1
|
Shi J, Fang Y, Zuo Z, Wang Y, Yin Z, Jia B, Yang Z, Wang Z, Guo Z, Sun Y. Electric field-induced conformational dynamics of CA9: a potential biomarker for glioblastoma multiforme. J Biomol Struct Dyn 2025:1-14. [PMID: 40159762 DOI: 10.1080/07391102.2025.2472405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2025]
Abstract
GBM, a malignant brain tumor prevalent in adults, can be treated using Electric field (EF) therapy. However, the underlying mechanism of EF-based GBM therapy is not well understood. In this study, we used bioinformatics and MD analysis to explore CA9 in EF therapy for GBM. CA9 was identified as a differentially expressed gene (DEG) sensitive to EF stimulation in GBM using GEO and TCGA for integrated analysis. Elevated CA9 expression was associated with reduced overall survival in GBM patients, indicating that CA9 was an adverse prognostic factor. Single-cell data demonstrated that CA9 expression was significantly higher in GBM cells than in normal cells, suggesting that CA9 could be an EF-sensitive biomarker for GBM. GSVA analysis suggested that CA9 was related to hypoxia and glucose metabolism in glioblastoma. MD simulations were employed to examine the impact of EF (0 V/nm ≤ E ≤ 0.5 V/nm) on the conformation of the CA9 protein, including RMSF, RMSD, Rg, secondary structure, and dipole moment. The CA9 protein structure was altered with different EF intensities, affecting the motion of protein atoms in an EF intensity-dependent manner. The number of hydrogen bonds was significantly reduced as the EF intensity increased, indicating that EF disrupted the hydrogen bonds. Additionally, the EF intensity affected the dipole moment and characteristic time. Besides, the CA9 gene family analysis suggested that this gene family was highly conserved. Overall, CA9 showed potential as a GBM biomarker sensitive to EF, presenting a prospective target for therapeutic interventions in EF-mediated GBM treatment.
Collapse
Affiliation(s)
- Jiajia Shi
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yanwei Fang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zhuo Zuo
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yaxing Wang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zhongqian Yin
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, China
| | - Bin Jia
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zhouqi Yang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zhe Wang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zhenjun Guo
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yulong Sun
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
2
|
He L, Zhang L, Peng Y, He Z. Selenium in cancer management: exploring the therapeutic potential. Front Oncol 2025; 14:1490740. [PMID: 39839762 PMCID: PMC11746096 DOI: 10.3389/fonc.2024.1490740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Selenium (Se) is important and plays significant roles in many biological processes or physiological activities. Prolonged selenium deficiency has been conclusively linked to an elevated risk of various diseases, including but not limited to cancer, cardiovascular disease, inflammatory bowel disease, Keshan disease, and acquired immunodeficiency syndrome. The intricate relationship between selenium status and health outcomes is believed to be characterized by a non-linear U-shaped dose-response curve. This review delves into the significance of maintaining optimal selenium levels and the detrimental effects that can arise from selenium deficiency. Of particular interest is the important role that selenium plays in both prevention and treatment of cancer. Finally, this review also explores the diverse classes of selenium entities, encompassing selenoproteins, selenium compounds and selenium nanoparticles, while examining the mechanisms and molecular targets of their anticancer efficacy.
