1
|
Manna S, Firdous SM. Unravelling the developmental toxicity of heavy metals using zebrafish as a model: a narrative review. Biometals 2025; 38:419-463. [PMID: 39987289 DOI: 10.1007/s10534-025-00671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Developmental toxicity is the disruption of an organism's normal development which may occur in either the parent before conception or in the growing creature itself. Zebrafish (Danio rerio) are being employed as effective vertebrate models to evaluate the safety and toxicity of chemicals because they can breed multiple times in a year so we can observe the toxic effects in the next generation and their development mental stages can be observed and define clearly because their 1 cell stage to prime stage is transparent so we can observe the development of every organ also they have nearly about 80% genetic similarity with humans and shares the similar neuromodulatory structure along with multiple neurotransmitter. The recent research endeavours to examine the harmful outcome of various heavy metals such as cadmium, chromium, nickel, arsenic, lead, mercury, bismuth, iron, manganese, and thallium along with microplastics on zebrafish embryos when subjected to environmentally acceptable levels of every single metal in addition to co-exposure at various points in time. These heavy metals can alter the mRNA expression levels, increase the reactive oxygen species (ROS) generation, decrease antioxidant expression, damage neuronal function, alter neurotransmitter release, alter the expression of several apoptotic proteins, interfere with the different signalling pathways, decrease heat rates, increase malformations like - pericardial oedema, heart oedema, reduce in length tail bending abnormal formation in fins. Thereafter we concluded that due to its involvement in the food chain, it also causes severe effects on human beings.
Collapse
Affiliation(s)
- Sanjib Manna
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, 711316, India
| | - Sayed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, 711316, India.
| |
Collapse
|
2
|
Martins Fernandes Pereira K, de Carvalho AC, Ventura Fernandes BH, Dos Santos Grecco S, Rodrigues E, da Silva Fernandes MJ, de Carvalho LRS, Nakamura MU, Guo S, Hernández RB. Systems toxicology studies reveal important insights about chronic exposure of zebrafish to Kalanchoe pinnata (Lam.) Pers leaf - KPL: Implications for medicinal use. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119044. [PMID: 39532221 DOI: 10.1016/j.jep.2024.119044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The prevalence of depression and anxiety is high during pregnancy. Several traditional medicines use the plant Kalanchoe pinnata (Lam.) Pers. (KP) to treat emotional disorders, inflammation, and to prevent preterm delivery, but the effects on the exposed offspring and the mechanism behind these events remain unknown. AIM OF THE STUDY In this work, integrated systems toxicology (INSYSTA) was used to investigate traditional toxicological outcomes and behavioral performance in zebrafish larvae after chronic exposure (from 2 to 96 hpf) to K. pinnata leaf extracts (KPL). MATERIALS AND METHODS We investigated light/dark preference, thigmotaxis and locomotor activity parameters, followed by gene expression and systems biology approaches to discover the mechanisms behind toxicological endpoint and phenomics. RESULTS The embryos exposed to 700 mg/L KPL showed retarded development including hatching delay. Larvae exposed to 500 mg/L KPL resulted in decreased dark avoidance and increased locomotor activity, while 700 mg/L showed opposite effects. The INSYSTA revealed sixteen genes down-regulated after KPL chronic treatment; they are involved in folding, sorting, and degradation of proteins as well as DNA replication and repair mechanisms. This may result in deregulation of the organismal functions, including those of immune and endocrine systems. These physiological changes appear to make embryos more sensitive to infections and disorders that resemble 47 human diseases. CONCLUSION These findings suggest that the medicinal use of plant extracts requires strict toxicological, pharmacological, and medical supervision. At the same time, it suggests a polypharmacological pathway for KPL extract that goes beyond preventing premature delivery and controlling anxiety.
