1
|
The contemporaneous epidemic of chronic, copper deficiency. J Nutr Sci 2022; 11:e89. [PMID: 36304823 PMCID: PMC9554529 DOI: 10.1017/jns.2022.83] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022] Open
Abstract
The classical deficiency diseases have nearly disappeared from the industrialised world and are thought to be found largely in sub-Saharan Africa and South Asia. More than 80 collected medical articles, mostly from Europe and North America, describe more than 9000 people with low concentrations of copper in organs or tissues or impaired metabolic pathways dependent on copper. More than a dozen articles reveal improved anatomy, chemistry or physiology in more than 1000 patients from supplements containing copper. These criteria are diagnostic of deficiency according to The Oxford Textbook of Medicine. Alzheimer's disease, ischaemic heart disease and osteoporosis receive major emphasis here. However, impaired vision, myelodysplastic syndrome and peripheral neuropathy are mentioned. Copper deficiency probably causes some common, contemporaneous diseases. Advice is provided about opportunities for research. Seemingly authoritative statements concerning the rarity of nutritional deficiency in developed countries are wrong.
Collapse
|
2
|
Collins JF. Copper nutrition and biochemistry and human (patho)physiology. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 96:311-364. [PMID: 34112357 DOI: 10.1016/bs.afnr.2021.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The essential trace mineral copper plays important roles in human physiology and pathophysiology. Disruption of copper homeostasis may underlie the development of ischemic heart disease, and connective tissue and neurodegenerative disorders. Copper also likely participates in the host response to bacterial infection and is further implicated more broadly in regulating immunity. Recent studies further associate copper with disruption of lipid homeostasis, as is frequently seen in, for example, non-alcoholic fatty liver disease (NAFLD). Moreover, continuing investigation of copper chaperones has revealed new roles for these intracellular copper-binding proteins. Despite these (and many other) significant advances, many questions related to copper biology remain unanswered. For example, what are the most sensitive and specific biomarkers of copper status, and which ones are useful in marginal (or "sub-clinical" copper deficiency)? Further research on this topic is required to inform future investigations of copper metabolism in humans (so the copper status of study participants can be fully appreciated). Also, are current recommendations for copper intake adequate? Recent studies suggest that overt copper deficiency is more common than once thought, and further, some have suggested that the copper RDAs for adults may be too low. Additional human balance and interventional studies are necessary and could provide the impetus for reconsidering the copper RDAs in the future. These and myriad other unresolved aspects of copper nutrition will undoubtedly be the focus of future investigation.
Collapse
Affiliation(s)
- James F Collins
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
3
|
A Pilot, Randomized Study in Women of Nutrition-Related Clinical Chemistry at 6 Weeks after Roux en Y Gastric Bypass: Comparison of Two Nutrition Support Plans. Obes Surg 2019; 29:2781-2789. [DOI: 10.1007/s11695-019-03895-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
DiNicolantonio JJ, Mangan D, O'Keefe JH. Copper deficiency may be a leading cause of ischaemic heart disease. Open Heart 2018; 5:e000784. [PMID: 30364437 PMCID: PMC6196933 DOI: 10.1136/openhrt-2018-000784] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2018] [Indexed: 01/23/2023] Open
Affiliation(s)
| | | | - James H O'Keefe
- Department of Preventive Cardiology, University of Missouri-Kansas City, Saint Lukes Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
5
|
DiSilvestro RA, Hart S, Marshall T, Joseph E, Reau A, Swain CB, Diehl J. Enhanced aerobic exercise performance in women by a combination of three mineral Chelates plus two conditionally essential nutrients. J Int Soc Sports Nutr 2017; 14:42. [PMID: 29158726 PMCID: PMC5683453 DOI: 10.1186/s12970-017-0199-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/05/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Certain essential and conditionally essential nutrients (CENs) perform functions involved in aerobic exercise performance. However, increased intake of such nutrient combinations has not actually been shown to improve such performance. METHODS For 1 mo, aerobically fit, young adult women took either a combination of 3 mineral glycinate complexes (daily dose: 36 mg iron, 15 mg zinc, and 2 mg copper) + 2 CENs (daily dose: 2 g carnitine and 400 mg phosphatidylserine), or the same combination with generic mineral complexes, or placebo (n = 14/group). In Trial 1, before and after 1 mo, subjects were tested for 3 mile run time (primary outcome), followed by distance covered in 25 min on a stationary bike (secondary outcome), followed by a 90 s step test (secondary outcome). To test reproducibility of the run results, and to examine a lower dose of carnitine, a second trial was done. New subjects took either mineral glycinates + CENs (1 g carnitine) or placebo (n = 17/group); subjects were tested for pre- and post-treatment 3 mile run time (primary outcome). RESULTS In Trial 1, the mineral glycinates + CENs decreased 3 mile run time (25.6 ± 2.4 vs 26.5 ± 2.3 min, p < 0.05, paired t-test) increased stationary bike distance after 25 min (6.5 ± 0.6 vs 6.0 ± 0.8 miles, p < 0.05, paired t-test), and increased steps in the step test (43.8 ± 4.8 vs 40.3 ± 6.4 steps, p < 0.05, paired t-test). The placebo significantly affected only the biking distance, but it was less than for the glycinates-CENs treatment (0.2 ± 0.4. vs 0.5 ± 0.1 miles, p < 0.05, ANOVA + Tukey). The generic minerals + CENs only significantly affected the step test (44.1 ± 5.2 vs 41.0 ± 5.9 steps, p < 0.05, paired t-test) In Trial 2, 3 mile run time was decreased for the mineral glycinates + CENs (23.9 ± 3.1 vs 24.7 ± 2.5, p < 0.005, paired t-test), but not by the placebo. All changes for Test Formula II or III were high compared to placebo (1.9 to 4.9, Cohen's D), and high for Test Formula II vs I for running and biking (3.2 & 3.5, Cohen's D). CONCLUSION In summary, a combination of certain mineral complexes plus two CENs improved aerobic exercise performance in fit young adult women.