Collapse
Affiliation(s)
- Lingwen He
- Department of Oncology, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Lu Zhang
- Department of Oncology, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Yulong Peng
- Department of Oncology, Dongguan Tungwah Hospital, Dongguan, China
| | - Zhijun He
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Khaledizade E, Tafvizi F, Jafari P. Anti-breast cancer activity of biosynthesized selenium nanoparticles using Bacillus coagulans supernatant. J Trace Elem Med Biol 2024; 82:127357. [PMID: 38103517 DOI: 10.1016/j.jtemb.2023.127357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/07/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND In the present study, Selenium Nanoparticles (SeNPs) were prepared using Bacillus coagulans, which is a type of Lactic Acid Bacteria (LAB), and then they were applied to treat breast cancer cells. METHODS The chemicophysical properties of the bioengineered SeNPs were investigated by Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FE-SEM), zeta potential, dynamic light scattering, Fourier Transform Infrared Spectroscopy (FT-IR), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction analysis (XRD). The cytotoxic potential of SeNPs was evaluated by MTT assay against MCF-7 breast cancer cell line. The expression levels of apoptotic genes including BAX, BCL2, VEGF, ERBB2, CASP3, CASP9, CCNE1, CCND1, MMP2 and MMP9 were determined by real-time PCR. The rate of apoptosis and necrosis of the cancer cells as well as the results of the cell cycle were evaluated by flow cytometry method. RESULTS The synthesized SeNPs had an average particle size of about 24-40 nm and a zeta potential of -16.1 mV, indicating the high stability of SeNPs. EDX results showed presence of SeNPs because amount of selenium in SeNPs was 86.6 % by weight. The cytotoxicity results showed a concentration-dependent effect against MCF-7 cells. The half-maximal inhibitory concentration (IC50) values of B. coagulans supernatant and SeNPs against breast cancer cells were 389.7 µg/mL and 17.56 µg/mL, respectively. In addition, SeNPs synthesized by the green process exhibited enhanced apoptotic potential in MCF-7 cancer cells compared with bacterial supernatants. Cancer cells treated with IC50 concentration of SeNPs induced 32 % apoptosis compared to untreated cells (3 % apoptosis). The gene expression levels of BAX, CASP3, and CASP9 were upregulated, while the expression levels of BCL2, CCNE1, CCND1, MMP2, MMP9, VEGF, and ERBB2 were downregulated after SeNPs treatment of cells. The potential of SeNPs to induce cell apoptosis was demonstrated by the increase in the expression level of BAX gene and the decrease in the expression level of BCL2 after treatment of cancer cells with SeNPs. CONCLUSION The obtained results indicated that SeNPs had strong potential to induce significant cell apoptosis and are cytotoxic against the MCF-7 cancer cell line.
Collapse
Affiliation(s)
- Elaheh Khaledizade
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Parvaneh Jafari
- Microbiology Department, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
4
|
Zhang Z, Ren P, Cao Y, Wang T, Huang G, Li Y, Zhou S, Yang W, Yang L, Liu G, Xiang Y, Pei Y, Chen Q, Chen J, Lv S. HOXD-AS2-STAT3 feedback loop attenuates sensitivity to temozolomide in glioblastoma. CNS Neurosci Ther 2023; 29:3430-3445. [PMID: 37308741 PMCID: PMC10580348 DOI: 10.1111/cns.14277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/14/2023] Open
Abstract
AIMS Glioblastoma multiforme (GBM) is the deadliest glioma and its resistance to temozolomide (TMZ) remains intractable. Long non-coding RNAs (lncRNAs) play crucial roles in that and this study aimed to investigate underlying mechanism of HOXD-AS2-affected temozolomide sensitivity in glioblastoma. METHODS We analyzed and validated the aberrant HOXD-AS2 expression in glioma specimens. Then we explored the function of HOXD-AS2 in vivo and in vitro and a clinical case was also reviewed to examine our findings. We further performed mechanistic experiments to investigate the mechanism of HOXD-AS2 in regulating TMZ sensitivity. RESULTS Elevated HOXD-AS2 expression promoted progression and negatively correlated with prognosis of glioma; HOXD-AS2 attenuated temozolomide sensitivity in vitro and in vivo; The clinical case also showed that lower HOXD-AS2 sensitized glioblastoma to temozolomide; STAT3-induced HOXD-AS2 could interact with IGF2BP2 protein to form a complex and sequentially upregulate STAT3 signaling, thus forming a positive feedback loop regulating TMZ sensitivity in glioblastoma. CONCLUSION Our study elucidated the crucial role of the HOXD-AS2-STAT3 positive feedback loop in regulating TMZ sensitivity, suggesting that this could be provided as a potential therapeutic candidate of glioblastoma.
