan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Justin Baraboo
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ethan M Johnson
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kelly Jarvis
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bradley D Allen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
8
|
Xu X, Yang F, Yu Y, Xin YF, Tong J. Region-specific biomechanical characterization of ascending thoracic aortic aneurysm of hypertensive patients with bicuspid aortic valves. Biomech Model Mechanobiol 2024:10.1007/s10237-024-01917-4. [PMID: 39724462 DOI: 10.1007/s10237-024-01917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024]
Abstract
Hypertension and bicuspid aortic valve (BAV) are key clinical factors that may affect local biomechanical properties of ascending thoracic aortic aneurysms (ATAAs). This study sought to investigate regional differences in biaxial mechanical properties of the ATAAs for the hypertensive patients with BAV. Fresh ATAA samples were harvested from 16 hypertensive patients (age, 66 ± 9 years) undergoing elective aortic surgery. Biaxial extension tests were employed to characterize region-specific biaxial mechanical behaviors of the hypertensive BAV-ATAAs. A material model was used to fit biaxial experimental data to obtain model parameters in different regions. Histological analysis was performed to investigate the underlying aortic microstructure and to determine percentages of elastic and collagen fibers. Mechanical behaviors of the hypertensive BAV-ATAAs were nonlinear and anisotropic for most specimens from anterior, lateral and posterior regions. Under the equibiaxial stresses, the ATAA tissues in the lateral region had significantly lower extensibility and significantly higher stiffness in both circumferential and longitudinal directions when compared with the posterior and medial regions. The material model was able to fit regional biaxial data well. Histology showed that laminar structures of elastic fibers were mainly disrupted in the anterior and lateral regions in which, however, pronounced collagen fiber hyperplasia was observed. Moreover, there was a strong positive correlation between circumferential aortic stiffness and patient age in the anterior and lateral regions. Our results suggest that elastic properties in the lateral and anterior regions are more deteriorated than those in the posterior and medial regions for the hypertensive BAV-ATAAs. Thus, the outer curvature of the ATAA wall should be regarded as special quadrants that may be highly susceptible to microstructural changes and may have a substantial impact on aneurysm growth.
Collapse
Affiliation(s)
- Xiaojuan Xu
- Institute for Biomedical Engineering and Nano Science, Shanghai East Hospital, Tongji University School of Medicine, 500 Zhennan Road, Shanghai, 200331, People's Republic of China
| | - Fan Yang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, People's Republic of China
| | - Yue Yu
- Institute for Biomedical Engineering and Nano Science, Shanghai East Hospital, Tongji University School of Medicine, 500 Zhennan Road, Shanghai, 200331, People's Republic of China
| | - Yuan-Feng Xin
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jianhua Tong
- Institute for Biomedical Engineering and Nano Science, Shanghai East Hospital, Tongji University School of Medicine, 500 Zhennan Road, Shanghai, 200331, People's Republic of China.
| |
Collapse
|
9
|
Sawasaki K, Nakamura M, Kimura N, Kawahito K, Yamazaki M, Fujie H, Sakamoto N. Endothelial-derived nitric oxide impacts vascular smooth muscle cell phenotypes under high wall shear stress condition. Biochem Biophys Res Commun 2024; 740:151005. [PMID: 39561651 DOI: 10.1016/j.bbrc.2024.151005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
The Phenotypic states of vascular smooth muscle cells (SMCs) are essential to understanding vascular pathophysiology. SMCs in vessels generally express a specific set of contractile proteins, but decreased contractile protein expression, indicating a phenotypic shift, is a hallmark of vascular diseases. Recent studies have suggested the relation of abnormally high wall shear stress (WSS) of approximately 20 Pa with the aortic disease pathogenesis. However, due to the lack of appropriate experimental models to assess SMC phenotypic states, the details of the phenotypic shift under high WSS conditions remain unclear. In this study, we developed a coculture model where vascular endothelial cells (ECs) were cocultured with SMCs expressing calponin 1, a contractile protein involved in the phenotypic shift of SMCs. We investigated the effects of a pathologically high WSS condition on the phenotypic states of SMCs. Increased calponin 1 expression was found upon exposure to 20 Pa WSS compared with a physiological 2 Pa condition, whereas the expression of another contractile protein, α-smooth muscle actin (αSMA) remained unchanged. Furthermore, the inhibition of EC-derived nitric oxide (NO), which is associated with endothelial dysfunction in vascular diseases, resulted in a trend of decreasing αSMA and Calponin 1 expression under 20 Pa WSS conditions compared with 2 Pa. Our findings suggest that EC-derived NO under pathologically high WSS conditions may impact the expression of contractile proteins implicated in aortic pathophysiology.
Collapse
Affiliation(s)
- Kaoru Sawasaki
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan.
| | - Masanori Nakamura
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, 466-8555, Japan
| | - Naoyuki Kimura
- Department of Surgery, Division of Cardiovascular Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Koji Kawahito
- Department of Surgery, Division of Cardiovascular Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Masashi Yamazaki
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan; Research Center for Medicine-Engineering Collaboration, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Hiromichi Fujie
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan; Research Center for Medicine-Engineering Collaboration, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Naoya Sakamoto
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan; Research Center for Medicine-Engineering Collaboration, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
10
|
An K, Zhang F, Ouyang W, Pan X. Blood flow dynamics in the ascending aorta of patients with bicuspid aortic valve before and after transcatheter aortic valve replacement: a computational fluid dynamics study. BMC Cardiovasc Disord 2024; 24:717. [PMID: 39702010 DOI: 10.1186/s12872-024-04394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Abnormal blood flow patterns are known to contribute to the ascending aortic dilation in patients with bicuspid aortic valve (BAV). The present study elucidated the blood flow characteristics in the dilated ascending aorta before and after transcatheter aortic valve replacement (TAVR) using computational fluid dynamics (CFD) analysis. METHODS We performed CFD analysis in three BAV patients with ascending aortic dilation (maximum diameter ≥ 45 mm) who underwent TAVR. The blood flow streamline was visualized to evaluate the pre- and post-operative flow velocity, severity of vortex and helix, and wall shear stress (WSS) in the ascending aorta. RESULTS Before the procedure, all three patients showed abnormal blood flow patterns, with vortex and helix in the ascending aorta. Regionally elevated WSS was also observed in the lateral or posterior ascending aortic wall (16.7 Pa, 12.2 Pa, and 14.5 Pa in patient 1, 2, and 3, respectively). After the procedure, the blood flow patterns significantly improved, and the maximum WSS also decreased (4.2 Pa, 1.1 Pa, and 3.2 Pa in patient 1, 2, and 3, respectively). CONCLUSION Abnormal blood flow patterns and WSS appeared to improve after TAVR in BAV patients with ascending aortic dilation. The impact on the long-term aortic growth rate and the incidence of aortic dissection requires further studies. TRIAL REGISTRATION Changes of Ascending Aortic Diameter in Patients Undergoing Transcatheter Aortic Valve Replacement. CLINICALTRIAL gov number NCT05739253. Trial registration date 20,230,212.
Collapse
Affiliation(s)
- Kang An
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regeneration Medicine, Beijing, China
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Fengwen Zhang
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regeneration Medicine, Beijing, China
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenbin Ouyang
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regeneration Medicine, Beijing, China
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangbin Pan
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- National Health Commission Key Laboratory of Cardiovascular Regeneration Medicine, Beijing, China.
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing, China.
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China.
- Department of Structural Heart Disease, Fuwai Hospital, No. 167 North Lishi Rd, Xicheng District, Beijing, China.
| |
Collapse
|
11
|
Maroun A, Scott MB, Catania R, Berhane H, Jarvis K, Allen BD, Barker AJ, Markl M. Multiyear Interval Changes in Aortic Wall Shear Stress in Patients with Bicuspid Aortic Valve Assessed by 4D Flow MRI. J Magn Reson Imaging 2024; 60:2580-2589. [PMID: 38426608 PMCID: PMC12036588 DOI: 10.1002/jmri.29305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND In patients with bicuspid aortic valve (BAV), 4D flow MRI can quantify regions exposed to abnormal aortic hemodynamics, including high wall shear stress (WSS), a known stimulus for arterial wall dysfunction. However, the long-term multiscan reproducibility of 4D flow MRI-derived hemodynamic parameters is unknown. PURPOSE To investigate the long-term stability of 4D flow MRI-derived peak velocity, WSS, and WSS-derived heatmaps in patients with BAV undergoing multiyear surveillance imaging. STUDY TYPE Retrospective. POPULATION 20 BAV patients (mean age 48.4 ± 13.9 years; 14 males) with five 4D flow MRI scans, with intervals of at least 6 months between scans, and 125 controls (mean age: 50.7 ± 15.8 years; 67 males). FIELD STRENGTH/SEQUENCE 1.5 and 3.0T, prospectively ECG and respiratory navigator-gated aortic 4D flow MRI. ASSESSMENT Automated AI-based 4D flow analysis pipelines were used for data preprocessing, aorta 3D segmentation, and quantification of ascending aorta (AAo) peak velocity, peak systolic WSS, and heatmap-derived relative area of elevated WSS compared to WSS ranges in age and sex-matched normative control populations. Growth rate was derived from the maximum AAo diameters measured on the first and fifth MRI scans. STATISTICAL TESTS One-way repeated measures analysis of variance. P < 0.05 indicated significance. RESULTS One hundred 4D flow MRI exams (five per patient) were analyzed. The mean total follow-up duration was 5.5 ± 1.1 years, and the average growth rate was 0.3 ± 0.2 mm/year. Peak velocity, peak systolic WSS, and relative area of elevated WSS did not change significantly over the follow-up period (P = 0.64, P = 0.69, and P = 0.35, respectively). The patterns and areas of elevated WSS demonstrated good reproducibility on semiquantitative assessment. CONCLUSION 4D flow MRI-derived peak velocity, WSS, and WSS-derived heatmaps showed good multiyear and multiscan stability in BAV patients with low aortic growth rates. These findings underscore the reliability of these metrics in monitoring BAV patients for potential risk of dilation. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Anthony Maroun
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michael B. Scott
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Roberta Catania
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Haben Berhane
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kelly Jarvis
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bradley D. Allen
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alex J. Barker
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael Markl
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
12
|
Guala A, Ferrer-Cornet M, Dux-Santoy L. Editorial for "Multiyear Interval Changes in Aortic Wall Shear Stress in Patients with Bicuspid Aortic Valve Assessed by 4D Flow MRI". J Magn Reson Imaging 2024; 60:2590-2591. [PMID: 38970394 DOI: 10.1002/jmri.29513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 07/08/2024] Open
Affiliation(s)
- Andrea Guala
- Cardiovascular diseases Department, Vall d'Hebron Institut de Recerca, Barcelona, Spain
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Ferrer-Cornet
- Cardiovascular diseases Department, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Lydia Dux-Santoy
- Cardiovascular diseases Department, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| |
Collapse
|
13
|
Calò K, Guala A, Mazzi V, Lodi Rizzini M, Dux-Santoy L, Rodriguez-Palomares J, Scarsoglio S, Ridolfi L, Gallo D, Morbiducci U. Pathophysiology of the ascending aorta: Impact of dilation and valve phenotype on large-scale blood flow coherence detected by 4D flow MRI. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 255:108369. [PMID: 39146759 DOI: 10.1016/j.cmpb.2024.108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND AND OBJECTIVE The evidence on the role of hemodynamics in aorta pathophysiology has yet to be robustly translated into clinical applications, to improve risk stratification of aortic diseases. Motivated by the need to enrich the current understanding of the pathophysiology of the ascending aorta (AAo), this study evaluates in vivo how large-scale aortic flow coherence is affected by AAo dilation and aortic valve phenotype. METHODS A complex networks-based approach is applied to 4D flow MRI data to quantify subject-specific AAo flow coherence in terms of correlation between axial velocity waveforms and the aortic flow rate waveform along the cardiac cycle. The anatomical length of persistence of such correlation is quantified using the recently proposed network metric average weighted curvilinear distance (AWCD). The analysis considers 107 subjects selected to allow an ample stratification in terms of aortic valve morphology, absence/presence of AAo dilation and of aortic valve stenosis. RESULTS The analysis highlights that the presence of AAo dilation as well as of bicuspid aortic valve phenotype breaks the physiological AAo flow coherence, quantified in terms of AWCD. Of notice, it emerges that cycle-average blood flow rate and relative AAo dilation are main determinants of AWCD, playing opposite roles in promoting and hampering the persistence of large-scale flow coherence in AAo, respectively. CONCLUSIONS The findings of this study can contribute to broaden the current mechanistic link between large-scale blood flow coherence and aortic pathophysiology, with the prospect of enriching the existing tools for the in vivo non-invasive hemodynamic risk assessment for aortic diseases onset and progression.