Collapse
Affiliation(s)
- Kássia Martins Fernandes Pereira
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04021-001, São Paulo, SP, Brazil.
| | | | - Bianca H Ventura Fernandes
- Technical Directorate of Support for Teaching, Research and Innovation at the Faculty of Medicine of the University of São Paulo, São Paulo, SP, Brazil.
| | - Simone Dos Santos Grecco
- Department of Chemistry, Universidade Federal de São Paulo, 09972-270, Diadema, SP, Brazil; Triplet Biotechnology Solutions, São Paulo, Brazil.
| | - Eliana Rodrigues
- Center for Ethnobotanical and Ethnopharmacological Studies, Department of Environmental Sciences, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Maria José da Silva Fernandes
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04021-001, São Paulo, SP, Brazil.
| | - Luciani Renata Silveira de Carvalho
- Technical Directorate of Support for Teaching, Research and Innovation at the Faculty of Medicine of the University of São Paulo, São Paulo, SP, Brazil; Discipline of Endocrinology, Laboratory of Hormones and Molecular Genetics-LIM42, Hospital das Clínicas of the University of São Paulo, São Paulo, SP, Brazil.
| | - Mary Uchiyama Nakamura
- Department of Obstetrics, Universidade Federal de São Paulo, São Paulo, SP, 04021-001, Brazil.
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, Programs in Biological Sciences and Human Genetics, University of California, San Francisco, CA, 94158-2811, USA.
| | - Raúl Bonne Hernández
- Laboratory of Bioinorganic and Environmental Toxicology - LABITA, Department of Exact and Earth Sciences, Universidade Federal de São Paulo, 09972-270, Diadema, SP, Brazil.
| |
Collapse
|
3
|
Alba-González A, Dragomir EI, Haghdousti G, Yáñez J, Dadswell C, González-Méndez R, Wilson SW, Tuschl K, Folgueira M. Manganese Overexposure Alters Neurogranin Expression and Causes Behavioral Deficits in Larval Zebrafish. Int J Mol Sci 2024; 25:4933. [PMID: 38732149 PMCID: PMC11084468 DOI: 10.3390/ijms25094933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Manganese (Mn), a cofactor for various enzyme classes, is an essential trace metal for all organisms. However, overexposure to Mn causes neurotoxicity. Here, we evaluated the effects of exposure to Mn chloride (MnCl2) on viability, morphology, synapse function (based on neurogranin expression) and behavior of zebrafish larvae. MnCl2 exposure from 2.5 h post fertilization led to reduced survival (60%) at 5 days post fertilization. Phenotypical changes affected body length, eye and olfactory organ size, and visual background adaptation. This was accompanied by a decrease in both the fluorescence intensity of neurogranin immunostaining and expression levels of the neurogranin-encoding genes nrgna and nrgnb, suggesting the presence of synaptic alterations. Furthermore, overexposure to MnCl2 resulted in larvae exhibiting postural defects, reduction in motor activity and impaired preference for light environments. Following the removal of MnCl2 from the fish water, zebrafish larvae recovered their pigmentation pattern and normalized their locomotor behavior, indicating that some aspects of Mn neurotoxicity are reversible. In summary, our results demonstrate that Mn overexposure leads to pronounced morphological alterations, changes in neurogranin expression and behavioral impairments in zebrafish larvae.
Collapse
Affiliation(s)
- Anabel Alba-González
- Department of Biology, Faculty of Sciences, University of A Coruña, 15008 A Coruña, Spain; (A.A.-G.); (J.Y.)
- Centro Interdisciplinar de Química y Biología, (CICA), University of A Coruña, 15071 A Coruña, Spain
| | - Elena I. Dragomir
- Department of Cell and Developmental, University College London, London, WC1E 6BT, UK; (E.I.D.); (G.H.); (S.W.W.)
| | - Golsana Haghdousti
- Department of Cell and Developmental, University College London, London, WC1E 6BT, UK; (E.I.D.); (G.H.); (S.W.W.)
| | - Julián Yáñez
- Department of Biology, Faculty of Sciences, University of A Coruña, 15008 A Coruña, Spain; (A.A.-G.); (J.Y.)
- Centro Interdisciplinar de Química y Biología, (CICA), University of A Coruña, 15071 A Coruña, Spain
| | - Chris Dadswell
- School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK; (C.D.); (R.G.-M.)
| | - Ramón González-Méndez
- School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK; (C.D.); (R.G.-M.)
| | - Stephen W. Wilson
- Department of Cell and Developmental, University College London, London, WC1E 6BT, UK; (E.I.D.); (G.H.); (S.W.W.)
| | - Karin Tuschl
- UCL GOSH Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Mónica Folgueira
- Department of Biology, Faculty of Sciences, University of A Coruña, 15008 A Coruña, Spain; (A.A.-G.); (J.Y.)
