1
|
Rao D, Huang D, Peng Z, Xiao D, Xie C, Zhu S, He H, Tang Z, Wu Z, Zhang Z. Triple role of exosomes in lung transplantation. Front Immunol 2025; 16:1544960. [PMID: 40292289 PMCID: PMC12021846 DOI: 10.3389/fimmu.2025.1544960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
Exosomes are tiny vesicles secreted by the vast majority of cells and play an important role in physiological as well as pathological processes in the body. Circulating exosomes in Lung Transplant Recipients (LTxR) undergoing rejection contain mismatched Human Leukocyte Antigens (HLA) and lung-associated autoantigens (e.g., K-alpha1 microtubule protein and collagen V), which may induce autoantibodies, and the circulating exosomes trigger an immune response that results in rejection of the lung transplant recipient. This article discusses the role of exosomes in lung transplantation from three perspectives: exosomes as a biomarker for rejection after lung transplantation; the mechanism of exosome-mediated activation of the immune response; and the potential of exosomes as a therapeutic strategy.
Collapse
Affiliation(s)
- Dingyu Rao
- Department of Thoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Defa Huang
- Laboratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zongbo Peng
- The First Clinical College, Gannan Medical University, Ganzhou, China
| | - Dewang Xiao
- The First Clinical College, Gannan Medical University, Ganzhou, China
| | - Chunfa Xie
- Department of Thoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shenyu Zhu
- Department of Thoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Haoquan He
- Department of General Practice, Jinhua Jindong District Xiaoshun Town Ditian Community Health Centre, Jinhua, China
| | - Zhixian Tang
- Department of Thoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhongkai Wu
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zuxiong Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
2
|
Napoli C, Benincasa G, Fiorelli A, Strozziero MG, Costa D, Russo F, Grimaldi V, Hoetzenecker K. Lung transplantation: Current insights and outcomes. Transpl Immunol 2024; 85:102073. [PMID: 38889844 DOI: 10.1016/j.trim.2024.102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Until now, the ability to predict or retard immune-mediated rejection events after lung transplantation is still limited due to the lack of specific biomarkers. The pressing need remains to early diagnose or predict the onset of chronic lung allograft dysfunction (CLAD) and its differential phenotypes that is the leading cause of death. Omics technologies (mainly genomics, epigenomics, and transcriptomics) combined with advanced bioinformatic platforms are clarifying the key immune-related molecular routes that trigger early and late events of lung allograft rejection supporting the biomarker discovery. The most promising biomarkers came from genomics. Both unregistered and NIH-registered clinical trials demonstrated that the increased percentage of donor-derived cell-free DNA in both plasma and bronchoalveolar lavage fluid showed a good diagnostic performance for clinically silent acute rejection events and CLAD differential phenotypes. A further success arose from transcriptomics that led to development of Molecular Microscope® Diagnostic System (MMDx) to interpret the relationship between molecular signatures of lung biopsies and rejection events. Other immune-related biomarkers of rejection events may be exosomes, telomer length, DNA methylation, and histone-mediated neutrophil extracellular traps (NETs) but none of them entered in registered clinical trials. Here, we discuss novel and existing technologies for revealing new immune-mediated mechanisms underlying acute and chronic rejection events, with a particular focus on emerging biomarkers for improving precision medicine of lung transplantation field.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli,", Naples, Italy
| | - Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Alfonso Fiorelli
- Thoracic Surgery Unit, Department of Translation Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | | | - Dario Costa
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli,", Naples, Italy
| | | | - Vincenzo Grimaldi
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli,", Naples, Italy
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
3
|
Fernando JJ, Biswas R, Biswas L. Non-invasive molecular biomarkers for monitoring solid organ transplantation: A comprehensive overview. Int J Immunogenet 2024; 51:47-62. [PMID: 38200592 DOI: 10.1111/iji.12654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Solid organ transplantation is a life-saving intervention for individuals with end-stage organ failure. Despite the effectiveness of immunosuppressive therapy, the risk of graft rejection persists in all viable transplants between individuals. The risk of rejection may vary depending on the degree of compatibility between the donor and recipient for both human leucocyte antigen (HLA) and non-HLA gene-encoded products. Monitoring the status of the allograft is a critical aspect of post-transplant management, with invasive biopsies being the standard of care for detecting rejection. Non-invasive biomarkers are increasingly being recognized as valuable tools for aiding in the detection of graft rejection, monitoring graft status and evaluating the efficacy of immunosuppressive therapy. Here, we focus on the importance of molecular biomarkers in solid organ transplantation and their potential role in clinical practice. Conventional molecular biomarkers used in transplantation include HLA typing, detection of anti-HLA antibodies, killer cell immunoglobulin-like receptor genotypes, and anti-MHC class 1-related chain A antibodies, which are important for assessing the compatibility of the donor and recipient. Emerging molecular biomarkers include the detection of donor-derived cell-free DNA, microRNAs (regulation of gene expression), exosomes (small vesicles secreted by cells), and kidney solid organ response test, in the recipient's blood for early signs of rejection. This review highlights the strengths and limitations of these molecular biomarkers and their potential role in improving transplant outcomes.