Collapse
Affiliation(s)
- Karol Calò
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Andrea Guala
- Vall d'Hebron Institut de Recerca, Barcelona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Valentina Mazzi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Maurizio Lodi Rizzini
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | | | - Jose Rodriguez-Palomares
- Vall d'Hebron Institut de Recerca, Barcelona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain; Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Stefania Scarsoglio
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Luca Ridolfi
- PolitoBIOMed Lab, Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy
| | - Diego Gallo
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
| | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
14
|
Guo J, Bouaou K, Houriez-Gombaud-Saintonge S, Gueda M, Gencer U, Nguyen V, Charpentier E, Soulat G, Redheuil A, Mousseaux E, Kachenoura N, Dietenbeck T. Deep Learning-Based Analysis of Aortic Morphology From Three-Dimensional MRI. J Magn Reson Imaging 2024; 60:1565-1576. [PMID: 38216546 DOI: 10.1002/jmri.29236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Quantification of aortic morphology plays an important role in the evaluation and follow-up assessment of patients with aortic diseases, but often requires labor-intensive and operator-dependent measurements. Automatic solutions would help enhance their quality and reproducibility. PURPOSE To design a deep learning (DL)-based automated approach for aortic landmarks and lumen detection derived from three-dimensional (3D) MRI. STUDY TYPE Retrospective. POPULATION Three hundred ninety-one individuals (female: 47%, age = 51.9 ± 18.4) from three sites, including healthy subjects and patients (hypertension, aortic dilation, Turner syndrome), randomly divided into training/validation/test datasets (N = 236/77/78). Twenty-five subjects were randomly selected and analyzed by three operators with different levels of expertise. FIELD STRENGTH/SEQUENCE 1.5-T and 3-T, 3D spoiled gradient-recalled or steady-state free precession sequences. ASSESSMENT Reinforcement learning and a two-stage network trained using reference landmarks and segmentation from an existing semi-automatic software were used for aortic landmark detection and segmentation from sinotubular junction to coeliac trunk. Aortic segments were defined using the detected landmarks while the aortic centerline was extracted from the segmentation and morphological indices (length, aortic diameter, and volume) were computed for both the reference and the proposed segmentations. STATISTICAL TESTS Segmentation: Dice similarity coefficient (DSC), Hausdorff distance (HD), average symmetrical surface distance (ASSD); landmark detection: Euclidian distance (ED); model robustness: Spearman correlation, Bland-Altman analysis, Kruskal-Wallis test for comparisons between reference and DL-derived aortic indices; inter-observer study: Williams index (WI). A WI 95% confidence interval (CI) lower bound >1 indicates that the method is within the inter-observer variability. A P-value <0.05 was considered statistically significant. RESULTS DSC was 0.90 ± 0.05, HD was 12.11 ± 7.79 mm, and ASSD was 1.07 ± 0.63 mm. ED was 5.0 ± 6.1 mm. A good agreement was found between all DL-derived and reference aortic indices (r >0.95, mean bias <7%). Our segmentation and landmark detection performances were within the inter-observer variability except the sinotubular junction landmark (CI = 0.96;1.04). DATA CONCLUSION A DL-based aortic segmentation and anatomical landmark detection approach was developed and applied to 3D MRI data for achieve aortic morphology evaluation. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Jia Guo
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Kevin Bouaou
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Sophia Houriez-Gombaud-Saintonge
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- ESME Sudria Research Lab, Paris, France
| | - Moussa Gueda
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Umit Gencer
- Université de Paris Cité, PARCC, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Vincent Nguyen
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Etienne Charpentier
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
- ESME Sudria Research Lab, Paris, France
- Imagerie Cardio-Thoracique (ICT), Sorbonne Université, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Gilles Soulat
- Université de Paris Cité, PARCC, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Alban Redheuil
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- Imagerie Cardio-Thoracique (ICT), Sorbonne Université, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Elie Mousseaux
- Université de Paris Cité, PARCC, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Nadjia Kachenoura
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Thomas Dietenbeck
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| |
Collapse
|
15
|
Hammaréus F, Trenti C, Björck HM, Engvall J, Lekedal H, Krzynska-Trzebiatowska A, Kylhammar D, Lindenberger M, Lundberg AK, Nilsson F, Nilsson L, Swahn E, Jonasson L, Dyverfeldt P. Wall shear stress measured with 4D flow CMR correlates with biomarkers of inflammation and collagen synthesis in mild-to-moderate ascending aortic dilation and tricuspid aortic valves. Eur Heart J Cardiovasc Imaging 2024; 25:1384-1393. [PMID: 38748858 PMCID: PMC11441033 DOI: 10.1093/ehjci/jeae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 10/01/2024] Open
Abstract
AIMS Understanding the mechanisms underlying ascending aortic dilation is imperative for refined risk stratification of these patients, particularly among incidentally identified patients, most commonly presenting with tricuspid valves. The aim of this study was to explore associations between ascending aortic haemodynamics, assessed using four-dimensional flow cardiovascular magnetic resonance imaging (4D flow CMR), and circulating biomarkers in aortic dilation. METHODS AND RESULTS Forty-seven cases with aortic dilation (diameter ≥ 40 mm) and 50 sex-and age-matched controls (diameter < 40 mm), all with tricuspid aortic valves, underwent 4D flow CMR and venous blood sampling. Associations between flow displacement, wall shear stress (WSS), and oscillatory shear index in the ascending aorta derived from 4D flow CMR, and biomarkers including interleukin-6, collagen type I α1 chain, metalloproteinases (MMPs), and inhibitors of MMPs derived from blood plasma, were investigated. Cases with dilation exhibited lower peak systolic WSS, higher flow displacement, and higher mean oscillatory shear index compared with controls without dilation. No significant differences in biomarkers were observed between the groups. Correlations between haemodynamics and biomarkers were observed, particularly between maximum time-averaged WSS and interleukin-6 (r = 0.539, P < 0.001), and maximum oscillatory shear index and collagen type I α1 chain (r = -0.575, P < 0.001 in cases). CONCLUSION Significant associations were discovered between 4D flow CMR derived whole-cardiac cycle WSS and circulating biomarkers representing inflammation and collagen synthesis, suggesting an intricate interplay between haemodynamics and the processes of inflammation and collagen synthesis in patients with early aortic dilation and tricuspid aortic valves.
Collapse
Affiliation(s)
- Filip Hammaréus
- Department of Internal Medicine in Jönköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Länssjukhuset Ryhov, Sjukhusgatan, 551 85 Jönköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - Chiara Trenti
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - Hanna M Björck
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Visionsgatan 18, Stockholm, 171 76 Solna, Sweden
| | - Jan Engvall
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
- Department of Clinical Physiology and Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - Hanna Lekedal
- Östersund Hospital, Östersundssjukhus, 831 83 Östersund, Sweden
| | - Aleksandra Krzynska-Trzebiatowska
- Department of Cardiology and Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - David Kylhammar
- Department of Clinical Physiology and Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
- Wallenberg Centre for Molecular Medicine, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - Marcus Lindenberger
- Department of Cardiology and Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - Anna K Lundberg
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - Fredrik Nilsson
- Department of Cardiology and Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - Lennart Nilsson
- Department of Internal Medicine in Jönköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Länssjukhuset Ryhov, Sjukhusgatan, 551 85 Jönköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - Eva Swahn
- Department of Internal Medicine in Jönköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Länssjukhuset Ryhov, Sjukhusgatan, 551 85 Jönköping, Sweden
- Department of Cardiology and Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - Lena Jonasson
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
- Department of Cardiology and Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - Petter Dyverfeldt
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| |
Collapse
|
16
|
Fujiwara T, Malone LJ, Chatfield KC, Berthusen A, Fonseca B, Browne LP, Barker AJ. Assessment of abnormal transvalvular flow and wall shear stress direction for pediatric/young adults with bicuspid aortic valve: A cross-sectional four-dimensional flow study. J Cardiovasc Magn Reson 2024; 26:101102. [PMID: 39326557 DOI: 10.1016/j.jocmr.2024.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Aortic dilation is seen in pediatric/young adult patients with bicuspid aortic valve (BAV), and hemodynamic markers to predict aortic dilation are necessary for monitoring. Although promising hemodynamic metrics, such as abnormal wall shear stress (WSS) magnitude, have been proposed for adult BAV patients using four-dimensional (4D) flow cardiovascular magnetic resonance, those for pediatric BAV patients have less frequently been reported, partly due to scarcity of data to define normal WSS range. To circumvent this challenge, this study aims to investigate if a recently proposed 4D flow-based hemodynamic measurement, abnormal flow directionality, is associated with aortic dilation in pediatric/young adult BAV patients. METHODS 4D flow scans for BAV patients (<20 years old) and age-matched controls were retrospectively enrolled. Static segmentation for the aorta and pulmonary arteries was obtained to quantify peak systolic hemodynamics and diameters in the proximal aorta. In addition to peak velocity, WSS, vorticity, helicity, and viscous energy loss, direction of aortic velocity and WSS in BAV patients were compared with that of control atlas using registration technique; angle differences of >60 deg and >120 deg were defined as moderately and severely abnormal, respectively. The association between the obtained metrics and normalized diameters (Z-scores) was evaluated at the sinotubular junction, mid-ascending aorta, and distal ascending aorta. RESULTS Fifty-three BAV patients, including 18 with history of repaired aortic coarctation, and 17 controls were enrolled. Correlation between moderately abnormal velocity/WSS direction and aortic Z-scores was moderate to strong at the sinotubular junction and mid-ascending aorta (R = 0.62-0.81; p < 0.001) while conventional measurements exhibited weaker correlation (|R| = 0.003-0.47, p = 0.009-0.99) in all subdomains. Multivariable regression analysis found moderately abnormal velocity direction and existence of aortic regurgitation (only for isolated BAV group) were independently associated with mid-ascending aortic Z-scores. CONCLUSION Abnormal velocity and WSS directionality in the proximal aorta were strongly associated with aortic Z-scores in pediatric/young adult BAV patients.
Collapse
Affiliation(s)
- Takashi Fujiwara
- Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, 13123 E 16th Ave, Aurora, Colorado 80045, USA.
| | - LaDonna J Malone
- Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, 13123 E 16th Ave, Aurora, Colorado 80045, USA.
| | - Kathryn C Chatfield
- Department of Pediatrics, Division of Cardiology, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, 13123 E 16th Ave, Aurora, Colorado 80045, USA.
| | - Alex Berthusen
- Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, 13123 E 16th Ave, Aurora, Colorado 80045, USA.
| | - Brian Fonseca
- Department of Pediatrics, Section of Pediatric Cardiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, 13123 E 16th Ave, Aurora, Colorado 80045, USA.
| | - Lorna P Browne
- Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, 13123 E 16th Ave, Aurora, Colorado 80045, USA.
| | - Alex J Barker
- Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, 13123 E 16th Ave, Aurora, Colorado 80045, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, 12705 E Montview Blvd, Aurora, Colorado 80045, USA.
| |
Collapse
|
17
|
Nightingale M, Scott MB, Sigaeva T, Guzzardi D, Garcia J, Malaisrie SC, McCarthy P, Markl M, Fedak PWM, Di Martino ES, Barker AJ. Magnetic resonance imaging-based hemodynamic wall shear stress alters aortic wall tissue biomechanics in bicuspid aortic valve patients. J Thorac Cardiovasc Surg 2024; 168:465-476.e5. [PMID: 36797175 PMCID: PMC10338641 DOI: 10.1016/j.jtcvs.2022.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023]
Abstract
OBJECTIVE In this study we aimed to conclusively determine whether altered aortic biomechanics are associated with wall shear stress (WSS) independent of region of tissue collection. Elevated WSS in the ascending aorta of patients with bicuspid aortic valve has been shown to contribute to local maladaptive aortic remodeling and might alter biomechanics. METHODS Preoperative 4-dimensional flow magnetic resonance imaging was performed on 22 patients who underwent prophylactic aortic root and/or ascending aorta replacement. Localized elevated WSS was identified in patients using age-matched healthy atlases (n = 60 controls). Tissue samples (n = 78) were collected and categorized according to WSS (elevated vs normal) and region. Samples were subjected to planar biaxial testing. To fully quantify the nonlinear biomechanical response, the tangential modulus (local stiffness) at a low-stretch (LTM) and high-stretch (HTM) linear region and the onset (TZo) and end stress of the nonlinear transition zone were measured. A linear mixed effect models was implemented to determine statistical relationships. RESULTS A higher LTM in the circumferential and axial direction was associated with elevated WSS (P = .007 and P = .018 respectively) independent of collection region. Circumferential TZo and HTM were higher with elevated WSS (P = .024 and P = .003); whereas the collection region was associated with variations in axial TZo (P = .013), circumferential HTM (P = .015), and axial HTM (P = .001). CONCLUSIONS This study shows strong evidence that biomechanical changes in the aorta are strongly associated with hemodynamics, and not region of tissue collection for bicuspid valve aortopathy patients. Elevated WSS is associated with tissue behavior at low stretch ranges (ie, LTM and TZo).