- Centro Interdisciplinar de Química y Biología, (CICA), University of A Coruña, 15071 A Coruña, Spain
| |
Collapse
|
4
|
Gomes G, Oliveira JL, Costa ML, Mermelstein C, Feitosa NM. Manganese Exposure Induces Cellular Aggregates and the Accumulation of β-Catenin in Skin of Zebrafish Embryos. Zebrafish 2023; 20:160-168. [PMID: 37406179 DOI: 10.1089/zeb.2022.0056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
The effects of manganese (Mn) toxicity in different organs and tissues in humans and other vertebrates have been studied since the beginning of the past century, but most of its cellular effects remain largely unknown. In this study, we studied the effects of Mn in zebrafish, at the cellular level, due to the transparent nature of zebrafish larvae that enables a powerful analysis under the light microscope. The collection of our results shows that environmental concentrations of 0.5 mg/L affect swim bladder inflation; at concentration of 50 and 100 mg/L Mn (1) induces alterations in viability, swim bladder, heart, and size of zebrafish larvae, (2) induces an increase in melanocyte area and the formation of cellular aggregates in the skin, and (3) induces an accumulation of β-Catenin in mesenchymal cells in the caudal fin of zebrafish larvae. Our data suggest that increased levels of Mn induce cell aggregate formation in the skin and the presence of more melanocytes in the zebrafish caudal fin. Interestingly, the adhesion protein β-Catenin was activated in mesenchymal cells near the cell aggregates. These results open important new questions on the role of Mn toxicity on cellular organization and β-Catenin responses in fishes.
Collapse
Affiliation(s)
- Geyse Gomes
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de janeiro, Rio de Janeiro, Brazil
| | - José Leonardo Oliveira
- Laboratório Integrado de Biociências Translacionais (LIBT), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de janeiro, Macaé, Brazil
| | - Manoel Luis Costa
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de janeiro, Rio de Janeiro, Brazil
| | - Claudia Mermelstein
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de janeiro, Rio de Janeiro, Brazil
| | - Natália Martins Feitosa
- Laboratório Integrado de Biociências Translacionais (LIBT), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de janeiro, Macaé, Brazil
| |
Collapse
|
5
|
Xu Y, Peng T, Xiang Y, Liao G, Zou F, Meng X. Neurotoxicity and gene expression alterations in zebrafish larvae in response to manganese exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153778. [PMID: 35150691 DOI: 10.1016/j.scitotenv.2022.153778] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Manganese (Mn) is an essential trace element, but excessive exposure can damage mental, cognitive, and motor functions. Although many studies have reported the toxicity of Mn, the underlying mechanism remains unclear. Here, wild-type and/or Tg(NBT:DsRed) zebrafish embryos/larvae were exposed to different dosages of Mn to determine the effects on mortality, malformation, and hatching rates. A video tracking system was used to analyze the locomotor activities of zebrafish larvae. The terminal deoxynucleotidyl transferase dUTP nick end labeling assay and acridine orange staining were performed to monitor cell apoptosis, while dopamine transporter and tyrosine hydroxylase (TH) expression were detected by immunohistochemical staining. Meanwhile, transcriptome sequencing of the head tissues of zebrafish larvae was performed to search for molecular targets of Mn neurotoxicity. The results showed that Mn exposure increased the mortality and malformation rates of zebrafish larvae, and significantly reduced swim distance and velocity. In addition, the proportion of apoptotic dopaminergic neurons increased, while TH expression significantly decreased. The results of transcriptome sequencing showed that a large number of differentially expressed genes associated with apoptosis and DNA damage repair were upregulated, consistent with the above results. Meanwhile, Western blot analysis showed that higher exposure level of Mn could induce activation of MAPK pathway. These data demonstrate that Mn exposure can damage dopaminergic neurons and cause apoptosis, which has detrimental effects on the motor abilities of zebrafish larvae.