Collapse
Affiliation(s)
| | - Staci Hart
- Human Nutrition, The Ohio State University, Columbus, OH 43210 USA
| | - Trisha Marshall
- Human Nutrition, The Ohio State University, Columbus, OH 43210 USA
| | - Elizabeth Joseph
- Human Nutrition, The Ohio State University, Columbus, OH 43210 USA
| | - Alyssa Reau
- Human Nutrition, The Ohio State University, Columbus, OH 43210 USA
| | - Carmen B. Swain
- Kinesiology, The Ohio State University, Columbus, OH 43210 USA
| | - Jason Diehl
- OSU Sports Medicine, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
6
|
Linder MC. Ceruloplasmin and other copper binding components of blood plasma and their functions: an update. Metallomics 2016; 8:887-905. [PMID: 27426697 DOI: 10.1039/c6mt00103c] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We know that blood plasma contains many proteins and also other components that bind copper. The largest contributor to copper in the plasma is ceruloplasmin, which accounts for 40-70 percent. Apart from ceruloplasmin and albumin, most of these components have not been studied extensively, and even for ceruloplasmin and albumin, much remains to be discovered. New components with new functions, and new functions of known components are emerging, some warranting reconsideration of earlier findings. The author's laboratory has been actively involved in research on this topic. This review summarizes and updates our knowledge of the nature and functions of ceruloplasmin and the other known and emerging copper-containing molecules (principally proteins) in this fluid, to better understand how they contribute to copper homeostasis and consider their potential significance to health and disease.
Collapse
Affiliation(s)
- M C Linder
- California State University, Fullerton, CA, USA.
| |
Collapse
|
7
|
Abstract
The theory, in brief outline here, implicating deficiency of Cu in the aetiology and pathophysiology of IHD explains more attributes of the disease than any other theory. This theory satisfies several of Hill's criteria of a half-century ago for deducing association between an environmental feature and presence of an illness. Most important is the temporal association between the rise of IHD and the decrease in dietary Cu since the 1930s along with a parallel increase in the supplementation of pregnant women with Fe, a Cu antagonist. There are more than eighty anatomical, chemical and physiological similarities between animals deficient in Cu and individuals with IHD. Few of these similarities have been produced by other dietary manipulations because feeding cholesterol induces Cu deficiency in animals. The most recent of these to be identified is decreased serum dehydroepiandrosterone. Some concomitant aspects of Cu metabolism and utilisation have been identified in other theories about heart disease: fetal programming, homocysteine, and Fe overload.