Collapse
Affiliation(s)
- Zuo‐Xin Zhang
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Peng Ren
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yong‐Yong Cao
- School of MedicineChongqing UniversityChongqingChina
| | - Ting‐Ting Wang
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Guo‐Hao Huang
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yao Li
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Shuo Zhou
- School of MedicineChongqing UniversityChongqingChina
| | - Wei Yang
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Lin Yang
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Guo‐Long Liu
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yan Xiang
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yu‐Chun Pei
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Qiu‐Zi Chen
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Ju‐Xiang Chen
- Department of NeurosurgeryChanghai Hospital, Second Military Medical UniversityShanghaiChina
| | - Sheng‐Qing Lv
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| |
Collapse
|
5
|
Harnessing oxidative stress for anti-glioma therapy. Neurochem Int 2022; 154:105281. [PMID: 35038460 DOI: 10.1016/j.neuint.2022.105281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
Glioma cells use intermediate levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) for growth and invasion, and suppressing these reactive molecules thus may compromise processes that are vital for glioma survival. Increased oxidative stress has been identified in glioma cells, in particular in glioma stem-like cells. Studies have shown that these cells harbor potent antioxidant defenses, although endogenous protection against nitrosative stress remains understudied. The enhancement of oxidative or nitrosative stress offers a potential target for triggering glioma cell death, but whether oxidative and nitrosative stresses can be combined for therapeutic effects requires further research. The optimal approach of harnessing oxidative stress for anti-glioma therapy should include the induction of free radical-induced oxidative damage and the suppression of antioxidant defense mechanisms selectively in glioma cells. However, selective induction of oxidative/nitrosative stress in glioma cells remains a therapeutic challenge, and research into selective drug delivery systems is ongoing. Because of multifactorial mechanisms of glioma growth, progression, and invasion, prospective oncological therapies may include not only therapeutic oxidative/nitrosative stress but also inhibition of oncogenic kinases, antioxidant molecules, and programmed cell death mediators.
Collapse
|
6
|
Stanković T, Ranđelović T, Dragoj M, Stojković Burić S, Fernández L, Ochoa I, Pérez-García VM, Pešić M. In vitro biomimetic models for glioblastoma-a promising tool for drug response studies. Drug Resist Updat 2021; 55:100753. [PMID: 33667959 DOI: 10.1016/j.drup.2021.100753] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
The poor response of glioblastoma to current treatment protocols is a consequence of its intrinsic drug resistance. Resistance to chemotherapy is primarily associated with considerable cellular heterogeneity, and plasticity of glioblastoma cells, alterations in gene expression, presence of specific tumor microenvironment conditions and blood-brain barrier. In an attempt to successfully overcome chemoresistance and better understand the biological behavior of glioblastoma, numerous tri-dimensional (3D) biomimetic models were developed in the past decade. These novel advanced models are able to better recapitulate the spatial organization of glioblastoma in a real time, therefore providing more realistic and reliable evidence to the response of glioblastoma to therapy. Moreover, these models enable the fine-tuning of different tumor microenvironment conditions and facilitate studies on the effects of the tumor microenvironment on glioblastoma chemoresistance. This review outlines current knowledge on the essence of glioblastoma chemoresistance and describes the progress achieved by 3D biomimetic models. Moreover, comprehensive literature assessment regarding the influence of 3D culturing and microenvironment mimicking on glioblastoma gene expression and biological behavior is also provided. The contribution of the blood-brain barrier as well as the blood-tumor barrier to glioblastoma chemoresistance is also reviewed from the perspective of 3D biomimetic models. Finally, the role of mathematical models in predicting 3D glioblastoma behavior and drug response is elaborated. In the future, technological innovations along with mathematical simulations should create reliable 3D biomimetic systems for glioblastoma research that should facilitate the identification and possibly application in preclinical drug testing and precision medicine.