Collapse
Affiliation(s)
- Jeffy J Fernando
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Raja Biswas
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Lalitha Biswas
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
4
|
Bansal S, Rahman M, Ravichandran R, Canez J, Fleming T, Mohanakumar T. Extracellular Vesicles in Transplantation: Friend or Foe. Transplantation 2024; 108:374-385. [PMID: 37482627 DOI: 10.1097/tp.0000000000004693] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The long-term function of transplanted organs, even under immunosuppression, is hindered by rejection, especially chronic rejection. Chronic rejection occurs more frequently after lung transplantation, termed chronic lung allograft dysfunction (CLAD), than after transplantation of other solid organs. Pulmonary infection is a known risk factor for CLAD, as transplanted lungs are constantly exposed to the external environment; however, the mechanisms by which respiratory infections lead to CLAD are poorly understood. The role of extracellular vesicles (EVs) in transplantation remains largely unknown. Current evidence suggests that EVs released from transplanted organs can serve as friend and foe. EVs carry not only major histocompatibility complex antigens but also tissue-restricted self-antigens and various transcription factors, costimulatory molecules, and microRNAs capable of regulating alloimmune responses. EVs play an important role in antigen presentation by direct, indirect, and semidirect pathways in which CD8 and CD4 cells can be activated. During viral infections, exosomes (small EVs <200 nm in diameter) can express viral antigens and regulate immune responses. Circulating exosomes may also be a viable biomarker for other diseases and rejection after organ transplantation. Bioengineering the surface of exosomes has been proposed as a tool for targeted delivery of drugs and personalized medicine. This review focuses on recent studies demonstrating the role of EVs with a focus on exosomes and their dual role (immune activation or tolerance induction) after organ transplantation, more specifically, lung transplantation.
Collapse
Affiliation(s)
- Sandhya Bansal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | | | | | | | | | | |
Collapse
|
5
|
Gangadaran P, Madhyastha H, Madhyastha R, Rajendran RL, Nakajima Y, Watanabe N, Velikkakath AKG, Hong CM, Gopi RV, Muthukalianan GK, Valsala Gopalakrishnan A, Jeyaraman M, Ahn BC. The emerging role of exosomes in innate immunity, diagnosis and therapy. Front Immunol 2023; 13:1085057. [PMID: 36726968 PMCID: PMC9885214 DOI: 10.3389/fimmu.2022.1085057] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/16/2022] [Indexed: 01/17/2023] Open
Abstract
Exosomes, which are nano-sized transport bio-vehicles, play a pivotal role in maintaining homeostasis by exchanging genetic or metabolic information between different cells. Exosomes can also play a vital role in transferring virulent factors between the host and parasite, thereby regulating host gene expression and the immune interphase. The association of inflammation with disease development and the potential of exosomes to enhance or mitigate inflammatory pathways support the notion that exosomes have the potential to alter the course of a disease. Clinical trials exploring the role of exosomes in cancer, osteoporosis, and renal, neurological, and pulmonary disorders are currently underway. Notably, the information available on the signatory efficacy of exosomes in immune-related disorders remains elusive and sporadic. In this review, we discuss immune cell-derived exosomes and their application in immunotherapy, including those against autoimmune connective tissue diseases. Further, we have elucidated our views on the major issues in immune-related pathophysiological processes. Therefore, the information presented in this review highlights the role of exosomes as promising strategies and clinical tools for immune regulation.
Collapse
Affiliation(s)
- Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Radha Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Yuichi Nakajima
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Nozomi Watanabe
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Anoop Kumar G. Velikkakath
- Center for System Biology and Molecular Medicine, Yenepoya Research center, Yenepoya (Deemed to be University), Mangaluru, Karnataka, India
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Rahul Velikkakath Gopi
- Department of Tissue Engineering and Regeneration Technologies, Sree Chitra Thirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu, India
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
6
|
Sailliet N, Ullah M, Dupuy A, Silva AKA, Gazeau F, Le Mai H, Brouard S. Extracellular Vesicles in Transplantation. Front Immunol 2022; 13:800018. [PMID: 35185891 PMCID: PMC8851566 DOI: 10.3389/fimmu.2022.800018] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have been extensively studied in the last two decades. It is now well documented that they can actively participate in the activation or regulation of immune system functions through different mechanisms, the most studied of which include protein–protein interactions and miRNA transfers. The functional diversity of EV-secreting cells makes EVs potential targets for immunotherapies through immune cell-derived EV functions. They are also a potential source of biomarkers of graft rejection through donor cells or graft environment-derived EV content modification. This review focuses on preclinical studies that describe the role of EVs from different cell types in immune suppression and graft tolerance and on the search for biomarkers of rejection.