Collapse
Affiliation(s)
- Miriam Nightingale
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | | | - Taisiya Sigaeva
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - David Guzzardi
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Julio Garcia
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - S Chris Malaisrie
- Division of Surgery-Cardiac Surgery, Northwestern University, Evanston, Ill
| | - Patrick McCarthy
- Division of Surgery-Cardiac Surgery, Northwestern University, Evanston, Ill
| | - Michael Markl
- Department of Radiology, Northwestern University, Evanston, Ill; Department of Bioengineering, Northwestern University, Evanston, Ill
| | - Paul W M Fedak
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Elena S Di Martino
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Alex J Barker
- Department of Radiology, Northwestern University, Evanston, Ill; Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colo.
| |
Collapse
|
18
|
Brecs I, Skuja S, Kasyanov V, Groma V, Kalejs M, Svirskis S, Ozolanta I, Stradins P. From Biomechanical Properties to Morphological Variations: Exploring the Interplay between Aortic Valve Cuspidity and Ascending Aortic Aneurysm. J Clin Med 2024; 13:4225. [PMID: 39064264 PMCID: PMC11277922 DOI: 10.3390/jcm13144225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Background: This research explores the biomechanical and structural characteristics of ascending thoracic aortic aneurysms (ATAAs), focusing on the differences between bicuspid aortic valve aneurysms (BAV-As) and tricuspid aortic valve aneurysms (TAV-As) with non-dilated aortas to identify specific traits of ATAAs. Methods: Clinical characteristics, laboratory indices, and imaging data from 26 adult patients operated on for aneurysms (BAV-A: n = 12; TAV-A: n = 14) and 13 controls were analyzed. Biomechanical parameters (maximal aortic diameter, strain, and stress) and structural analyses (collagen fiber organization, density, fragmentation, adipocyte deposits, and immune cell infiltration) were assessed. Results: Significant differences in biomechanical parameters were observed. Median maximal strain was 40.0% (control), 63.4% (BAV-A), and 45.3% (TAV-A); median maximal stress was 0.59 MPa (control), 0.78 MPa (BAV-A), and 0.48 MPa (TAV-A). BAV-A showed higher tangential modulus and smaller diameter, with substantial collagen fragmentation (p < 0.001 vs. TAV and controls). TAV-A exhibited increased collagen density (p = 0.025), thickening between media and adventitia layers, and disorganized fibers (p = 0.036). BAV-A patients had elevated adipocyte deposits and immune cell infiltration. Conclusions: This study highlights distinct pathological profiles associated with different valve anatomies. BAV-A is characterized by smaller diameters, higher biomechanical stress, and significant collagen deterioration, underscoring the necessity for tailored clinical strategies for effective management of thoracic aortic aneurysm.
Collapse
Affiliation(s)
- Ivars Brecs
- Faculty of Medicine, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia; (V.K.); (M.K.); (I.O.); (P.S.)
- Centre of Cardiac Surgery, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia
| | - Sandra Skuja
- Joint Laboratory of Electron Microscopy, Riga Stradins University, 9 Kronvalda Boulevard, LV-1010 Riga, Latvia; (S.S.); (V.G.)
| | - Vladimir Kasyanov
- Faculty of Medicine, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia; (V.K.); (M.K.); (I.O.); (P.S.)
- Laboratory of Biomechanics, Riga Stradins University, 5a Ratsupites Street, LV-1067 Riga, Latvia
| | - Valerija Groma
- Joint Laboratory of Electron Microscopy, Riga Stradins University, 9 Kronvalda Boulevard, LV-1010 Riga, Latvia; (S.S.); (V.G.)
| | - Martins Kalejs
- Faculty of Medicine, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia; (V.K.); (M.K.); (I.O.); (P.S.)
- Centre of Cardiac Surgery, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia
| | - Simons Svirskis
- Institute of Microbiology and Virology, Riga Stradins University, 5 Ratsupites Street, LV-1067 Riga, Latvia;
| | - Iveta Ozolanta
- Faculty of Medicine, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia; (V.K.); (M.K.); (I.O.); (P.S.)
- Laboratory of Biomechanics, Riga Stradins University, 5a Ratsupites Street, LV-1067 Riga, Latvia
| | - Peteris Stradins
- Faculty of Medicine, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia; (V.K.); (M.K.); (I.O.); (P.S.)
- Centre of Cardiac Surgery, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia
| |
Collapse
|
19
|
Prakash SK. Editorial on Bellino et al., "Aortopathy and aortic valve surgery in patients with bicuspid aortic valve with and without raphe". Int J Cardiol 2024; 407:132047. [PMID: 38631443 DOI: 10.1016/j.ijcard.2024.132047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Affiliation(s)
- Siddharth K Prakash
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 6.116, Houston, Texas 77030, USA.
| |
Collapse
|
20
|
Czerny M, Grabenwöger M, Berger T, Aboyans V, Della Corte A, Chen EP, Desai ND, Dumfarth J, Elefteriades JA, Etz CD, Kim KM, Kreibich M, Lescan M, Di Marco L, Martens A, Mestres CA, Milojevic M, Nienaber CA, Piffaretti G, Preventza O, Quintana E, Rylski B, Schlett CL, Schoenhoff F, Trimarchi S, Tsagakis K, Siepe M, Estrera AL, Bavaria JE, Pacini D, Okita Y, Evangelista A, Harrington KB, Kachroo P, Hughes GC. EACTS/STS Guidelines for Diagnosing and Treating Acute and Chronic Syndromes of the Aortic Organ. Ann Thorac Surg 2024; 118:5-115. [PMID: 38416090 DOI: 10.1016/j.athoracsur.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Affiliation(s)
- Martin Czerny
- Clinic for Cardiovascular Surgery, Department University Heart Center Freiburg Bad Krozingen, University Clinic Freiburg, Freiburg, Germany; Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany.
| | - Martin Grabenwöger
- Department of Cardiovascular Surgery, Clinic Floridsdorf, Vienna, Austria; Medical Faculty, Sigmund Freud Private University, Vienna, Austria.
| | - Tim Berger
- Clinic for Cardiovascular Surgery, Department University Heart Center Freiburg Bad Krozingen, University Clinic Freiburg, Freiburg, Germany; Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Victor Aboyans
- Department of Cardiology, Dupuytren-2 University Hospital, Limoges, France; EpiMaCT, Inserm 1094 & IRD 270, Limoges University, Limoges, France
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy; Cardiac Surgery Unit, Monaldi Hospital, Naples, Italy
| | - Edward P Chen
- Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, North Carolina
| | - Nimesh D Desai
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julia Dumfarth
- University Clinic for Cardiac Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - John A Elefteriades
- Aortic Institute at Yale New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| | - Christian D Etz
- Department of Cardiac Surgery, University Medicine Rostock, University of Rostock, Rostock, Germany
| | - Karen M Kim
- Division of Cardiovascular and Thoracic Surgery, The University of Texas at Austin/Dell Medical School, Austin, Texas
| | - Maximilian Kreibich
- Clinic for Cardiovascular Surgery, Department University Heart Center Freiburg Bad Krozingen, University Clinic Freiburg, Freiburg, Germany; Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Mario Lescan
- Department of Thoracic and Cardiovascular Surgery, University Medical Centre Tübingen, Tübingen, Germany
| | - Luca Di Marco
- Cardiac Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andreas Martens
- Department of Cardiac Surgery, Klinikum Oldenburg, Oldenburg, Germany; The Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Carlos A Mestres
- Department of Cardiothoracic Surgery and the Robert WM Frater Cardiovascular Research Centre, The University of the Free State, Bloemfontein, South Africa
| | - Milan Milojevic
- Department of Cardiac Surgery and Cardiovascular Research, Dedinje Cardiovascular Institute, Belgrade, Serbia
| | - Christoph A Nienaber
- Division of Cardiology at the Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom; National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Gabriele Piffaretti
- Vascular Surgery Department of Medicine and Surgery, University of Insubria School of Medicine, Varese, Italy
| | - Ourania Preventza
- Division of Cardiothoracic Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Eduard Quintana
- Department of Cardiovascular Surgery, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Bartosz Rylski
- Clinic for Cardiovascular Surgery, Department University Heart Center Freiburg Bad Krozingen, University Clinic Freiburg, Freiburg, Germany; Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Christopher L Schlett
- Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany; Department of Diagnostic and Interventional Radiology, University Hospital Freiburg, Freiburg, Germany
| | - Florian Schoenhoff
- Department of Cardiac Surgery, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Santi Trimarchi
- Department of Cardiac Thoracic and Vascular Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Konstantinos Tsagakis
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University Medicine Essen, Essen, Germany
| | - Matthias Siepe
- EACTS Review Coordinator; Department of Cardiac Surgery, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Anthony L Estrera
- STS Review Coordinator; Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth Houston, Houston, Texas
| | - Joseph E Bavaria
- Department of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Davide Pacini
- Division of Cardiac Surgery, S. Orsola University Hospital, IRCCS Bologna, Bologna, Italy
| | - Yutaka Okita
- Cardio-Aortic Center, Takatsuki General Hospital, Osaka, Japan
| | - Arturo Evangelista
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Barcelona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain; Departament of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Instituto del Corazón, Quirónsalud-Teknon, Barcelona, Spain
| | - Katherine B Harrington
- Department of Cardiothoracic Surgery, Baylor Scott and White The Heart Hospital, Plano, Texas
| | - Puja Kachroo
- Division of Cardiothoracic Surgery, Washington University School of Medicine, St Louis, Missouri
| | - G Chad Hughes
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Duke University, Durham, North Carolina
| |
Collapse
|
21
|
Zhang Z, Xu X, Li T, Xin YF, Tong J. Region-specific delamination strength of ascending thoracic aortic aneurysm of elderly hypertensive patients with bicuspid and tricuspid aortic valves. Med Eng Phys 2024; 126:104157. [PMID: 38621853 DOI: 10.1016/j.medengphy.2024.104157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/18/2024] [Accepted: 03/16/2024] [Indexed: 04/17/2024]
Abstract
Both ageing and hypertension are clinical factors that may lead to a higher propensity for dissection or rupture of ascending thoracic aortic aneurysms (ATAAs). This study sought to investigate effect of valve morphology on regional delamination strength of ATAAs in the elderly hypertensive patients. Whole fresh ATAA samples were harvested from 23 hypertensive patients (age, 71 ± 8 years) who underwent elective aortic surgery. Peeling tests were performed to measure region-specific delamination strengths of the ATAAs, which were compared between patients with bicuspid aortic valve (BAV) and tricuspid aortic valve (TAV). The regional delamination strengths of the ATAAs were further correlated with patient ages and aortic diameters for BAV and TAV groups. In the anterior and right lateral regions, the longitudinal delamination strengths of the ATAAs were statistically significantly higher for BAV patients than TAV patients (33 ± 7 vs. 23 ± 8 mN/mm, p = 0.01; 30 ± 7 vs. 19 ± 9 mN/mm, p = 0.02). For both BAV and TAV patients, the left lateral region exhibited significantly higher delamination strengths in both directions than the right lateral region. Histology revealed that disruption of elastic fibers in the right lateral region of the ATAAs was more severe for the TAV patients than the BAV patients. A strong inverse correlation between longitudinal delamination strength and age was identified in the right lateral region of the ATAAs of the TAV patients. Results suggest that TAV-ATAAs are more vulnerable to aortic dissection than BAV-ATAAs for the elderly hypertensive patients. Regardless of valve morphotypes, the right lateral region may be a special quadrant which is more likely to initiate dissection when compared with other regions.
Collapse
Affiliation(s)
- Zhi Zhang
- Institute for Biomedical Engineering and Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaojuan Xu
- Institute for Biomedical Engineering and Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China
| | - Tieyan Li
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuan-Feng Xin
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Jianhua Tong
- Institute for Biomedical Engineering and Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
22
|
Manchester EL, Pirola S, Pirola S, Mastroiacovo G, Polvani G, Pontone G, Xu XY. Aortic valve neocuspidization and bioprosthetic valves: Evaluating turbulence haemodynamics. Comput Biol Med 2024; 171:108123. [PMID: 38354498 DOI: 10.1016/j.compbiomed.2024.108123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/05/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
Aortic valve disease is often treated with bioprosthetic valves. An alternative treatment is aortic valve neocuspidization which is a relatively new reparative procedure whereby the three aortic cusps are replaced with patient pericardium or bovine tissues. Recent research indicates that aortic blood flow is disturbed, and turbulence effects have yet to be evaluated in either bioprosthetic or aortic valve neocuspidization valve types in patient-specific settings. The aim of this study is to better understand turbulence production in the aorta and evaluate its effects on laminar and turbulent wall shear stress. Four patients with aortic valve disease were treated with either bioprosthetic valves (n=2) or aortic valve neocuspidization valvular repair (n=2). Aortic geometries were segmented from magnetic resonance images (MRI), and 4D flow MRI was used to derive physiological inlet and outlet boundary conditions. Pulsatile large-eddy simulations were performed to capture the full range of laminar, transitional and turbulence characteristics in the aorta. Turbulence was produced in all aortas with highest levels occurring during systolic deceleration. In the ascending aorta, turbulence production is attributed to a combination of valvular skew, valvular eccentricity, and ascending aortic dilation. In the proximal descending thoracic aorta, turbulence production is dependent on the type of arch-descending aorta connection (e.g., a narrowing or sharp bend) which induces flow separation. Laminar and turbulent wall shear stresses are of similar magnitude throughout late systolic deceleration and diastole, although turbulent wall shear stress magnitudes exceed laminar wall shear stresses between 27.3% and 61.1% of the cardiac cycle. This emphasises the significance of including turbulent wall shear stress to improve our comprehension of progressive arterial wall diseases. The findings of this study recommend that aortic valve treatments should prioritise minimising valvular eccentricity and skew in order to mitigate turbulence generation.