Collapse
Affiliation(s)
- Tijana Stanković
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Teodora Ranđelović
- Tissue Microenvironment Lab (TME), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon 50018, Spain; Institute for Health Research Aragon (IIS Aragón), Instituto de Salud Carlos III, Zaragoza, Spain
| | - Miodrag Dragoj
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Sonja Stojković Burić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Luis Fernández
- Tissue Microenvironment Lab (TME), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon 50018, Spain; Centro Investigación Biomédica en Red. Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Aragon 50018, Spain; Institute for Health Research Aragon (IIS Aragón), Instituto de Salud Carlos III, Zaragoza, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment Lab (TME), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon 50018, Spain; Centro Investigación Biomédica en Red. Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Aragon 50018, Spain; Institute for Health Research Aragon (IIS Aragón), Instituto de Salud Carlos III, Zaragoza, Spain
| | - Victor M Pérez-García
- Departamento de Matemáticas, E.T.S.I. Industriales and Instituto de Matemática Aplicada a la Ciencia y la Ingeniería (IMACI), Universidad de Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia.
| |
Collapse
|
7
|
Manda K, Kriesen S, Hildebrandt G. The solvent and treatment regimen of sodium selenite cause its effects to vary on the radiation response of human bronchial cells from tumour and normal tissues. Med Oncol 2020; 37:115. [PMID: 33205219 PMCID: PMC7671986 DOI: 10.1007/s12032-020-01437-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/30/2020] [Indexed: 01/08/2023]
Abstract
Sodium selenite is often given to moderate the side effects of cancer therapy to enhance the cellular defence of non-cancerous cells. To determine whether sodium selenite during radiotherapy protects not only normal cells but also cancer cells, which would imply a reduction of the desired effect of irradiation on tumour during radiotherapy, the effect of the combined treatment of irradiation and sodium selenite was investigated. Human bronchial cells from carcinoma (A549) and normal tissue (BEAS-2B) were treated with sodium selenite and effects on growth and in combination with radiation on metabolic activity and cell cycle distribution were studied. The influence on radiosensitivity was determined via colony forming assays using different solvents of sodium selenite and treatment schedules. It was shown that sodium selenite inhibits growth and influences cell cycle distribution of both normal and tumour cells. Metabolic activity of normal cells decreased more rapidly compared to that of cancer cells. The influence of sodium selenite on radiation response depended on the different treatment schedules and was strongly affected by the solvent of the agent. It could be shown that the effect of sodium selenite on radiation response is strongly dependent on the respective experimental in vitro conditions and ranges from lead to an initially suspected but ultimately no real radioprotection to radiosensitizing up to no effect in one and the same cell line. This might be a reason for controversially described cell responses to radiation under the influence of sodium selenite in studies so far.
Collapse
Affiliation(s)
- Katrin Manda
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| | - Stephan Kriesen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany
| |
Collapse
|
8
|
Hariharan S, Dharmaraj S. Selenium and selenoproteins: it's role in regulation of inflammation. Inflammopharmacology 2020; 28:667-695. [PMID: 32144521 PMCID: PMC7222958 DOI: 10.1007/s10787-020-00690-x] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/06/2020] [Indexed: 12/22/2022]
Abstract
Abstract Selenium is an essential immunonutrient which holds the human’s metabolic activity with its chemical bonds. The organic forms of selenium naturally present in human body are selenocysteine and selenoproteins. These forms have a unique way of synthesis and translational coding. Selenoproteins act as antioxidant warriors for thyroid regulation, male-fertility enhancement, and anti-inflammatory actions. They also participate indirectly in the mechanism of wound healing as oxidative stress reducers. Glutathione peroxidase (GPX) is the major selenoprotein present in the human body, which assists in the control of excessive production of free radical at the site of inflammation. Other than GPX, other selenoproteins include selenoprotein-S that regulates the inflammatory cytokines and selenoprotein-P that serves as an inducer of homeostasis. Previously, reports were mainly focused on the cellular and molecular mechanism of wound healing with reference to various animal models and cell lines. In this review, the role of selenium and its possible routes in translational decoding of selenocysteine, synthesis of selenoproteins, systemic action of selenoproteins and their indirect assimilation in the process of wound healing are explained in detail. Some of the selenium containing compounds which can acts as cancer preventive and therapeutics are also discussed. These compounds directly or indirectly exhibit antioxidant properties which can sustain the intracellular redox status and these activities protect the healthy cells from reactive oxygen species induced oxidative damage. Although the review covers the importance of selenium/selenoproteins in wound healing process, still some unresolved mystery persists which may be resolved in near future. Graphic abstract ![]()
Collapse
Affiliation(s)
- Sneha Hariharan
- Department of Biochemistry, Karpagam Academy of Higher Education, Eachanari Post, Pollachi Main Road, Coimbatore, Tamil Nadu, 641021, India
| | - Selvakumar Dharmaraj
- Department of Biochemistry, Karpagam Academy of Higher Education, Eachanari Post, Pollachi Main Road, Coimbatore, Tamil Nadu, 641021, India.