Collapse
Affiliation(s)
- Yongjie Xu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Peng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yang Xiang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Gengze Liao
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Martins Fernandes Pereira K, Calheiros de Carvalho A, André Moura Veiga T, Melgoza A, Bonne Hernández R, dos Santos Grecco S, Uchiyama Nakamura M, Guo S. The psychoactive effects of Bryophyllum pinnatum (Lam.) Oken leaves in young zebrafish. PLoS One 2022; 17:e0264987. [PMID: 35263358 PMCID: PMC8906576 DOI: 10.1371/journal.pone.0264987] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/22/2022] [Indexed: 11/18/2022] Open
Abstract
Bryophyllum pinnatum (Lam.) Oken (BP) is a plant that is used worldwide to treat inflammation, infections, anxiety, restlessness, and sleep disorders. While it is known that BP leaves are rich in flavonoids, the extent of the beneficial and toxic effects of its crude extracts remains unclear. Although some neurobehavioral studies using leaf extracts have been conducted, none has examined the effects of water-extracted leaf samples. The zebrafish is a powerful animal model used to gain insights into the efficacy and toxicity profiles of this plant due to its high fecundity, external development, and ease of performing behavioral assays. In this study, we performed behavioral testing after acute exposure to different concentrations of aqueous extract from leaves of B. pinnatum (LABP) on larval zebrafish, investigating light/dark preference, thigmotaxis, and locomotor activity parameters under both normal and stressed conditions. LABP demonstrated dose-and time-dependent biphasic effects on larval behavior. Acute exposure (25 min) to 500 mg/L LABP resulted in decreased locomotor activity. Exposure to 300 mg/L LABP during the sleep cycle decreased dark avoidance and thigmotaxis while increasing swimming velocity. After sleep deprivation, the group treated with 100 mg/L LABP showed decreased dark avoidance and increased velocity. After a heating stressor, the 30 mg/L and 300 mg/L LABP-treated groups showed decreased dark avoidance. These results suggest both anxiolytic and psychoactive effects of LABP in a dose-dependent manner in a larval zebrafish model. These findings provide a better understanding of the mechanisms underlying relevant behavioral effects, consequently supporting the safe and effective use of LABP for the treatment of mood disorders.
Collapse
Affiliation(s)
- Kassia Martins Fernandes Pereira
- Department of Obstetrics, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Department of Bioengineering and Therapeutic Sciences, Programs in Biological Sciences and Human Genetics, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| | | | | | - Adam Melgoza
- Department of Bioengineering and Therapeutic Sciences, Programs in Biological Sciences and Human Genetics, University of California, San Francisco, San Francisco, California, United States of America
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, California, United States of America
| | - Raúl Bonne Hernández
- Laboratory of Bioinorganic and Environmental Toxicology–LABITA, Department of Chemistry, Universidade Federal de São Paulo. Diadema. SP. Brazil
| | | | | | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, Programs in Biological Sciences and Human Genetics, University of California, San Francisco, San Francisco, California, United States of America
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
7
|
Hernández RB, de Souza-Pinto NC, Kleinjans J, van Herwijnen M, Piepers J, Moteshareie H, Burnside D, Golshani A. Manganese-Induced Neurotoxicity through Impairment of Cross-Talk Pathways in Human Neuroblastoma Cell Line SH-SY5Y Differentiated with Retinoic Acid. TOXICS 2021; 9:toxics9120348. [PMID: 34941782 PMCID: PMC8704659 DOI: 10.3390/toxics9120348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/29/2023]
Abstract
Manganese (Mn) is an important element; yet acute and/or chronic exposure to this metal has been linked to neurotoxicity and neurodegenerative illnesses such as Parkinson’s disease and others via an unknown mechanism. To better understand it, we exposed a human neuroblastoma cell model (SH-SY5Y) to two Mn chemical species, MnCl2 and Citrate of Mn(II) (0–2000 µM), followed by a cell viability assay, transcriptomics, and bioinformatics. Even though these cells have been chemically and genetically modified, which may limit the significance of our findings, we discovered that by using RA-differentiated cells instead of undifferentiated SH-SY5Y cell line, both chemical species induce a similar toxicity, potentially governed by disruption of protein metabolism, with some differences. The MnCl2 altered amino acid metabolism, which affects RNA metabolism and protein synthesis. Citrate of Mn(II), however, inhibited the E3 ubiquitin ligases–target protein degradation pathway, which can lead to the buildup of damaged/unfolded proteins, consistent with histone modification. Finally, we discovered that Mn(II)-induced cytotoxicity in RA-SH-SY5Y cells shared 84 percent of the pathways involved in neurodegenerative diseases.