Collapse
Affiliation(s)
- Emily Louise Manchester
- Department of Chemical Engineering, Imperial College London, London, United Kingdom; Department of Fluids and Environment, The University of Manchester, Manchester, United Kingdom.
| | - Selene Pirola
- Department of Chemical Engineering, Imperial College London, London, United Kingdom; Department of BioMechanical Engineering, Delft University of Technology, Delft, Netherlands.
| | - Sergio Pirola
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Giorgio Mastroiacovo
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Gianluca Polvani
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Gianluca Pontone
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, United Kingdom.
| |
Collapse
|
23
|
Bouaou K, Dietenbeck T, Soulat G, Bargiotas I, Houriez-Gombaud-Saintonge S, De Cesare A, Gencer U, Giron A, Jiménez E, Messas E, Lucor D, Bollache E, Mousseaux E, Kachenoura N. Four-dimensional flow cardiovascular magnetic resonance aortic cross-sectional pressure changes and their associations with flow patterns in health and ascending thoracic aortic aneurysm. J Cardiovasc Magn Reson 2024; 26:101030. [PMID: 38403074 PMCID: PMC10950879 DOI: 10.1016/j.jocmr.2024.101030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Ascending thoracic aortic aneurysm (ATAA) is a silent and threatening dilation of the ascending aorta (AscAo). Maximal aortic diameter which is currently used for ATAA patients management and surgery planning has been shown to inadequately characterize risk of dissection in a large proportion of patients. Our aim was to propose a comprehensive quantitative evaluation of aortic morphology and pressure-flow-wall associations from four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) data in healthy aging and in patients with ATAA. METHODS We studied 17 ATAA patients (64.7 ± 14.3 years, 5 females) along with 17 age- and sex-matched healthy controls (59.7 ± 13.3 years, 5 females) and 13 younger healthy subjects (33.5 ± 11.1 years, 4 females). All subjects underwent a CMR exam, including 4D flow and three-dimensional anatomical images of the aorta. This latter dataset was used for aortic morphology measurements, including AscAo maximal diameter (iDMAX) and volume, indexed to body surface area. 4D flow MRI data were used to estimate 1) cross-sectional local AscAo spatial (∆PS) and temporal (∆PT) pressure changes as well as the distance (∆DPS) and time duration (∆TPT) between local pressure peaks, 2) AscAo maximal wall shear stress (WSSMAX) at peak systole, and 3) AscAo flow vorticity amplitude (VMAX), duration (VFWHM), and eccentricity (VECC). RESULTS Consistency of flow and pressure indices was demonstrated through their significant associations with AscAo iDMAX (WSSMAX:r = -0.49, p < 0.001; VECC:r = -0.29, p = 0.045; VFWHM:r = 0.48, p < 0.001; ∆DPS:r = 0.37, p = 0.010; ∆TPT:r = -0.52, p < 0.001) and indexed volume (WSSMAX:r = -0.63, VECC:r = -0.51, VFWHM:r = 0.53, ∆DPS:r = 0.54, ∆TPT:r = -0.63, p < 0.001 for all). Intra-AscAo cross-sectional pressure difference, ∆PS, was significantly and positively associated with both VMAX (r = 0.55, p = 0.002) and WSSMAX (r = 0.59, p < 0.001) in the 30 healthy subjects (48.3 ± 18.0 years). Associations remained significant after adjustment for iDMAX, age, and systolic blood pressure. Superimposition of ATAA patients to normal aging trends between ∆PS and WSSMAX as well as VMAX allowed identifying patients with substantially high pressure differences concomitant with AscAo dilation. CONCLUSION Local variations in pressures within ascending aortic cross-sections derived from 4D flow MRI were associated with flow changes, as quantified by vorticity, and with stress exerted by blood on the aortic wall, as quantified by wall shear stress. Such flow-wall and pressure interactions might help for the identification of at-risk patients.
Collapse
Affiliation(s)
- Kevin Bouaou
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Paris, France.
| | - Thomas Dietenbeck
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Paris, France.
| | - Gilles Soulat
- Hôpital Européen Georges Pompidou, INSERM 970, Paris, France.
| | - Ioannis Bargiotas
- CMLA, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France.
| | | | - Alain De Cesare
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Paris, France.
| | - Umit Gencer
- Hôpital Européen Georges Pompidou, INSERM 970, Paris, France.
| | - Alain Giron
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Paris, France.
| | - Elena Jiménez
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Paris, France.
| | - Emmanuel Messas
- Hôpital Européen Georges Pompidou, INSERM 970, Paris, France.
| | - Didier Lucor
- Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, Orsay, France.
| | - Emilie Bollache
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Paris, France.
| | - Elie Mousseaux
- Hôpital Européen Georges Pompidou, INSERM 970, Paris, France.
| | - Nadjia Kachenoura
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Paris, France.
| |
Collapse
|
24
|
Trenti C, Fedak PWM, White JA, Garcia J, Dyverfeldt P. Oscillatory shear stress is elevated in patients with bicuspid aortic valve and aortic regurgitation: a 4D flow cardiovascular magnetic resonance cross-sectional study. Eur Heart J Cardiovasc Imaging 2024; 25:404-412. [PMID: 37878753 PMCID: PMC10883729 DOI: 10.1093/ehjci/jead283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
AIMS Patients with bicuspid aortic valve (BAV) and aortic regurgitation have higher rate of aortic complications compared with patients with BAV and stenosis, as well as BAV without valvular disease. Aortic regurgitation alters blood haemodynamics not only in systole but also during diastole. We therefore sought to investigate wall shear stress (WSS) during the whole cardiac cycle in BAV with aortic regurgitation. METHODS AND RESULTS Fifty-seven subjects that underwent 4D flow cardiovascular magnetic resonance imaging were included: 13 patients with BAVs without valve disease, 14 BAVs with aortic regurgitation, 15 BAVs with aortic stenosis, and 22 normal controls with tricuspid aortic valve. Peak and time averaged WSS in systole and diastole and the oscillatory shear index (OSI) in the ascending aorta were computed. Student's t-tests were used to compare values between the four groups where the data were normally distributed, and the non-parametric Wilcoxon rank sum tests were used otherwise. BAVs with regurgitation had similar peak and time averaged WSS compared with the patients with BAV without valve disease and with stenosis, and no regions of elevated WSS were found. BAV with aortic regurgitation had twice as high OSI as the other groups (P ≤ 0.001), and mainly in the outer mid-to-distal ascending aorta. CONCLUSION OSI uniquely characterizes altered WSS patterns in BAVs with aortic regurgitation, and thus could be a haemodynamic marker specific for this specific group that is at higher risk of aortic complications. Future longitudinal studies are needed to verify this hypothesis.
Collapse
Affiliation(s)
- Chiara Trenti
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - Paul W M Fedak
- Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 4N1, Canada
| | - James A White
- Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 4N1, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, 4448 Front St SE, Calgary, AB T3M 1M4, Canada
| | - Julio Garcia
- Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 4N1, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, 4448 Front St SE, Calgary, AB T3M 1M4, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB T3B 6A8, Canada
| | - Petter Dyverfeldt
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| |
Collapse
|
25
|
Czerny M, Grabenwöger M, Berger T, Aboyans V, Della Corte A, Chen EP, Desai ND, Dumfarth J, Elefteriades JA, Etz CD, Kim KM, Kreibich M, Lescan M, Di Marco L, Martens A, Mestres CA, Milojevic M, Nienaber CA, Piffaretti G, Preventza O, Quintana E, Rylski B, Schlett CL, Schoenhoff F, Trimarchi S, Tsagakis K. EACTS/STS Guidelines for diagnosing and treating acute and chronic syndromes of the aortic organ. Eur J Cardiothorac Surg 2024; 65:ezad426. [PMID: 38408364 DOI: 10.1093/ejcts/ezad426] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/15/2023] [Accepted: 12/19/2023] [Indexed: 02/28/2024] Open
Affiliation(s)
- Martin Czerny
- Clinic for Cardiovascular Surgery, Department University Heart Center Freiburg Bad Krozingen, University Clinic Freiburg, Freiburg, Germany
- Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Martin Grabenwöger
- Department of Cardiovascular Surgery, Clinic Floridsdorf, Vienna, Austria
- Medical Faculty, Sigmund Freud Private University, Vienna, Austria
| | - Tim Berger
- Clinic for Cardiovascular Surgery, Department University Heart Center Freiburg Bad Krozingen, University Clinic Freiburg, Freiburg, Germany
- Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Victor Aboyans
- Department of Cardiology, Dupuytren-2 University Hospital, Limoges, France
- EpiMaCT, Inserm 1094 & IRD 270, Limoges University, Limoges, France
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
- Cardiac Surgery Unit, Monaldi Hospital, Naples, Italy
| | - Edward P Chen
- Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Nimesh D Desai
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Dumfarth
- University Clinic for Cardiac Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - John A Elefteriades
- Aortic Institute at Yale New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA
| | - Christian D Etz
- Department of Cardiac Surgery, University Medicine Rostock, University of Rostock, Rostock, Germany
| | - Karen M Kim
- Division of Cardiovascular and Thoracic Surgery, The University of Texas at Austin/Dell Medical School, Austin, TX, USA
| | - Maximilian Kreibich
- Clinic for Cardiovascular Surgery, Department University Heart Center Freiburg Bad Krozingen, University Clinic Freiburg, Freiburg, Germany
- Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Mario Lescan
- Department of Thoracic and Cardiovascular Surgery, University Medical Centre Tübingen, Tübingen, Germany
| | - Luca Di Marco
- Cardiac Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andreas Martens
- Department of Cardiac Surgery, Klinikum Oldenburg, Oldenburg, Germany
- The Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Carlos A Mestres
- Department of Cardiothoracic Surgery and the Robert WM Frater Cardiovascular Research Centre, The University of the Free State, Bloemfontein, South Africa
| | - Milan Milojevic
- Department of Cardiac Surgery and Cardiovascular Research, Dedinje Cardiovascular Institute, Belgrade, Serbia
| | - Christoph A Nienaber
- Division of Cardiology at the Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Gabriele Piffaretti
- Vascular Surgery Department of Medicine and Surgery, University of Insubria School of Medicine, Varese, Italy
| | - Ourania Preventza
- Division of Cardiothoracic Surgery, Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Eduard Quintana
- Department of Cardiovascular Surgery, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Bartosz Rylski
- Clinic for Cardiovascular Surgery, Department University Heart Center Freiburg Bad Krozingen, University Clinic Freiburg, Freiburg, Germany
- Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Christopher L Schlett
- Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Freiburg, Freiburg, Germany
| | - Florian Schoenhoff
- Department of Cardiac Surgery, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Santi Trimarchi
- Department of Cardiac Thoracic and Vascular Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Konstantinos Tsagakis
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University Medicine Essen, Essen, Germany
| |
Collapse
|
26
|
Ebel S, Köhler B, Aggarwal A, Preim B, Behrendt B, Jung B, Gohmann RF, Riekena B, Borger M, Lurz P, Denecke T, Grothoff M, Gutberlet M. Comparison of aortic blood flow rotational direction in healthy volunteers and patients with bicuspid aortic valves using volumetric velocity-sensitive cardiovascular magnetic resonance imaging. Quant Imaging Med Surg 2023; 13:7973-7986. [PMID: 38106267 PMCID: PMC10722022 DOI: 10.21037/qims-23-183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/13/2023] [Indexed: 12/19/2023]
Abstract
Background The rotational direction (RD) of helical blood flow can be classified as either a clockwise (RD+) or counter-clockwise (RD-) flow. We hypothesized that this simple classification might not be sufficient for analysis in vivo and a simultaneous existence of RD+/- may occur. We utilized volumetric velocity-sensitive cardiovascular magnetic resonance imaging (4D flow MRI) to analyze rotational blood flow in the thoracic aorta. Methods Forty volunteers (22 females; mean age, 41±16 years) and seventeen patients with bicuspid aortic valves (BAVs) (9 females; mean age, 42±14 years) were prospectively included. The RDs and the calculation of the rotating blood volumes (RBVs) in the thoracic aorta were performed using a pathline-projection strategy. Results We could confirm a mainly clockwise RD in the ascending, descending aorta and in the aortic arch. Furthermore, we found a simultaneous existence of RD+/RD-. The RD+/--volume in the ascending aorta was significantly higher in BAV patients, the mean RD+/RD- percentage was approximately 80%/20% vs. 60%/40% in volunteers (P<0.01). The maximum RBV always occurred during systole. There was significantly more clockwise than counter-clockwise rotational flow in the ascending aorta (P<0.01) and the aortic arch (P<0.01), but no significant differences in the descending aorta (P=0.48). Conclusions A simultaneous occurrence of RD+/RD- indicates that a simple categorization in either of both is insufficient to describe blood flow in vivo. Rotational flow in the ascending aorta and in the aortic arch differs significantly from flow in the descending aorta. BAV patients show significantly more clockwise rotating volume in the ascending aorta compared to healthy volunteers.