Collapse
Affiliation(s)
- Nicolas Sailliet
- Nantes Université, INSERM, Centeer for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Matti Ullah
- MSC-med, INSERM U7057, Universite de Paris, Paris, France
| | - Amandine Dupuy
- Nantes Université, INSERM, Centeer for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | | | | | - Hoa Le Mai
- Nantes Université, INSERM, Centeer for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Sophie Brouard
- Nantes Université, INSERM, Centeer for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.,Labex IGO, Nantes, France
| |
Collapse
|
7
|
Yunusova NV, Dandarova EE, Svarovsky DA, Denisov NS, Kostromitsky DN, Patysheva MR, Cheremisina OV, Spirina LV. [Production and internalization of extracellular vesicules in normal and under conditions of hyperglycemia and insulin resistance]. BIOMEDITSINSKAIA KHIMIIA 2021; 67:465-474. [PMID: 34964440 DOI: 10.18097/pbmc20216706465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Extracellular vesicles (EVs) are spherical structures of cell membrane origin, ranging in the size from 40 nm to 5000 nm. They are involved in the horizontal transfer of many proteins and microRNAs. The mechanisms EV internalization include clathrin-dependent endocytosis, caveolin-dependent endocytosis, raft-mediated endocytosis, and macropinocytosis. Type 2 diabetes mellitus (T2DM) is a common group of metabolic disorders in adults; the incidence and prevalence increase in parallel with the obesity epidemic. Since adipose tissue plays a crucial role in the development of insulin resistance, EVs secreted by adipose tissue can be a kind of information transmitter in this process. EVs of adipocytic origin are predominantly absorbed by tissue macrophages, adipocytes themselves, hepatocytes, and skeletal muscles. This contributes to the M1 polarization of macrophages, a decrease in glucose uptake by hepatocytes and myocytes due to the transfer of functionally active microRNAs by these EVs, which affect carbohydrate and lipid metabolism. Patients with T2DM and impaired glucose tolerance have significantly higher levels of CD235a-positive (erythrocyte) EVs, as well as a tendency to increase CD68-positive (leukocyte) and CD62p-positive (platelets/endothelial cells) EVs. The levels of CD31+/CD146-positive BB (endothelial cells) were comparable between diabetic and euglycemic patients. EVs from diabetic patients were preferably internalized by monocytes (mainly classical and intermediate monocyte fractions and to a lesser extent by non-classical monocyte fractions) and B cells compared to euglycemic patients. Internalization of EVs from patients with T2DM by monocytes leads to decreased apoptosis, changes in differentiation, and suppression of reactions controlling oxidative stress in monocytes. Thus, insulin resistance increases secretion of EVs, which are preferentially internalized by monocytes and influence their function. EVs are considered as sources of promising clinical markers of insulin resistance, complications of diabetes mellitus (endothelial dysfunction, retinopathy, nephropathy, neuropathy), and markers of EVs can also be used to monitor the effectiveness of therapy for these complications.
Collapse
Affiliation(s)
- N V Yunusova
- Siberian State Medical University, Tomsk, Russia; Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | | | | | - N S Denisov
- Siberian State Medical University, Tomsk, Russia
| | - D N Kostromitsky
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - M R Patysheva
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - O V Cheremisina
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - L V Spirina
- Siberian State Medical University, Tomsk, Russia; Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| |
Collapse
|
8
|
Hsin MKY, Liu M. Commentary: It's time for exosomes to get the limelight in lung transplant. J Thorac Cardiovasc Surg 2020; 161:e136-e137. [PMID: 32534751 DOI: 10.1016/j.jtcvs.2020.04.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022]
Affiliation(s)
- Michael K Y Hsin
- Department of Cardiothoracic Surgery, Queen Mary Hospital, Hong Kong.
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Bateson B, van Berkel V. Commentary: Curiouser and curiouser-The role of exosomes in transplant rejection. J Thorac Cardiovasc Surg 2020; 161:e135-e136. [PMID: 32507302 DOI: 10.1016/j.jtcvs.2020.04.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Brian Bateson
- Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, Ky
| | - Victor van Berkel
- Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, Ky.
| |
Collapse
|