Collapse
Affiliation(s)
- Raúl Bonne Hernández
- Laboratory of Bioinorganic and Environmental Toxicology—LABITA, Department of Chemistry, Federal University of São Paulo, Rua Prof. Artur Riedel, 275, Diadema 09972-270, SP, Brazil
- Department of Biology, Carleton University, 209 Nesbitt Biology Building, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (H.M.); (D.B.); (A.G.)
- Correspondence: ; Tel.: +55-11-3385-4137 (ext. 3522)
| | - Nadja C. de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes, 748, Butantã, São Paulo 05508-900, SP, Brazil;
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER Maastricht, The Netherlands; (J.K.); (M.v.H.); (J.P.)
| | - Marcel van Herwijnen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER Maastricht, The Netherlands; (J.K.); (M.v.H.); (J.P.)
| | - Jolanda Piepers
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER Maastricht, The Netherlands; (J.K.); (M.v.H.); (J.P.)
| | - Houman Moteshareie
- Department of Biology, Carleton University, 209 Nesbitt Biology Building, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (H.M.); (D.B.); (A.G.)
| | - Daniel Burnside
- Department of Biology, Carleton University, 209 Nesbitt Biology Building, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (H.M.); (D.B.); (A.G.)
| | - Ashkan Golshani
- Department of Biology, Carleton University, 209 Nesbitt Biology Building, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (H.M.); (D.B.); (A.G.)
| |
Collapse
|
8
|
Nagamatsu PC, Garcia JRE, Esquivel L, Souza ATDC, de Brito IA, de Oliveira Ribeiro CA. Post hatching stages of tropical catfish Rhamdia quelen (Quoy and Gaimard, 1824) are affected by combined toxic metals exposure with risk to population. CHEMOSPHERE 2021; 277:130199. [PMID: 33770691 DOI: 10.1016/j.chemosphere.2021.130199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Toxic metals and silver nanoparticles (AgNPs) are of great importance as pollutants and their frequent use increases the risk of exposure to biota, but few studies have described co-toxic effects in aquatic organisms. In fish, the method using early stages of development are interesting parameters to validate ecotoxicological studies, and more recently, the use of mathematical models has substantially increased the efficiency of the method. Post hatching stages of native catfish Rhamdia quelen were exposed to single or combined mixtures of toxic metals (Mn, Pb, Hg or AgNPs) in order to study its effects. Fertilized eggs were exposed for 24, 48, 72, and 96 h, where hatching and survival rates, malformation frequency, and neuromast structure damages were evaluated. The results showed alterations in hatching rate after single and combined exposure to metals, but mixtures showed effects more severe comparatively with the single exposures. A similar result including a time-dependent effect was observed in survival rates and incidence of deformities. Overall, embryos and larvae were sensitive to toxic metals exposure while the mathematical modeling suggested a population reduction size including risk of local extinction.
Collapse
Affiliation(s)
- Paola Caroline Nagamatsu
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-970, Curitiba, PR, Brazil
| | | | - Luíse Esquivel
- Estação de Piscicultura Panamá, Est. Geral Bom Retiro, Paulo Lopes, SC, CEP 88490-000, Brazil
| | - Angie Thaisa da Costa Souza
- Laboratório de Ecologia e Evolução de Interações, Departamento de Física, Universidade Federal do Paraná CEP 81531-990, Curitiba, PR, Brazil
| | - Izabella Andrade de Brito
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-970, Curitiba, PR, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-970, Curitiba, PR, Brazil.