Collapse
Affiliation(s)
- Sebastian Ebel
- Department of Diagnostic and Interventional Radiology, University of Leipzig – Heart Centre, Leipzig, Germany
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany
| | - Benjamin Köhler
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
| | | | - Bernhard Preim
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
| | - Benjamin Behrendt
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
| | - Bernd Jung
- Department of Diagnostic, Interventional and Paediatric Radiology, University of Bern, Bern, Switzerland
| | - Robin F. Gohmann
- Department of Diagnostic and Interventional Radiology, University of Leipzig – Heart Centre, Leipzig, Germany
| | - Boris Riekena
- Department of Diagnostic and Interventional Radiology, University of Leipzig – Heart Centre, Leipzig, Germany
| | - Michael Borger
- Department of Cardiac Surgery, University Leipzig – Heart Centre, Leipzig, Germany
| | - Philipp Lurz
- Department of Cardiology, University Leipzig – Heart Centre, Leipzig, Germany
| | - Timm Denecke
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany
| | - Matthias Grothoff
- Department of Diagnostic and Interventional Radiology, University of Leipzig – Heart Centre, Leipzig, Germany
| | - Matthias Gutberlet
- Department of Diagnostic and Interventional Radiology, University of Leipzig – Heart Centre, Leipzig, Germany
| |
Collapse
|
27
|
Isselbacher EM, Preventza O, Hamilton Black J, Augoustides JG, Beck AW, Bolen MA, Braverman AC, Bray BE, Brown-Zimmerman MM, Chen EP, Collins TJ, DeAnda A, Fanola CL, Girardi LN, Hicks CW, Hui DS, Schuyler Jones W, Kalahasti V, Kim KM, Milewicz DM, Oderich GS, Ogbechie L, Promes SB, Ross EG, Schermerhorn ML, Singleton Times S, Tseng EE, Wang GJ, Woo YJ, Faxon DP, Upchurch GR, Aday AW, Azizzadeh A, Boisen M, Hawkins B, Kramer CM, Luc JGY, MacGillivray TE, Malaisrie SC, Osteen K, Patel HJ, Patel PJ, Popescu WM, Rodriguez E, Sorber R, Tsao PS, Santos Volgman A, Beckman JA, Otto CM, O'Gara PT, Armbruster A, Birtcher KK, de las Fuentes L, Deswal A, Dixon DL, Gorenek B, Haynes N, Hernandez AF, Joglar JA, Jones WS, Mark D, Mukherjee D, Palaniappan L, Piano MR, Rab T, Spatz ES, Tamis-Holland JE, Woo YJ. 2022 ACC/AHA guideline for the diagnosis and management of aortic disease: A report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. J Thorac Cardiovasc Surg 2023; 166:e182-e331. [PMID: 37389507 PMCID: PMC10784847 DOI: 10.1016/j.jtcvs.2023.04.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
AIM The "2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease" provides recommendations to guide clinicians in the diagnosis, genetic evaluation and family screening, medical therapy, endovascular and surgical treatment, and long-term surveillance of patients with aortic disease across its multiple clinical presentation subsets (ie, asymptomatic, stable symptomatic, and acute aortic syndromes). METHODS A comprehensive literature search was conducted from January 2021 to April 2021, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, CINHL Complete, and other selected databases relevant to this guideline. Additional relevant studies, published through June 2022 during the guideline writing process, were also considered by the writing committee, where appropriate. STRUCTURE Recommendations from previously published AHA/ACC guidelines on thoracic aortic disease, peripheral artery disease, and bicuspid aortic valve disease have been updated with new evidence to guide clinicians. In addition, new recommendations addressing comprehensive care for patients with aortic disease have been developed. There is added emphasis on the role of shared decision making, especially in the management of patients with aortic disease both before and during pregnancy. The is also an increased emphasis on the importance of institutional interventional volume and multidisciplinary aortic team expertise in the care of patients with aortic disease.
Collapse
|
28
|
Yumita Y, Niwa K. Beyond Aortic Diameter for the Management of Thoracic Aortic Aneurysm: Multidimensional Data for Multidisciplinary Discussion. JACC. ADVANCES 2023; 2:100636. [PMID: 38938344 PMCID: PMC11198487 DOI: 10.1016/j.jacadv.2023.100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Affiliation(s)
- Yusuke Yumita
- Department of Cardiology, Cardiovascular Center, St Luke’s International Hospital, Chuo-ku, Tokyo, Japan
- Department of Cardiology, National Defence Medical College, Tokorozawa-shi, Saitama, Japan
| | - Koichiro Niwa
- Department of Cardiology, Cardiovascular Center, St Luke’s International Hospital, Chuo-ku, Tokyo, Japan
| |
Collapse
|
29
|
Salmasi MY, Pirola S, Asimakopoulos G, Nienaber C, Athanasiou T. Risk prediction for thoracic aortic dissection: Is it time to go with the flow? J Thorac Cardiovasc Surg 2023; 166:1034-1042. [PMID: 35672182 DOI: 10.1016/j.jtcvs.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022]
Affiliation(s)
- M Yousuf Salmasi
- Department of Surgery, Imperial College London, London, United Kingdom.
| | - Selene Pirola
- BHF Centre of Research Excellence, Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - George Asimakopoulos
- Department of Cardiology, Royal Brompton and Harefield Trust, London, United Kingdom
| | - Christoph Nienaber
- Department of Cardiology, Royal Brompton and Harefield Trust, London, United Kingdom
| | - Thanos Athanasiou
- Department of Surgery, Imperial College London, London, United Kingdom
| |
Collapse
|
30
|
Maroun A, Quinn S, Dushfunian D, Weiss EK, Allen BD, Carr JC, Markl M. Clinical Applications of Four-Dimensional Flow MRI. Magn Reson Imaging Clin N Am 2023; 31:451-460. [PMID: 37414471 DOI: 10.1016/j.mric.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Four-dimensional flow MRI is a powerful phase contrast technique used for assessing three-dimensional (3D) blood flow dynamics. By acquiring a time-resolved velocity field, it enables flexible retrospective analysis of blood flow that can include qualitative 3D visualization of complex flow patterns, comprehensive assessment of multiple vessels, reliable placement of analysis planes, and calculation of advanced hemodynamic parameters. This technique provides several advantages over routine two-dimensional flow imaging techniques, allowing it to become part of clinical practice at major academic medical centers. In this review, we present the current state-of-the-art cardiovascular, neurovascular, and abdominal applications.
Collapse
Affiliation(s)
- Anthony Maroun
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611, USA.
| | - Sandra Quinn
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611, USA
| | - David Dushfunian
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611, USA
| | - Elizabeth K Weiss
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611, USA
| | - Bradley D Allen
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611, USA
| | - James C Carr
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611, USA
| | - Michael Markl
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611, USA
| |
Collapse
|
31
|
Rodríguez-Palomares JF, Dux-Santoy L, Guala A, Galian-Gay L, Evangelista A. Mechanisms of Aortic Dilation in Patients With Bicuspid Aortic Valve: JACC State-of-the-Art Review. J Am Coll Cardiol 2023; 82:448-464. [PMID: 37495282 DOI: 10.1016/j.jacc.2022.10.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 07/28/2023]
Abstract
Bicuspid aortic valve is the most common congenital heart disease and exposes patients to an increased risk of aortic dilation and dissection. Aortic dilation is a slow, silent process, leading to a greater risk of aortic dissection. The prevention of adverse events together with optimization of the frequency of the required lifelong imaging surveillance are important for both clinicians and patients and motivated extensive research to shed light on the physiopathologic processes involved in bicuspid aortic valve aortopathy. Two main research hypotheses have been consolidated in the last decade: one supports a genetic basis for the increased prevalence of dilation, in particular for the aortic root, and the second supports the damaging impact on the aortic wall of altered flow dynamics associated with these structurally abnormal valves, particularly significant in the ascending aorta. Current opinion tends to rule out mutually excluding causative mechanisms, recognizing both as important and potentially clinically relevant.
Collapse
Affiliation(s)
- Jose F Rodríguez-Palomares
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Barcelona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain; Departament of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | | - Andrea Guala
- Vall d'Hebron Institut de Recerca, Barcelona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain.
| | - Laura Galian-Gay
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Arturo Evangelista
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Barcelona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain; Departament of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Instituto del Corazón, Quirónsalud-Teknon, Barcelona, Spain
| |
Collapse
|
32
|
Ramaekers MJFG, Westenberg JJM, Adriaans BP, Nijssen EC, Wildberger JE, Lamb HJ, Schalla S. A clinician's guide to understanding aortic 4D flow MRI. Insights Imaging 2023; 14:114. [PMID: 37395817 DOI: 10.1186/s13244-023-01458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/03/2023] [Indexed: 07/04/2023] Open
Abstract
Four-dimensional flow magnetic resonance imaging is an emerging technique which may play a role in diagnosis and risk-stratification of aortic disease. Some knowledge of flow dynamics and related parameters is necessary to understand and apply this technique in clinical workflows. The purpose of the current review is to provide a guide for clinicians to the basics of flow imaging, frequently used flow-related parameters, and their relevance in the context of aortic disease.Clinical relevance statement Understanding normal and abnormal aortic flow could improve clinical care in patients with aortic disease.
Collapse
Affiliation(s)
- Mitch J F G Ramaekers
- Department of Cardiology and Radiology and Nuclear Medicine, Maastricht University Medical Center +, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands.
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Bouke P Adriaans
- Department of Cardiology and Radiology and Nuclear Medicine, Maastricht University Medical Center +, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Estelle C Nijssen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center +, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Joachim E Wildberger
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center +, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Simon Schalla
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Center +, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| |
Collapse
|
33
|
Mansoor O, Garcia J. Clinical Use of Blood Flow Analysis through 4D-Flow Imaging in Aortic Valve Disease. J Cardiovasc Dev Dis 2023; 10:251. [PMID: 37367416 DOI: 10.3390/jcdd10060251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Bicuspid aortic valve (BAV), which affects 1% of the general population, results from the abnormal fusion of the cusps of the aortic valve. BAV can lead to the dilatation of the aorta, aortic coarctation, development of aortic stenosis (AS), and aortic regurgitation. Surgical intervention is usually recommended for patients with BAV and bicuspid aortopathy. This review aims to examine 4D-flow imaging as a tool in cardiac magnetic resonance imaging for assessing abnormal blood flow and its clinical application in BAV and AS. We present a historical clinical approach summarizing evidence of abnormal blood flow in aortic valve disease. We highlight how abnormal flow patterns can contribute to the development of aortic dilatation and novel flow-based biomarkers that can be used for a better understanding of the disease progression.
Collapse
Affiliation(s)
- Omer Mansoor
- Undergraduate Medical Education, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Julio Garcia
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
34
|
Tong J, Xin YF, Zhang Z, Xu X, Li T. Effect of hypertension on the delamination and tensile strength of ascending thoracic aortic aneurysm with a focus on right lateral region. J Biomech 2023; 154:111615. [PMID: 37178496 DOI: 10.1016/j.jbiomech.2023.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Hypertension is a major predisposing factor to initiate thoracic aortopathy. The objective of this study is to investigate effect of hypertension on delamination and tensile strength of ascending thoracic aortic aneurysms (ATAAs). A total of 35 fresh ATAA samples were harvested from 19 hypertensive and 16 non-hypertensive patients during elective aortic surgery. Peeling tests with two extension rates were performed to determine delamination strength, while uniaxial tensile (UT) tests were employed to measure failure stresses. The delamination strength and failure stresses of the ATAAs were further correlated with patient ages for hypertensive and non-hypertensive groups. The delamination strength to peel apart the ATAA tissue along the longitudinal direction was statistically significantly lower for the hypertensive patients than that of the non-hypertensive patients (35 ± 11 vs. 49 ± 9 mN/mm, p = 0.02). A higher delamination strength was measured if peeling was performed with a higher extension rate. The circumferential failure stresses were significantly lower for the hypertensive ATAAs than those of the non-hypertensive ATAAs (1.03 ± 0.27 vs. 1.43 ± 0.38 MPa, p = 0.02). Histology showed that laminar structures of elastic fibers were mainly disrupted in the hypertensive ATAAs. The longitudinal delamination strength of the ATAAs was significantly decreased and strongly correlated with ages for the hypertensive patients. Strong inverse correlations were also identified between the circumferential and longitudinal failure stresses of the ATAAs and ages for the hypertensive patients. Results suggest that the ATAAs of the elderly hypertensive patients may have a higher propensity for dissection or rupture. The dissection properties of the ATAA tissue are rate dependent.