Collapse
|
8
|
Passerieux E, Hayot M, Jaussent A, Carnac G, Gouzi F, Pillard F, Picot MC, Böcker K, Hugon G, Pincemail J, Defraigne JO, Verrips T, Mercier J, Laoudj-Chenivesse D. Effects of vitamin C, vitamin E, zinc gluconate, and selenomethionine supplementation on muscle function and oxidative stress biomarkers in patients with facioscapulohumeral dystrophy: a double-blind randomized controlled clinical trial. Free Radic Biol Med 2015; 81:158-69. [PMID: 25246239 DOI: 10.1016/j.freeradbiomed.2014.09.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 12/29/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disease characterized by progressive weakness and atrophy of specific skeletal muscles. As growing evidence suggests that oxidative stress may contribute to FSHD pathology, antioxidants that might modulate or delay oxidative insults could help in maintaining FSHD muscle function. Our primary objective was to test whether oral administration of vitamin C, vitamin E, zinc gluconate, and selenomethionine could improve the physical performance of patients with FSHD. Adult patients with FSHD (n=53) were enrolled at Montpellier University Hospital (France) in a randomized, double-blind, placebo-controlled pilot clinical trial. Patients were randomly assigned to receive 500 mg vitamin C, 400mg vitamin E, 25mg zinc gluconate and 200 μg selenomethionine (n=26), or matching placebo (n=27) once a day for 17 weeks. Primary outcomes were changes in the two-minute walking test (2-MWT), maximal voluntary contraction, and endurance limit time of the dominant and nondominant quadriceps (MVCQD, MVCQND, TlimQD, and TlimQND, respectively) after 17 weeks of treatment. Secondary outcomes were changes in the antioxidant status and oxidative stress markers. Although 2-MWT, MVCQ, and TlimQ were all significantly improved in the supplemented group at the end of the treatment compared to baseline, only MVCQ and TlimQ variations were significantly different between groups (MVCQD: P=0.011; MVCQND: P=0.004; TlimQD: P=0.028; TlimQND: P=0.011). Similarly, the vitamin C (P<0.001), vitamin E as α-tocopherol (P<0.001), vitamin C/vitamin E ratio (P=0.017), vitamin E γ/α ratio (P=0.022) and lipid peroxides (P<0.001) variations were significantly different between groups. In conclusion, vitamin E, vitamin C, zinc, and selenium supplementation has no significant effect on the 2-MWT, but improves MVCQ and TlimQ of both quadriceps by enhancing the antioxidant defenses and reducing oxidative stress. This trial was registered at clinicaltrials.gov (number: NCT01596803).
Collapse
Affiliation(s)
- Emilie Passerieux
- University of Montpellier 1 and 2, INSERM Unit 1046, Montpellier, France
| | - Maurice Hayot
- University of Montpellier 1 and 2, INSERM Unit 1046, Montpellier, France and Department of Clinical Physiology, University Hospital, Montpellier, France
| | - Audrey Jaussent
- Department of Biostatistics and Epidemiology, University Hospital of Montpellier, Montpellier, France
| | - Gilles Carnac
- University of Montpellier 1 and 2, INSERM Unit 1046, Montpellier, France
| | - Fares Gouzi
- University of Montpellier 1 and 2, INSERM Unit 1046, Montpellier, France and Department of Clinical Physiology, University Hospital, Montpellier, France
| | - Fabien Pillard
- Department of Respiratory Exploration and Department of Sports Medicine, Larrey University Hospital, Toulouse CEDEX, France
| | - Marie-Christine Picot
- Department of Biostatistics and Epidemiology, University Hospital, Montpellier, France and CIC 1001-INSERM
| | - Koen Böcker
- Alan Turing Institute Almere, The Netherlands
| | - Gerald Hugon
- University of Montpellier 1 and 2, INSERM Unit 1046, Montpellier, France
| | - Joel Pincemail
- Department of cardiovascular Surgery and Department of CREDEC, University Hospital of Liege, Belgium
| | - Jean O Defraigne
- Department of cardiovascular Surgery and Department of CREDEC, University Hospital of Liege, Belgium
| | - Theo Verrips
- Utrecht University, Department of Biology, The Netherlands
| | - Jacques Mercier
- University of Montpellier 1 and 2, INSERM Unit 1046, Montpellier, France and Department of Clinical Physiology, University Hospital, Montpellier, France
| | - Dalila Laoudj-Chenivesse
- University of Montpellier 1 and 2, INSERM Unit 1046, Montpellier, France and Department of Clinical Physiology, University Hospital, Montpellier, France.
| |
Collapse
|
9
|
Yui K, Imataka G, Nakamura H, Ohara N, Naito Y. Eicosanoids Derived From Arachidonic Acid and Their Family Prostaglandins and Cyclooxygenase in Psychiatric Disorders. Curr Neuropharmacol 2015; 13:776-85. [PMID: 26521945 PMCID: PMC4759316 DOI: 10.2174/1570159x13666151102103305] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 12/31/2022] Open
Abstract
Arachidonic acid (AA)-derived lipid mediators are called eicosanoids. Eicosanoids have emerged as key regulators of a wide variety of physiological responses and pathological processes, and control important cellular processes. AA can be converted into biologically active compounds by metabolism by cyclooxygenases (COX). Beneficial effect of COX-2 inhibitor celecoxib add-on therapy has been reported in early stage of schizophrenia. Moreover, add-on treatment of celecoxib attenuated refractory depression and bipolar depression. Further, the COX/prostaglandin E pathway play an important role in synaptic plasticity and may be included in pathophysiology in autism spectrum disorders (ASD). In this regard, plasma transferrin, which is an iron mediator related to eicosanoid signaling, may be related to social impairment of ASD. COX-2 is typically induced by inflammatory stimuli in the majority of tissues, and the only isoform responsible for propagating the inflammatory response. Thus, COX-2 inhibitors considered as the best target for Alzheimer's disease.