| |
Collapse
|
9
|
Hernández RB, Carrascal M, Abian J, Michalke B, Farina M, Gonzalez YR, Iyirhiaro GO, Moteshareie H, Burnside D, Golshani A, Suñol C. Manganese-induced neurotoxicity in cerebellar granule neurons due to perturbation of cell network pathways with potential implications for neurodegenerative disorders. Metallomics 2020; 12:1656-1678. [PMID: 33206086 DOI: 10.1039/d0mt00085j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Manganese (Mn) is essential for living organisms, playing an important role in nervous system function. Nevertheless, chronic and/or acute exposure to this metal, especially during early life stages, can lead to neurotoxicity and dementia by unclear mechanisms. Thus, based on previous works of our group with yeast and zebrafish, we hypothesized that the mechanisms mediating manganese-induced neurotoxicity can be associated with the alteration of protein metabolism. These mechanisms may also depend on the chemical speciation of manganese. Therefore, the current study aimed at investigating the mechanisms mediating the toxic effects of manganese in primary cultures of cerebellar granule neurons (CGNs). By exposing cultured CGNs to different chemical species of manganese ([[2-[(dithiocarboxy)amino]ethyl]carbamodithioato]](2-)-kS,kS']manganese, named maneb (MB), and [[1,2-ethanediylbis[carbamodithioato]](2-)]manganese mixture with [[1,2-ethanediylbis[carbamodithioato]](2-)]zinc, named mancozeb (MZ), and manganese chloride (MnCl2)), and using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, we observed that both MB and MZ induced similar cytotoxicity (LC50∼ 7-9 μM), which was higher than that of MnCl2 (LC50∼ 27 μM). Subsequently, we applied systems biology approaches, including metallomics, proteomics, gene expression and bioinformatics, and revealed that independent of chemical speciation, for non-cytotoxic concentrations (0.3-3 μM), Mn-induced neurotoxicity in CGNs is associated with metal dyshomeostasis and impaired protein metabolism. In this way, we verified that MB induced more post-translational alterations than MnCl2, which can be a plausible explanation for cytotoxic differences between both chemical species. The metabolism of proteins is one of the most energy consuming cellular processes and its impairment appears to be a key event of some cellular stress processes reported separately in other studies such as cell cycle arrest, energy impairment, cell signaling, excitotoxicity, immune response, potential protein accumulation and apoptosis. Interestingly, we verified that Mn-induced neurotoxicity shares pathways associated with the development of Alzheimer's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, and Parkinson's disease. This has been observed in baker's yeast and zebrafish suggesting that the mode of action of Mn may be evolutionarily conserved.
Collapse
Affiliation(s)
- Raúl Bonne Hernández
- Laboratory of Bioinorganic and Environmental Toxicology - LABITA, Department of Exact and Earth Sciences, Federal University of São Paulo, Rua Prof. Artur Riedel, 275, CEP 09972-270, Diadema, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Souza TL, Batschauer AR, Brito PM, Oliveira Ribeiro CA, Martino-Andrade AJ, Ortolani-Machado CF. Multigenerational analysis of the functional status of male reproductive system in mice after exposure to realistic doses of manganese. Food Chem Toxicol 2019; 133:110763. [DOI: 10.1016/j.fct.2019.110763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022]
|
11
|
Manganese-induced cellular disturbance in the baker's yeast, Saccharomyces cerevisiae with putative implications in neuronal dysfunction. Sci Rep 2019; 9:6563. [PMID: 31024033 PMCID: PMC6484083 DOI: 10.1038/s41598-019-42907-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
Manganese (Mn) is an essential element, but in humans, chronic and/or acute exposure to this metal can lead to neurotoxicity and neurodegenerative disorders including Parkinsonism and Parkinson’s Disease by unclear mechanisms. To better understand the effects that exposure to Mn2+ exert on eukaryotic cell biology, we exposed a non-essential deletion library of the yeast Saccharomyces cerevisiae to a sub-inhibitory concentration of Mn2+ followed by targeted functional analyses of the positive hits. This screen produced a set of 43 sensitive deletion mutants that were enriched for genes associated with protein biosynthesis. Our follow-up investigations demonstrated that Mn reduced total rRNA levels in a dose-dependent manner and decreased expression of a β-galactosidase reporter gene. This was subsequently supported by analysis of ribosome profiles that suggested Mn-induced toxicity was associated with a reduction in formation of active ribosomes on the mRNAs. Altogether, these findings contribute to the current understanding of the mechanism of Mn-triggered cytotoxicity. Lastly, using the Comparative Toxicogenomic Database, we revealed that Mn shared certain similarities in toxicological mechanisms with neurodegenerative disorders including amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s and Huntington’s diseases.