Collapse
Affiliation(s)
- Jianhua Tong
- Institute for Biomedical Engineering and Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - Yuan-Feng Xin
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Zhi Zhang
- Institute for Biomedical Engineering and Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xiaojuan Xu
- Institute for Biomedical Engineering and Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China; Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, PR China
| | - Tieyan Li
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
35
|
Tong TT, Nightingale M, Scott MB, Sigaeva T, Fedak PWM, Barker AJ, Di Martino ES. A classification approach to improve out of sample predictability of structure-based constitutive models for ascending thoracic aortic tissue. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023:e3708. [PMID: 37079441 DOI: 10.1002/cnm.3708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
In this research, a pipeline was developed to assess the out-of-sample predictive capability of structure-based constitutive models of ascending aortic aneurysmal tissue. The hypothesis being tested is that a biomarker can help establish similarities among tissues sharing the same level of a quantifiable property, thus enabling the development of biomarker-specific constitutive models. Biomarker-specific averaged material models were constructed from biaxial mechanical tests of specimens that shared similar biomarker properties such as level of blood-wall shear stress or microfiber (elastin or collagen) degradation in the extracellular matrix. Using a cross-validation strategy commonly used in classification algorithms, biomarker-specific averaged material models were assessed in contrast to individual tissue mechanics of out of sample specimens that fell under the same category but did not contribute to the averaged model's generation. The normalized root means square errors (NRMSE) calculated on out-of-sample data were compared with average models when no categorization was performed versus biomarker-specific models and among different level of a biomarker. Different biomarker levels exhibited statistically different NRMSE when compared among each other, indicating more common features shared by the specimens belonging to the lower error groups. However, no specific biomarkers reached a significant difference when compared to the average model created when No Categorization was performed, possibly on account of unbalanced number of specimens. The method developed could allow for the screening of different biomarkers or combinations/interactions in a systematic manner leading the way to larger datasets and to more individualized constitutive approaches.
Collapse
Affiliation(s)
- Tuan-Thinh Tong
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Canada
| | - Miriam Nightingale
- Department of Biomedical Engineering, University of Calgary, Calgary, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Michael B Scott
- Department of Radiology, Northwestern University, Evanston, Illinois, USA
| | - Taisiya Sigaeva
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Canada
| | - Paul W M Fedak
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Alex J Barker
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elena S Di Martino
- Department of Biomedical Engineering, University of Calgary, Calgary, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
36
|
Xu R, Zhou D, Liu M, Zhou Q, Xie L, Zeng S. Impaired ascending aortic elasticity in fetuses with tetralogy of Fallot. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 61:497-503. [PMID: 36173559 DOI: 10.1002/uog.26079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Aortic wall stiffness has been reported in infants with tetralogy of Fallot (ToF) and may contribute to long-term aortic dilation even after corrective repair surgery. However, little is known about aortic elasticity in fetuses with ToF and the association with neonatal aortic dilation. The objectives of this study were to assess measures of elasticity of the ascending aorta (AAo) in fetuses with ToF and explore the association with neonatal aortic annular dilation in this population. METHODS Seventy-six singleton fetuses with ToF and 76 control fetuses of singleton low-risk pregnancies were enroled into this prospective study. Fetal measures of AAo elasticity, including mean longitudinal strain (MLS), global circumferential strain (GCS) and fractional area change (FAC), were assessed by velocity vector imaging. The z-score of the aortic valve (AV) diameter at the level of the annulus, as a measure of aortic annular dilation, was determined in newborns. Logistic regression analysis was used to investigate the association between fetal measures of AAo elasticity and neonatal aortic annular dilation (defined as an AV annular z-score > 2) in cases with ToF identified prenatally. RESULTS Median MLS, GCS and FAC in fetuses with ToF were lower than those in normal fetuses (7.52% vs 12.15% for MLS, 22.05% vs 29.73% for GCS and 34.2% vs 48.3% for FAC, all P < 0.001). Aortic annular dilation was present in 53/76 (69.7%) newborns with ToF. After adjustment for gestational age at fetal echocardiography and birth weight, fetal MLS, GCS and FAC were independently associated with aortic annular dilation neonatally, with odds ratios of 0.66, 0.78 and 0.82, respectively (P < 0.05). The best cut-off values of these prenatal measures of AAo elasticity for predicting neonatal aortic annular dilation in fetuses with ToF were 9.02% for MLS, 23.56% for GCS and 37.2% for FAC (P < 0.001), with areas under the receiver-operating-characteristics curves of 0.94, 0.91 and 0.93, respectively. CONCLUSION Measures of AAo elasticity are decreased in fetuses with ToF. Impaired AAo elasticity in the fetal period is associated with aortic annular dilation postnatally. Additional research is needed to evaluate the relationship between the AAo elasticity injury pattern and degeneration of AAo elasticity under stress as well as the long-term outcome in this population. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- R Xu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - D Zhou
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - M Liu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Q Zhou
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - L Xie
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - S Zeng
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Bicuspid aortic valve (BAV) disease is observed in 1-2% of the general population. In addition to valve-related complications (such as aortic stenosis and aortic regurgitation), individuals with BAV often develop dilatation of the proximal aorta (aortic root and ascending aorta), a condition termed BAV aortopathy. The development of BAV aortopathy can occur independent of valvular alterations and can lead to aneurysm formation, aortic dissection or aortic rupture. This review aims to update the clinician with an approach to BAV aortopathy decision making in keeping with the 2022 American College of Cardiology (ACC)/American Heart Association (AHA) Guideline recommendations. RECENT FINDINGS The ACC/AHA 2022 guidelines provide a contemporary and comprehensive approach to the diagnosis and treatment of aortic pathologies. We review the thresholds for replacement of the aortic root and/or ascending aorta along with the strength and level of evidence recommendations. We also review the various Class 2A and 2B recommendations for earlier intervention, which emphasize the importance of experienced surgeons, and multidisciplinary aortic teams (MATs). SUMMARY BAV aortopathy is a common and heterogenous clinical problem. The decision making around timing of intervention requires a personalized approach that is based on the aortic dimensions, valve function, rate of growth, family history, patient factors, and surgical experience within MATs.
Collapse
Affiliation(s)
- Raj Verma
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gideon Cohen
- Division of Cardiac Surgery, Sunnybrook Hospital, Toronto, Canada
| | - Jillian Colbert
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Libin Cardiovascular Institute, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Libin Cardiovascular Institute, Calgary, Alberta, Canada
| |
Collapse
|
38
|
Hanigk M, Burgstaller E, Latus H, Shehu N, Zimmermann J, Martinoff S, Hennemuth A, Ewert P, Stern H, Meierhofer C. Aortic wall shear stress in bicuspid aortic valve disease-10-year follow-up. Cardiovasc Diagn Ther 2023; 13:38-50. [PMID: 36864959 PMCID: PMC9971286 DOI: 10.21037/cdt-22-477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/19/2022] [Indexed: 02/21/2023]
Abstract
Background Bicuspid aortic valve (BAV) disease leads to deviant helical flow patterns especially in the mid-ascending aorta (AAo), potentially causing wall alterations such as aortic dilation and dissection. Among others, wall shear stress (WSS) could contribute to the prediction of long-term outcome of patients with BAV. 4D flow in cardiovascular magnetic resonance (CMR) has been established as a valid method for flow visualization and WSS estimation. The aim of this study is to reevaluate flow patterns and WSS in patients with BAV 10 years after the initial evaluation. Methods Fifteen patients (median age 34.0 years) with BAV were re-evaluated 10 years after the initial study from 2008/2009 using 4D flow by CMR. Our particular patient cohort met the same inclusion criteria as in 2008/2009, all without enlargement of the aorta or valvular impairment at that time. Flow patterns, aortic diameters, WSS and distensibility were calculated in different aortic regions of interest (ROI) with dedicated software tools. Results Indexed aortic diameters in the descending aorta (DAo), but especially in the AAo did not change in the 10-year period. Median difference 0.05 cm/m2 (95% CI: 0.01 to 0.22; P=0.06) for AAo and median difference -0.08 cm/m2 (95% CI: -0.12 to 0.01; P=0.07) for DAo. WSS values were lower in 2018/2019 at all measured levels. Aortic distensibility decreased by median 25.6% in the AAo, while stiffness increased concordantly (median +23.6%). Conclusions After a ten years' follow-up of patients with isolated BAV disease, indexed aortic diameters did not change in this patient cohort. WSS was lower compared to values generated 10 years earlier. Possibly a drop of WSS in BAV could serve as a marker for a benign long-term course and implementation of more conservative treatment strategies.
Collapse
Affiliation(s)
- Michael Hanigk
- Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, Munich, Germany
| | - Elisabeth Burgstaller
- Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, Munich, Germany
| | - Heiner Latus
- Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, Munich, Germany
| | - Nerejda Shehu
- Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, Munich, Germany
| | - Judith Zimmermann
- Department of Computer Science, Technical University of Munich, Munich, Germany
| | - Stefan Martinoff
- Radiology, German Heart Center Munich, Technical University of Munich, Munich, Germany
| | - Anja Hennemuth
- Institute for Computational and Imaging Science in Cardiovascular Medicine, Charité Universitätsmedizin, Berlin, Germany;,Fraunhofer MEVIS Institute for Digital Medicine, Bremen, Germany
| | - Peter Ewert
- Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, Munich, Germany
| | - Heiko Stern
- Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, Munich, Germany
| | - Christian Meierhofer
- Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, Munich, Germany
| |
Collapse
|
39
|
Wiesemann S, Trauzeddel RF, Musa A, Hickstein R, Mayr T, von Knobelsdorff-Brenkenhoff F, Bollache E, Markl M, Schulz-Menger J. Changes of aortic hemodynamics after aortic valve replacement-A four dimensional flow cardiovascular magnetic resonance follow up study. Front Cardiovasc Med 2023; 10:1071643. [PMID: 36865891 PMCID: PMC9971963 DOI: 10.3389/fcvm.2023.1071643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023] Open
Abstract
Objectives Non-invasive assessment of aortic hemodynamics using four dimensional (4D) flow magnetic resonance imaging (MRI) provides new information on blood flow patterns and wall shear stress (WSS). Aortic valve stenosis (AS) and/or bicuspid aortic valves (BAV) are associated with altered aortic flow patterns and elevated WSS. Aim of this study was to investigate changes in aortic hemodynamics over time in patients with AS and/or BAV with or without aortic valve replacement. Methods We rescheduled 20 patients for a second 4D flow MRI examination, whose first examination was at least 3 years prior. A total of 7 patients received an aortic valve replacement between baseline and follow up examination (=operated group = OP group). Aortic flow patterns (helicity/vorticity) were assessed using a semi-quantitative grading approach from 0 to 3, flow volumes were evaluated in 9 planes, WSS in 18 and peak velocity in 3 areas. Results While most patients had vortical and/or helical flow formations within the aorta, there was no significant change over time. Ascending aortic forward flow volumes were significantly lower in the OP group than in the NOP group at baseline (NOP 69.3 mL ± 14.2 mL vs. OP 55.3 mL ± 1.9 mL p = 0.029). WSS in the outer ascending aorta was significantly higher in the OP group than in the NOP group at baseline (NOP 0.6 ± 0.2 N/m2 vs. OP 0.8 ± 0.2 N/m2, p = 0.008). Peak velocity decreased from baseline to follow up in the aortic arch only in the OP group (1.6 ± 0.6 m/s vs. 1.2 ± 0.3 m/s, p = 0.018). Conclusion Aortic valve replacement influences aortic hemodynamics. The parameters improve after surgery.