| |
Collapse
|
9
|
Xing H, Zheng S, Zhang Z, Zhu F, Xue H, Xu S. Pharmacokinetics of Selenium in Healthy Piglets After Different Routes of Administration: Application of Pharmacokinetic Data to the Risk Assessment of Selenium. Biol Trace Elem Res 2019; 191:403-411. [PMID: 30685819 DOI: 10.1007/s12011-019-1644-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/16/2019] [Indexed: 01/16/2023]
Abstract
Selenium (Se) is a trace element in the environment. Although it is a necessary trace element for human and animal health, excessive Se can also pollute the environment and show toxic effects on humans and animals. Since the safe dose range of Se is narrow, it is important to study the pharmacokinetics of Se in order to make better use of the biological effects of Se. In the present study, we investigated the pharmacokinetic process of sodium selenate in healthy piglet plasma after either intramuscular injection or oral administrations, and examined dynamic changes of antioxidant system in healthy piglets after Se supplementation. The results showed that the Se reached the peak concentration of (0.2451 ± 0.0123) μg mL-1 at (0.4237 ± 0.0185) h following intramuscular injection administration and (0.1781 ± 0.0142) μg mL-1 at (2.1517 ± 0.1806) h following oral administration in the plasma. The average AUC of sodium selenite following intramuscular injection and oral administrations was (31.7260 ± 1.3574) and (75.1460 ± 3.4127) mg L-1 h-1, respectively. Total antioxidant capacity (T-AOC), glutathione peroxidase (GPx), and superoxide dismutase (SOD) generally show an upward trend and malondialdehyde (MDA) shows a downward trend, regardless of intramuscular injection or oral sodium selenite. An increased concentration of Se was observed in the serum of healthy piglets after intramuscular injection and oral sodium selenite. Our results indicated that the pharmacokinetic process of sodium selenate in healthy piglet blood conforms to the two-chamber open model. Its pharmacokinetic properties are rapid absorption and slow excretion. Antioxidant systems in healthy piglets vary with Se levels, but there is a significant lag period compared with the latter. Our current findings will provide a more complete understanding of clinical rational Se supplementation and avoid contamination of the environment by overdose.
Collapse
Affiliation(s)
- Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Shufang Zheng
- Department of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Ziwei Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Fating Zhu
- National Selenium-Rich Products Quality Supervision and Inspection Center, Enshi, 445000, China
| | - Hua Xue
- National Selenium-Rich Products Quality Supervision and Inspection Center, Enshi, 445000, China
| | - Shiwen Xu
- Department of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China.
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China.
| |
Collapse
|
10
|
Selenium Enhances the Apoptotic Efficacy of Docetaxel Through Activation of TRPM2 Channel in DBTRG Glioblastoma Cells. Neurotox Res 2019; 35:797-808. [PMID: 30796690 DOI: 10.1007/s12640-019-0009-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 01/01/2023]
Abstract
The rate of mitosis of cancer cells is significantly higher than normal primary cells with increased metabolic needs, which in turn enhances the generation of reactive oxygen species (ROS) production. Higher ROS production is known to increase cancer cell dependence on ROS scavenging systems to counteract the increased ROS. Therapeutic options which selectively modulate the levels of intracellular ROS in cancers are likely candidates for drug discovery. Docetaxel (DTX) has demonstrated antitumor activity in preclinical and clinical studies. It is thought that DTX induces cell death through excessive ROS production and increased Ca2+ entry. The Ca2+ permeable TRPM2 channel is activated by ROS. Selenium (Se) has been previously used to stimulate apoptosis for the treatment of glioblastoma cells resistant to DTX. However, the potential mechanism(s) of the additive effect of DTX on TRPM2 channels in cancer cells remains unclear. The aim of this study was to evaluate the effect of combination therapy of DTX and Se on activation of TRPM2 in DBTRG glioblastoma cells. DBTRG cells were divided into four treatment groups: control, DTX (10 nM for 10 h), Se (1 μM for 10 h), and DTX+Se. Our study showed that apoptosis (Annexin V and propidium iodide), mitochondrial membrane depolarization (JC1), and ROS production levels were increased in DBTRG cells following treatment with Se and DTX respectively. Cell number and viability, and the levels of apoptosis, JC1, ROS, and [Ca2+]i, induced by DTX, were further increased following addition of Se. We also observed an additive increase in the activation of the NAD-dependent DNA repair enzyme poly (ADP-ribose) polymerase-1 (PARP-1) activity, which was accompanied by a decline in its essential substrate NAD+. As well, the Se- and DTX-induced increases in intracellular Ca2+ florescence intensity were decreased following treatment with the TRPM2 antagonist N-(p-amylcinnamoyl) anthranilic acid (ACA). Therefore, combination therapy with Se and DTX may represent an effective strategy for the treatment of glioblastoma cells and may be associated with TRPM2-mediated increases in oxidative stress and [Ca2+]i.