Collapse
|
12
|
Heavy metal sensitivities of gene deletion strains for ITT1 and RPS1A connect their activities to the expression of URE2, a key gene involved in metal detoxification in yeast. PLoS One 2018; 13:e0198704. [PMID: 30231023 PMCID: PMC6145592 DOI: 10.1371/journal.pone.0198704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/28/2018] [Indexed: 11/19/2022] Open
Abstract
Heavy metal and metalloid contaminations are among the most concerning types of pollutant in the environment. Consequently, it is important to investigate the molecular mechanisms of cellular responses and detoxification pathways for these compounds in living organisms. To date, a number of genes have been linked to the detoxification process. The expression of these genes can be controlled at both transcriptional and translational levels. In baker’s yeast, Saccharomyces cerevisiae, resistance to a wide range of toxic metals is regulated by glutathione S-transferases. Yeast URE2 encodes for a protein that has glutathione peroxidase activity and is homologous to mammalian glutathione S-transferases. The URE2 expression is critical to cell survival under heavy metal stress. Here, we report on the finding of two genes, ITT1, an inhibitor of translation termination, and RPS1A, a small ribosomal protein, that when deleted yeast cells exhibit similar metal sensitivity phenotypes to gene deletion strain for URE2. Neither of these genes were previously linked to metal toxicity. Our gene expression analysis illustrates that these two genes affect URE2 mRNA expression at the level of translation.
Collapse
|
13
|
Lourenço J, Marques S, Carvalho FP, Oliveira J, Malta M, Santos M, Gonçalves F, Pereira R, Mendo S. Uranium mining wastes: The use of the Fish Embryo Acute Toxicity Test (FET) test to evaluate toxicity and risk of environmental discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:391-404. [PMID: 28672228 DOI: 10.1016/j.scitotenv.2017.06.125] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 05/28/2023]
Abstract
Active and abandoned uranium mining sites often create environmentally problematic situations, since they cause the contamination of all environmental matrices (air, soil and water) with stable metals and radionuclides. Due to their cytotoxic, genotoxic and teratogenic properties, the exposure to these contaminants may cause several harmful effects in living organisms. The Fish Embryo Acute Toxicity Test (FET) test was employed to evaluate the genotoxic and teratogenic potential of mine liquid effluents and sludge elutriates from a deactivated uranium mine. The aims were: a) to determine the risk of discharge of such wastes in the environment; b) the effectiveness of the chemical treatment applied to the uranium mine water, which is a standard procedure generally applied to liquid effluents from uranium mines and mills, to reduce its toxicological potential; c) the suitability of the FET test for the evaluation the toxicity of such wastes and the added value of including the evaluation of genotoxicity. Results showed that through the FET test it was possible to determine that both elutriates and effluents are genotoxic and also that the mine effluent is teratogenic at low concentrations. Additionally, liquid effluents and sludge elutriates affect other parameters namely, growth and hatching and that water pH alone played an important role in the hatching process. The inclusion of genotoxicity evaluation in the FET test was crucial to prevent the underestimation of the risks posed by some of the tested effluents/elutriates. Finally, it was possible to conclude that care should be taken when using benchmark values calculated for specific stressors to evaluate the risk posed by uranium mining wastes to freshwater ecosystems, due to their chemical complexity.
Collapse
Affiliation(s)
- J Lourenço
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - S Marques
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - F P Carvalho
- Instituto Superior Técnico/Laboratório de Proteccão e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, km 139, 2695-066 Bobadela LRS, Portugal.
| | - J Oliveira
- Instituto Superior Técnico/Laboratório de Proteccão e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, km 139, 2695-066 Bobadela LRS, Portugal.
| | - M Malta
- Instituto Superior Técnico/Laboratório de Proteccão e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, km 139, 2695-066 Bobadela LRS, Portugal.
| | - M Santos
- Instituto Superior Técnico/Laboratório de Proteccão e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, km 139, 2695-066 Bobadela LRS, Portugal.