Collapse
Affiliation(s)
- Kunio Yui
- Research Institute of Pervasive Developmental Disorders, Ashiya University Graduate School of Education. Rokurokusocho 13-22, Ashiya 659-8511, Hyogo, Japan.
| | | | | | | | | |
Collapse
|
10
|
Mark AB, Kápolna E, Laursen KH, Halekoh U, Rasmussen SK, Husted S, Larsen EH, Bügel S. Consumption of organic diets does not affect intake and absorption of zinc and copper in men – evidence from two cross-over trials. Food Funct 2013. [DOI: 10.1039/c2fo30247k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
DiSilvestro RA, Joseph EL, Zhang W, Raimo AE, Kim YM. A randomized trial of copper supplementation effects on blood copper enzyme activities and parameters related to cardiovascular health. Metabolism 2012; 61:1242-6. [PMID: 22444781 DOI: 10.1016/j.metabol.2012.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/02/2012] [Accepted: 02/02/2012] [Indexed: 11/25/2022]
Abstract
Marginal copper deficiency, which may affect cardiovascular disease risk, is proposed to occur in many adults in Western industrialized countries. The present study tested the hypothesis that in a group of USA adults, increased copper intake would alter readings for blood copper enzymes and markers relevant to cardiovascular disease risk. Healthy middle aged adults with moderately high cholesterol, were given either placebo or copper supplementation (2 mg copper/day as copper glycinate) for 8 weeks. Blood samples were taken before and after the 8 weeks. Copper, but not placebo, raised activities for two copper enzymes, erythrocyte superoxide dismutase 1 and plasma ceruloplasmin. In contrast, five cardiovascular health related plasma parameters were not changed significantly by copper: C-reactive protein, homocysteine, and cholesterol (total, LDL and HDL). However, changes in erythrocyte superoxide dismutase 1 correlated positively with changes in plasma HDL and negatively with plasma homocysteine. Also, copper lowered mean oxidized LDL values, a result that was statistically significant, but inconsistent. In this test population, increased copper intake raised copper enzyme activities, but did not consistently improve the cardiovascular health measures studied.
Collapse
Affiliation(s)
- Robert A DiSilvestro
- Department of Human Nutrition, College of Education and Human Ecology, The Ohio State University, Columbus, OH 43210-1295, USA.
| | | | | | | | | |
Collapse
|
12
|
González-Pérez JM, González-Reimers E, DeLaVega-Prieto MJ, Durán-Castellón MDC, Viña-Rodríguez J, Galindo-Martín L, Alvisa-Negrín J, Santolaria-Fernández F. Relative and combined effects of ethanol and protein deficiency on bone manganese and copper. Biol Trace Elem Res 2012; 147:226-32. [PMID: 22190260 DOI: 10.1007/s12011-011-9296-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
Abstract
Both manganese and copper may affect bone synthesis. Bone content of both metals can be altered in alcoholics, although controversy exists regarding this matter. To analyse the relative and combined effects of ethanol and a low protein diet on bone copper and manganese, and their relationships with bone structure and metabolism, including trabecular bone mass (TBM), osteoid area (OA), osteocalcin (OCN), insulin-like growth factor-1 (IGF-1), parathyroid hormone (PTH), urinary hydroxyproline (uHP) and vitamin D. Adult male Sprague-Dawley rats were divided into four groups. The control rats received a 18% protein-containing diet; a second group, an isocaloric, 2% protein-containing diet; a third one, an isocaloric, 36% ethanol-containing diet and a fourth, an isocaloric diet containing 2% protein and 36% ethanol. After sacrifice, TBM and OA were histomorphometrically assessed; bone and serum manganese and copper were determined by atomic absorption spectrophotometry, and serum OCN, IGF-1, PTH, uHP and vitamin D by radioimmunoassay. Ethanol-fed rats showed decreased TBM and bone manganese. Significant relationships existed between bone manganese and TBM, serum IGF-1 and OCN. Ethanol leads to a decrease in bone manganese, related to decreased bone mass and bone synthesis. No alterations were found in bone copper.
Collapse
Affiliation(s)
- José M González-Pérez
- Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife-Canary Islands, Spain.
| | | | | | | | | | | | | | | |
Collapse
|