Collapse
Affiliation(s)
- Stephanie Wiesemann
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany,Department of Cardiology and Nephrology, HELIOS Klinikum Berlin Buch, Berlin, Germany,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Ralf Felix Trauzeddel
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany,Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Ahmed Musa
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany
| | - Richard Hickstein
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany
| | - Thomas Mayr
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany
| | - Florian von Knobelsdorff-Brenkenhoff
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany,Clinic Agatharied, Department of Cardiology, Ludwig Maximilian University of Munich, Hausham, Germany
| | - Emilie Bollache
- CNRS, INSERM, Laboratoire d’Imagerie Biomédicale (LIB), Sorbonne Université, Paris, France
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeanette Schulz-Menger
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany,Department of Cardiology and Nephrology, HELIOS Klinikum Berlin Buch, Berlin, Germany,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany,*Correspondence: Jeanette Schulz-Menger, ✉
| |
Collapse
|
40
|
Weiss EK, Jarvis K, Maroun A, Malaisrie SC, Mehta CK, McCarthy PM, Bonow RO, Avery RJ, Allen BD, Carr JC, Rigsby CK, Markl M. Systolic reverse flow derived from 4D flow cardiovascular magnetic resonance in bicuspid aortic valve is associated with aortic dilation and aortic valve stenosis: a cross sectional study in 655 subjects. J Cardiovasc Magn Reson 2023; 25:3. [PMID: 36698129 PMCID: PMC9878800 DOI: 10.1186/s12968-022-00906-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/04/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Bicuspid aortic valve (BAV) disease is associated with increased risk of aortopathy. In addition to current intervention guidelines, BAV mediated changes in aortic 3D hemodynamics have been considered as risk stratification measures. We aimed to evaluate the association of 4D flow cardiovascular magnetic resonance (CMR) derived voxel-wise aortic reverse flow with aortic dilation and to investigate the role of aortic valve regurgitation (AR) and stenosis (AS) on reverse flow in systole and diastole. METHODS 510 patients with BAV (52 ± 14 years) and 120 patients with trileaflet aortic valve (TAV) (61 ± 11 years) and mid-ascending aorta diameter (MAAD) > 35 mm who underwent CMR including 4D flow CMR were retrospectively included. An age and sex-matched healthy control cohort (n = 25, 49 ± 12 years) was selected. Voxel-wise reverse flow was calculated in the aorta and quantified by the mean reverse flow in the ascending aorta (AAo) during systole and diastole. RESULTS BAV patients without AS and AR demonstrated significantly increased systolic and diastolic reverse flow (222% and 13% increases respectively, p < 0.01) compared to healthy controls and also had significantly increased systolic reverse flow compared to TAV patients with aortic dilation (79% increase, p < 0.01). In patients with isolated AR, systolic and diastolic AAo reverse flow increased significantly with AR severity (c = - 83.2 and c = - 205.6, p < 0.001). In patients with isolated AS, AS severity was associated with an increase in both systolic (c = - 253.1, p < 0.001) and diastolic (c = - 87.0, p = 0.02) AAo reverse flow. Right and left/right and non-coronary fusion phenotype showed elevated systolic reverse flow (> 17% increase, p < 0.01). Right and non-coronary fusion phenotype showed decreased diastolic reverse flow (> 27% decrease, p < 0.01). MAAD was an independent predictor of systolic (p < 0.001), but not diastolic, reverse flow (p > 0.1). CONCLUSION 4D flow CMR derived reverse flow associated with BAV was successfully captured even in the absence of AR or AS and in comparison to TAV patients with aortic dilation. Diastolic AAo reverse flow increased with AR severity while AS severity strongly correlated with increased systolic reverse flow in the AAo. Additionally, increasing MAAD was independently associated with increasing systolic AAo reverse flow. Thus, systolic AAo reverse flow may be a valuable metric for evaluating disease severity in future longitudinal outcome studies.
Collapse
Affiliation(s)
- Elizabeth K. Weiss
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611 USA
| | - Kelly Jarvis
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611 USA
| | - Anthony Maroun
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611 USA
| | - S. Chris Malaisrie
- Division of Cardiac Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Christopher K. Mehta
- Division of Cardiac Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Patrick M. McCarthy
- Division of Cardiac Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Robert O. Bonow
- Division of Cardiology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Ryan J. Avery
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611 USA
| | - Bradley D. Allen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611 USA
| | - James C. Carr
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611 USA
| | - Cynthia K. Rigsby
- Department of Medical Imaging, Lurie Children’s Hospital, Chicago, IL USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611 USA
| |
Collapse
|
41
|
Xiang B, Abudupataer M, Liu G, Zhou X, Liu D, Zhu S, Ming Y, Yin X, Yan S, Sun Y, Lai H, Wang C, Li J, Zhu K. Ciprofloxacin exacerbates dysfunction of smooth muscle cells in a microphysiological model of thoracic aortic aneurysm. JCI Insight 2023; 8:161729. [PMID: 36472912 PMCID: PMC9977303 DOI: 10.1172/jci.insight.161729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Ciprofloxacin use may be associated with adverse aortic events. However, the mechanism underlying the effect of ciprofloxacin on the progression of thoracic aortic aneurysm (TAA) is not well understood. Using an in vitro microphysiological model, we treated human aortic smooth muscle cells (HASMCs) derived from patients with bicuspid aortic valve- or tricuspid aortic valve-associated (BAV- or TAV-associated) TAAs with ciprofloxacin. TAA C57BL/6 mouse models were utilized to verify the effects of ciprofloxacin exposure. In the microphysiological model, real-time PCR, Western blotting, and RNA sequencing showed that ciprofloxacin exposure was associated with a downregulated contractile phenotype, an upregulated inflammatory reaction, and extracellular matrix (ECM) degradation in the normal HASMCs derived from the nondiseased aorta. Ciprofloxacin induced mitochondrial dysfunction in the HASMCs and further increased apoptosis by activating the ERK1/2 and P38 mitogen-activated protein kinase pathways. These adverse effects appeared to be more severe in the HASMCs derived from BAV- and TAV-associated TAAs than in the normal HASMCs when the ciprofloxacin concentration exceeded 100 μg/mL. In the aortic walls of the TAA-induced mice, ECM degradation and apoptosis were aggravated after ciprofloxacin exposure. Therefore, ciprofloxacin should be used with caution in patients with BAV- or TAV-associated TAAs.
Collapse
Affiliation(s)
- Bitao Xiang
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mieradilijiang Abudupataer
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gang Liu
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaonan Zhou
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dingqian Liu
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shichao Zhu
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Ming
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiujie Yin
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shiqiang Yan
- Institutes of Biomedical Sciences and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, and,The State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Yongxin Sun
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Lai
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Li
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kai Zhu
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Qin JJ, Obeidy P, Gok M, Gholipour A, Grieve SM. 4D-flow MRI derived wall shear stress for the risk stratification of bicuspid aortic valve aortopathy: A systematic review. Front Cardiovasc Med 2023; 9:1075833. [PMID: 36698944 PMCID: PMC9869052 DOI: 10.3389/fcvm.2022.1075833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Purpose Current intervention guidelines for bicuspid aortic valve (BAV) associated ascending aorta (AAo) dilatation are suboptimal predictors of clinical outcome. There is growing interest in identifying better biomarkers such as wall shear stress (WSS) to help risk stratify BAV aortopathy. The aim of the systematic review is to synthesize existing evidence of the relationship between WSS and aortopathy in the BAV population. Methods A comprehensive literature search of available major databases was performed in May 2022 to include studies that used four-dimensional flow cardiac magnetic resonance (4D-flow) MRI to quantify WSS in the AAo in adult BAV populations. Summary results and statistical analysis were provided for key numerical results. A narrative summary was provided to assess similarities between studies. Results A total of 26 studies that satisfied selection criteria and quality assessment were included in the review. The presence of BAV resulted in significantly elevated WSS magnitude and circumferential WSS, but not axial WSS. The presence of aortic stenosis had additional impact on WSS and flow alterations. BAV phenotypes were associated with different WSS distributions and flow profiles. Altered protein expression in the AAo wall associated with WSS supported the contribution of altered hemodynamics to aortopathy in addition to genetic factors. Conclusion WSS has the potential to be a valid biomarker for BAV aortopathy. Future work would benefit from larger study cohorts with longitudinal evaluations to further characterize WSS association with aortopathy, mortality, and morbidities. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022337077, identifier CRD42022337077.
Collapse
Affiliation(s)
- Jiaxing Jason Qin
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia,Sydney Medical School and School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Peyman Obeidy
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia,Sydney Medical School and School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Mustafa Gok
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia,Sydney Medical School and School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia,Department of Radiology, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Alireza Gholipour
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia,Sydney Medical School and School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Stuart M. Grieve
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia,Sydney Medical School and School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia,*Correspondence: Stuart M. Grieve,
| |
Collapse
|
43
|
Mei J, Ding W, Yu H, Zhao X, Xu H, Wang K, Jia Z, Li B. Different hemodynamic factors cause the occurrence of superior mesenteric atherosclerotic stenosis and superior mesenteric artery dissection. Front Cardiovasc Med 2023; 10:1121224. [PMID: 37144058 PMCID: PMC10151904 DOI: 10.3389/fcvm.2023.1121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Objective To compare the hemodynamic factors involved in the occurrence of superior mesenteric atherosclerotic stenosis (SMAS) and superior mesenteric artery (SMA) dissection (SMAD). Methods Hospital records were searched to identify consecutive patients who were diagnosed with SMAS or SMAD between January 2015 and December 2021. A computational fluid dynamics (CFD) simulation method was used to assess the hemodynamic factors of the SMA in these patients. Histologic analysis was also performed on SMA specimens obtained from 10 cadavers, and scanning electron microscopy was used to evaluate collagen microstructure. Results A total of 124 patients with SMAS and 61 patients with SMAD were included. Most SMASs were circumferentially distributed at the SMA root, whereas the origin of most SMADs was located on the anterior wall of the curved segment of the SMA. Vortex, higher turbulent kinetic energy (TKE), and lower wall shear stress (WSS) were observed near plaques; higher TKE and WSS were seen near dissection origins. The intima in the SMA root (388.5 ± 202.3 µm) was thicker than in the curved (243.8 ± 100.5 µm; p = .007) and distal (183.7 ± 88.0 µm; p < .001) segments. The media in the anterior wall (353.1 ± 37.6 µm) was thinner than that in the posterior wall (473.7 ± 142.8 µm; p = .02) in the curved segment of the SMA. The gaps in the lamellar structure in the SMA root were larger than in the curved and distal segments. The collagen microstructure was more substantially disturbed in the anterior wall than in the posterior wall in the curved segment of the SMA. Conclusion Different hemodynamic factors in different portions of the SMA are related to local pathological changes in the SMA wall and may lead to the occurrence of SMAS or SMAD.
Collapse
Affiliation(s)
- Junhao Mei
- Department of Interventional and Vascular Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Wei Ding
- Department of Interventional Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxin, China
| | - Haiyang Yu
- Department of Interventional and Vascular Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xi Zhao
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Haoran Xu
- Department of Pathology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Kai Wang
- Department of Interventional and Vascular Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Zhongzhi Jia
- Department of Interventional and Vascular Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Correspondence: Zhongzhi Jia Benling Li
| | - Benling Li
- Department of Cardiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Correspondence: Zhongzhi Jia Benling Li
| |
Collapse
|
44
|
Goudot G, Cheng C, Guédon AF, Mirault T, Pedreira O, Dahan A, Wang LZ, Pernot M, Messas E. Methods: Aortic wall deformation assessment by ultrafast ultrasound imaging: Application to bicuspid aortic valve associated aortopathy. Front Physiol 2023; 14:1128663. [PMID: 36935759 PMCID: PMC10020335 DOI: 10.3389/fphys.2023.1128663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Purpose: Aortic maximal rate of systolic distention (MRSD) is a prognosis factor of ascending aorta dilatation with magnetic resonance imaging. Its calculation requires precise continuous tracking of the aortic diameter over the cardiac cycle, which is not feasible by focused ultrasound. We aimed to develop an automatic aortic acquisition using ultrafast ultrasound imaging (UUI) to provide access to the aortic MRSD. Methods: A phased array probe and developed sequences at 2000 frames/s were used. A created interface automatically tracked the anterior and posterior aortic walls over the cardiac cycle. Tissue Doppler allowed a precise estimation of the walls' movements. MRSD was the maximum derivative of the aortic diameter curve over time. To assess its feasibility, 34 patients with bicuspid aortic valve (BAV) and 31 controls were consecutively included to evaluate the BAV-associated aortopathy at the sinus of Valsalva, the tubular ascending aorta, and the aortic arch. Results: UUI acquisitions and the dedicated interface allow tracking of the aortic diameter and calculating the MRSD for the BAV patients and controls (mean age of 34 vs. 43 years, p = 0.120). A trend toward lower deformation in the different aortic segments was observed, as expected. Still, only the MRSD with UUI was significantly different at the sinus of Valsalva in this small series: (0.61 .103.s-1 [0.37-0.72] for BAV patients vs. 0.92 .103.s-1 [0.72-1.02] for controls, p = 0.025). Conclusion: Aortic deformation evaluated with UUI deserves attention with a simple and automated measurement technique that could assess the segmental aortic injury associated with BAV.