| | - F Gonçalves
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - R Pereira
- Department of Biology, Faculty of Sciences of the University of Porto & CIIMAR - Interdisciplinary Centre of Marine and Environmental Research & GreenUP/CITAB-UP, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - S Mendo
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
14
|
Tu H, Fan C, Chen X, Liu J, Wang B, Huang Z, Zhang Y, Meng X, Zou F. Effects of cadmium, manganese, and lead on locomotor activity and neurexin 2a expression in zebrafish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2147-2154. [PMID: 28120348 DOI: 10.1002/etc.3748] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/06/2016] [Accepted: 01/20/2017] [Indexed: 05/09/2023]
Abstract
The synaptic adhesion protein Neurexin 2a (Nrxn2a) plays a key role in neuronal development and is associated with cognitive functioning and locomotor behavior. Although low-level metal exposure poses a potential risk to the human nervous system, especially during the developmental stages, little is known about the effects of metal exposures on nrxn2a expression during embryonic development. We therefore exposed wild-type zebrafish embryos/larvae to cadmium (CdCl2 ), manganese (MnCl2 ), and lead ([CH3 COO]2 Pb), to determine their effect on mortality, malformation, and hatching rate. Concentrations of these metals in zebrafish were detected by inductively coupled plasma mass spectrometry analysis. Locomotor activity of zebrafish larvae was analyzed using a video-track tracking system. Expression of nrxn2a was assessed by in situ hybridization and quantitative polymerase chain reaction. The results showed that mortality, malformation, and bioaccumulation increased as the exposure dosages and duration increased. Developmental exposure to these metals significantly reduced larval swim distance and velocity. The nrxn2aa and nrxn2ab genes were expressed in the central nervous system and downregulated by almost all of the 3 metals, especially Pb. These data demonstrate that exposure to metals downregulates nrxn2a in the zebrafish model system, and this is likely linked to concurrent developmental processes. Environ Toxicol Chem 2017;36:2147-2154. © 2017 SETAC.
Collapse
Affiliation(s)
- Hongwei Tu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Chengji Fan
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaohui Chen
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiaxian Liu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Wang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhibin Huang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yiyue Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Altenhofen S, Wiprich MT, Nery LR, Leite CE, Vianna MRMR, Bonan CD. Manganese(II) chloride alters behavioral and neurochemical parameters in larvae and adult zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 182:172-183. [PMID: 27912164 DOI: 10.1016/j.aquatox.2016.11.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/24/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Manganese (Mn) is an essential metal for organisms, but high levels can cause serious neurological damage. The aim of this study was to evaluate the effects of MnCl2 exposure on cognition and exploratory behavior in adult and larval zebrafish and correlate these findings with brain accumulation of Mn, overall brain tyrosine hydroxylase (TH) levels, dopamine (DA) levels, 3,4-dihydroxyphenylacetic acid (DOPAC) levels and cell death markers in the nervous system. Adults exposed to MnCl2 for 4days (0.5, 1.0 and 1.5mM) and larvae exposed for 5days (0.1, 0.25 and 0.5mM) displayed decreased exploratory behaviors, such as distance traveled and absolute body turn angle, in addition to reduced movement time and an increased number of immobile episodes in larvae. Adults exposed to MnCl2 for 4days showed impaired aversive long-term memory in the inhibitory avoidance task. The overall brain TH levels were elevated in adults and larvae evaluated at 5 and 7 days post-fertilization (dpf). Interestingly, the protein level of this enzyme was decreased in larval animals at 10dpf. Furthermore, DOPAC levels were increased in adult animals exposed to MnCl2. Protein analysis showed increased apoptotic markers in both the larvae and adult nervous system. The results demonstrated that prolonged exposure to MnCl2 leads to locomotor deficits that may be associated with damage caused by this metal in the CNS, particularly in the dopaminergic system.
Collapse
Affiliation(s)
- Stefani Altenhofen
- PUCRS, Faculdade de Biociências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil
| | - Melissa Talita Wiprich
- PUCRS, Faculdade de Biociências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil
| | - Laura Roesler Nery
- PUCRS, Faculdade de Biociências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil
| | | | - Monica Ryff Moreira Roca Vianna
- PUCRS, Faculdade de Biociências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- PUCRS, Faculdade de Biociências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil.
| |
Collapse
|