Collapse
|
11
|
Tan HW, Mo HY, Lau ATY, Xu YM. Selenium Species: Current Status and Potentials in Cancer Prevention and Therapy. Int J Mol Sci 2018; 20:ijms20010075. [PMID: 30585189 PMCID: PMC6337524 DOI: 10.3390/ijms20010075] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/10/2018] [Accepted: 12/20/2018] [Indexed: 02/05/2023] Open
Abstract
Selenium (Se) acts as an essential trace element in the human body due to its unique biological functions, particularly in the oxidation-reduction system. Although several clinical trials indicated no significant benefit of Se in preventing cancer, researchers reported that some Se species exhibit superior anticancer properties. Therefore, a reassessment of the status of Se and Se compounds is necessary in order to provide clearer insights into the potentiality of Se in cancer prevention and therapy. In this review, we organize relevant forms of Se species based on the three main categories of Se-inorganic, organic, and Se-containing nanoparticles (SeNPs)-and overview their potential functions and applications in oncology. Here, we specifically focus on the SeNPs as they have tremendous potential in oncology and other fields. In general, to make better use of Se compounds in cancer prevention and therapy, extensive further study is still required to understand the underlying mechanisms of the Se compounds.
Collapse
Affiliation(s)
- Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| | - Hai-Ying Mo
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
12
|
A New Patient-Derived Metastatic Glioblastoma Cell Line: Characterisation and Response to Sodium Selenite Anticancer Agent. Cancers (Basel) 2018; 11:cancers11010012. [PMID: 30583471 PMCID: PMC6356827 DOI: 10.3390/cancers11010012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/07/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiform (GBM) tumors are very heterogeneous, organized in a hierarchical pattern, including cancer stem cells (CSC), and are responsible for development, maintenance, and cancer relapse. Therefore, it is relevant to establish new GBM cell lines with CSC characteristics to develop new treatments. A new human GBM cell line, named R2J, was established from the cerebro-spinal fluid (CSF) of a patient affected by GBM with leptomeningeal metastasis. R2J cells exhibits an abnormal karyotype and form self-renewable spheres in a serum-free medium. Original tumor, R2J, cultured in monolayer (2D) and in spheres showed a persistence expression of CD44, CD56 (except in monolayer), EGFR, Ki67, Nestin, and vimentin. The R2J cell line is tumorigenic and possesses CSC properties. We tested in vitro the anticancer effects of sodium selenite (SS) compared to temozolomide TMZ. SS was absorbed by R2J cells, was cytotoxic, induced an oxidative stress, and arrested cell growth in G2M before inducing both necrosis and apoptosis via caspase-3. SS also modified dimethyl-histone-3-lysine-9 (H3K9m2) levels and decreased histone deacetylase (HDAC) activity, suggesting anti-invasiveness potential. This study highlights the value of this new GBM cell line for preclinical modeling of clinically relevant, patient specific GBM and opens a therapeutic window to test SS to target resistant and recurrent GBM.
Collapse
|
13
|
|