Collapse
Affiliation(s)
- Guillaume Goudot
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE, PSL Research University, Paris, France
- Vascular Medicine Department, Georges-Pompidou European Hospital, AP-HP, Université Paris Cité, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Paris, France
- *Correspondence: Guillaume Goudot,
| | - Charles Cheng
- Vascular Medicine Department, Georges-Pompidou European Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Alexis F. Guédon
- Vascular Medicine Department, Georges-Pompidou European Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Tristan Mirault
- Vascular Medicine Department, Georges-Pompidou European Hospital, AP-HP, Université Paris Cité, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Paris, France
| | - Olivier Pedreira
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE, PSL Research University, Paris, France
| | - Alexandre Dahan
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE, PSL Research University, Paris, France
| | - Louise Z. Wang
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE, PSL Research University, Paris, France
- Vascular Medicine Department, Georges-Pompidou European Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Mathieu Pernot
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE, PSL Research University, Paris, France
| | - Emmanuel Messas
- Vascular Medicine Department, Georges-Pompidou European Hospital, AP-HP, Université Paris Cité, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Paris, France
| |
Collapse
|
45
|
Duan Y, Yang B. Editorial for "Global Aortic Pulse Wave Velocity in Bicuspid Aortopathy Similar to Controls but Elevated With Aortic Valve Stenosis". J Magn Reson Imaging 2023; 57:137-138. [PMID: 35616236 DOI: 10.1002/jmri.28265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/03/2023] Open
Affiliation(s)
- Yang Duan
- Center for Neuroimaging, Department of Radiology, The Northern Theater General Hospital, Shenyang, Liaoning, China
| | - Benqiang Yang
- Department of Radiology, The Northern Theater General Hospital, Shenyang, Liaoning, China
| |
Collapse
|
46
|
Helbock RT, Anam SB, Kovarovic BJ, Slepian MJ, Hamdan A, Haj-Ali R, Bluestein D. Designing a Novel Asymmetric Transcatheter Aortic Valve for Stenotic Bicuspid Aortic Valves Using Patient-Specific Computational Modeling. Ann Biomed Eng 2023; 51:58-70. [PMID: 36042099 DOI: 10.1007/s10439-022-03039-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/25/2022] [Indexed: 01/13/2023]
Abstract
Bicuspid aortic valve (BAV), the most common congenital heart malformation, is characterized by the presence of only two valve leaflets with asymmetrical geometry, resulting in elliptical systolic opening. BAV often leads to early onset of calcific aortic stenosis (AS). Following the rapid expansion of transcatheter aortic valve replacement (TAVR), designed specifically for treating conventional tricuspid AS, BAV patients with AS were initially treated "off-label" with TAVR, which recently gained FDA and CE regulatory approval. Despite its increasing use in BAV, pathological BAV anatomy often leads to complications stemming from mismatched anatomical features. To mitigate these complications, a novel eccentric polymeric TAVR valve incorporating asymmetrical leaflets was designed specifically for BAV anatomies. Computational modeling was used to optimize its asymmetric leaflets for lower functional stresses and improved hemodynamic performance. Deployment and flow were simulated in patient-specific BAV models (n = 6) and compared to a current commercial TAVR valve (Evolut R 29 mm), to assess deployment and flow parameters. The novel eccentric BAV-dedicated valve demonstrated significant improvements in peak systolic orifice area, along with lower jet velocity and wall shear stress (WSS). This feasibility study demonstrates the clinical potential of the first known BAV-dedicated TAVR design, which will foster advancement of patient-dedicated valvular devices.
Collapse
Affiliation(s)
- Ryan T Helbock
- Biofluids Research Group, Department of Biomedical Engineering, T8-050 Health Sciences Center, Stony Brook University, Stony Brook, NY11794-8084, USA
| | - Salwa B Anam
- Biofluids Research Group, Department of Biomedical Engineering, T8-050 Health Sciences Center, Stony Brook University, Stony Brook, NY11794-8084, USA
| | - Brandon J Kovarovic
- Biofluids Research Group, Department of Biomedical Engineering, T8-050 Health Sciences Center, Stony Brook University, Stony Brook, NY11794-8084, USA
| | - Marvin J Slepian
- Department of Medicine and Biomedical Engineering Sarver Heart Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Ashraf Hamdan
- Department of Cardiology, Rabin Medical Center, 4941492, Petah Tikva, Israel
| | - Rami Haj-Ali
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, 69978, Tel Aviv, Ramat Aviv, Israel
| | - Danny Bluestein
- Biofluids Research Group, Department of Biomedical Engineering, T8-050 Health Sciences Center, Stony Brook University, Stony Brook, NY11794-8084, USA.
| |
Collapse
|
47
|
Johnson EMI, Scott MB, Jarvis K, Allen B, Carr J, Chris Malaisrie S, McCarthy P, Mehta C, Fedak PWM, Barker AJ, Markl M. Global Aortic Pulse Wave Velocity is Unchanged in Bicuspid Aortopathy With Normal Valve Function but Elevated in Patients With Aortic Valve Stenosis: Insights From a 4D Flow MRI Study of 597 Subjects. J Magn Reson Imaging 2023; 57:126-136. [PMID: 35633284 PMCID: PMC9701914 DOI: 10.1002/jmri.28266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Aortopathy is common with bicuspid aortic valve (BAV), and underlying intrinsic tissue abnormalities are believed causative. Valve-mediated hemodynamics are altered in BAV and may contribute to aortopathy and its progression. The contribution of intrinsic tissue defects versus altered hemodynamics to aortopathy progression is not known. PURPOSE To investigate relative contributions of tissue-innate versus hemodynamics in progression of BAV aortopathy. STUDY TYPE Retrospective. SUBJECTS Four hundred seventy-three patients with aortic dilatation (diameter ≥40 mm; comprised of 281 BAV with varied AS severity, 192 tricuspid aortic valve [TAV] without AS) and 124 healthy controls. Subjects were 19-91 years (141/24% female). FIELD STRENGTH/SEQUENCE 1.5T, 3T; time-resolved gradient-echo 3D phase-contrast (4D flow) MRI. ASSESSMENT A surrogate measure for global aortic wall stiffness, pulse wave velocity (PWV), was quantified from MRI by standardized, automated technique based on through-plane flow cross-correlation maximization. Comparisons were made between BAV patients with aortic dilatation and varying aortic valve stenosis (AS) severity and healthy subjects and aortopathy patients with normal TAV. STATISTICAL TESTS Multivariable regression, analysis of covariance (ANCOVA), Tukey's, student's (t), Mann-Whitney (U) tests, were used with significance levels P < 0.05 or P < 0.01 for post-hoc Bonferroni-corrected t/U tests. Bland-Altman and ICC calculations were performed. RESULTS Multivariable regression showed age with the most significant association for increased PWV in all groups (increase 0.073-0.156 m/sec/year, R2 = 0.30-48). No significant differences in aortic PWV were observed between groups without AS (P = 0.20-0.99), nor were associations between PWV and regurgitation or Sievers type observed (P = 0.60, 0.31 respectively). In contrast, BAV AS patients demonstrated elevated PWV and a significant relationship for AS severity with increased PWV (covariate: age, R2 = 0.48). BAV and TAV patients showed no association between aortic diameter and PWV (P = 0.73). DATA CONCLUSION No significant PWV differences were observed between BAV patients with normal valve function and control groups. However, AS severity and age in BAV patients were directly associated with PWV increases. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
| | - Michael B Scott
- Northwestern University, Radiology,Northwestern University, Bioengineering
| | | | | | | | | | | | | | | | - Alex J Barker
- University of Colorado Anschutz, Radiology, Bioengineering
| | - Michael Markl
- Northwestern University, Radiology,Northwestern University, Bioengineering
| |
Collapse
|
48
|
Isselbacher EM, Preventza O, Hamilton Black J, Augoustides JG, Beck AW, Bolen MA, Braverman AC, Bray BE, Brown-Zimmerman MM, Chen EP, Collins TJ, DeAnda A, Fanola CL, Girardi LN, Hicks CW, Hui DS, Schuyler Jones W, Kalahasti V, Kim KM, Milewicz DM, Oderich GS, Ogbechie L, Promes SB, Gyang Ross E, Schermerhorn ML, Singleton Times S, Tseng EE, Wang GJ, Woo YJ. 2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation 2022; 146:e334-e482. [PMID: 36322642 PMCID: PMC9876736 DOI: 10.1161/cir.0000000000001106] [Citation(s) in RCA: 736] [Impact Index Per Article: 245.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AIM The "2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease" provides recommendations to guide clinicians in the diagnosis, genetic evaluation and family screening, medical therapy, endovascular and surgical treatment, and long-term surveillance of patients with aortic disease across its multiple clinical presentation subsets (ie, asymptomatic, stable symptomatic, and acute aortic syndromes). METHODS A comprehensive literature search was conducted from January 2021 to April 2021, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, CINHL Complete, and other selected databases relevant to this guideline. Additional relevant studies, published through June 2022 during the guideline writing process, were also considered by the writing committee, where appropriate. Structure: Recommendations from previously published AHA/ACC guidelines on thoracic aortic disease, peripheral artery disease, and bicuspid aortic valve disease have been updated with new evidence to guide clinicians. In addition, new recommendations addressing comprehensive care for patients with aortic disease have been developed. There is added emphasis on the role of shared decision making, especially in the management of patients with aortic disease both before and during pregnancy. The is also an increased emphasis on the importance of institutional interventional volume and multidisciplinary aortic team expertise in the care of patients with aortic disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bruce E Bray
- AHA/ACC Joint Committee on Clinical Data Standards liaison
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Y Joseph Woo
- AHA/ACC Joint Committee on Clinical Practice Guidelines liaison
| |
Collapse
|
49
|
Isselbacher EM, Preventza O, Hamilton Black Iii J, Augoustides JG, Beck AW, Bolen MA, Braverman AC, Bray BE, Brown-Zimmerman MM, Chen EP, Collins TJ, DeAnda A, Fanola CL, Girardi LN, Hicks CW, Hui DS, Jones WS, Kalahasti V, Kim KM, Milewicz DM, Oderich GS, Ogbechie L, Promes SB, Ross EG, Schermerhorn ML, Times SS, Tseng EE, Wang GJ, Woo YJ. 2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2022; 80:e223-e393. [PMID: 36334952 PMCID: PMC9860464 DOI: 10.1016/j.jacc.2022.08.004] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AIM The "2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease" provides recommendations to guide clinicians in the diagnosis, genetic evaluation and family screening, medical therapy, endovascular and surgical treatment, and long-term surveillance of patients with aortic disease across its multiple clinical presentation subsets (ie, asymptomatic, stable symptomatic, and acute aortic syndromes). METHODS A comprehensive literature search was conducted from January 2021 to April 2021, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, CINHL Complete, and other selected databases relevant to this guideline. Additional relevant studies, published through June 2022 during the guideline writing process, were also considered by the writing committee, where appropriate. STRUCTURE Recommendations from previously published AHA/ACC guidelines on thoracic aortic disease, peripheral artery disease, and bicuspid aortic valve disease have been updated with new evidence to guide clinicians. In addition, new recommendations addressing comprehensive care for patients with aortic disease have been developed. There is added emphasis on the role of shared decision making, especially in the management of patients with aortic disease both before and during pregnancy. The is also an increased emphasis on the importance of institutional interventional volume and multidisciplinary aortic team expertise in the care of patients with aortic disease.
Collapse
|
50
|
Pan Y, Lin J, Wang Y, Li J, Xu P, Zeng M, Shan Y. Association of aortic distensibility and left ventricular function in patients with stenotic bicuspid aortic valve and preserved ejection fraction: a CMR study. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2022; 38:2025-2033. [PMID: 35279784 DOI: 10.1007/s10554-022-02581-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/23/2022] [Indexed: 12/30/2022]
Abstract
To determine the relationship between aortic distensibility and left ventricular (LV) remodeling, myocardial strain and blood biomarkers in patients with stenotic bicuspid aortic valve (BAV) and preserved ejection fraction (EF) by cardiovascular magnetic resonance (CMR). 43 stenotic BAV patients were prospectively selected for 3.0 T CMR. Patients were divided into LV remodeling group (LV mass/volume ≥ 1.15, n = 21) and non-remodeling group (LV mass/volume < 1.15, n = 22). Clinical characteristics, biochemical data including cardiac troponin T(cTNT), N-terminal pro-B type natriuretic peptide (NT-proBNP) and creatine kinase isoenzyme (CK-MB) were noted. Distensibility of middle ascending aorta (mid-AA) and proximal descending aorta, LV structural and functional parameters, global and regional myocardial strain were measured. Compared to non-remodeling group, LV remodeling group had significantly decreased LV global strain (radial: 26.04 ± 8.70% vs. 32.92 ± 7.81%, P = 0.009; circumferential: - 17.20 ± 3.38% vs. - 19.65 ± 2.34%, P = 0.008; longitudinal: - 9.13 ± 2.34% vs. - 11.63 ± 1.99%, P < 0.001) and decreased mid-AA distensibility (1.22 ± 0.24 10-3 mm/Hg vs 1.60 ± 0.41 10-3 mm/Hg, P = 0.001). In addition, mid-AA distensibility was independently associated with LV remodeling (β = - 0.282, P = 0.003), and it was also significantly correlated with LV global strain (radial: r = 0.392, P = 0.009; circumferential: r = - 0.348, P = 0.022; longitudinal: r = - 0.333, P = 0.029), cTNT (r = - 0.333, P = 0.029) and NT-proBNP (r = - 0.440, P = 0.003). In this cohort with stenotic BAV and preserved EF, mid-AA distensibility is found significantly associated with LV remolding, which encouraging to better understand mechanism of ventricular vascular coupling.
Collapse
Affiliation(s)
- Yijun Pan
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiang Lin
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yongshi Wang
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun Li
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Pengju Xu
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mengsu Zeng
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan Shan
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|