1
|
Fernández-Ruiz R. Bioanalytical Application of the Total-Reflection X-Ray Fluorescence Spectrometry. Int J Mol Sci 2025; 26:1049. [PMID: 39940817 PMCID: PMC11816383 DOI: 10.3390/ijms26031049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
This paper briefly overviews the application of total-reflection X-ray fluorescence (TXRF) spectrometry in the biosciences, focusing on key bioanalytical applications. It seeks to review and update the current state of TXRF's use in biomedical, biochemical, and pharmacological research. The review highlights relevant works in the field, summarising past achievements and incorporating the latest developments. The goal is to demonstrate how the analytical application of TXRF spectrometry in this area has evolved and what its role is in analysing trace elements and other biomolecules in diverse biological samples and diseases. Physical foundations to understand its analytical power and its comparison with related analytical techniques are presented to gain objective knowledge of the benefits, limitations, and drawbacks that TXRF spectrometry can offer.
Collapse
Affiliation(s)
- Ramón Fernández-Ruiz
- Servicio Interdepartamental de Investigación, Laboratorio de XRF (TXRF/GIXRF/μXRF/PSD-LD), Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
2
|
Queipo-Abad S, Pedrero Z, Marchán-Moreno C, El Hanafi K, Bérail S, Corns WT, Cherel Y, Bustamante P, Amouroux D. Reply to the comment on "New insights into the biomineralization of mercury selenide nanoparticles through stable isotope analysis in giant petrel tissues" by A. Manceau, J. Hazard. Mater. 425 (2021) 127922. doi: 10.1016/j.jhazmat.2021.127922. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128582. [PMID: 35359111 DOI: 10.1016/j.jhazmat.2022.128582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
In the comments reported by A. Manceau [1], relating to our recent paper on mercury (Hg) species-specific isotopic characterization in giant petrel tissues [2] two critical questions were raised. Firstly, according to A. Manceau, our method of extraction and isolation of nanoparticles was not able to efficiently isolate mercury selenide nanoparticles (HgSe NPs) and therefore the δ202Hg values measured are not species-specific, but rather δ202Hg of mixtures of complexes such as MeHgCys, Hg(Sec)4, and HgSe. Secondly, he suggests that our main findings showing that no isotopic fractionation is induced during the HgSe NPs biomineralization step from the precursor-demethylated species is erroneous because it contradicts the conclusion of two recent articles by A. Manceau and co-workers [3,4]. In this reply we defend our scientific findings and respectively respond to the questions and comments raised by A. Manceau.
Collapse
Affiliation(s)
- Silvia Queipo-Abad
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Zoyne Pedrero
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France.
| | - Claudia Marchán-Moreno
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Khouloud El Hanafi
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Sylvain Bérail
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Warren T Corns
- PS Analytical, Arthur House, Crayfields Industrial Estate, Main Road, Orpington, Kent BR5 3HP, UK
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS - La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| | - David Amouroux
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| |
Collapse
|
3
|
Huang X, Li Y, Nie M, Yue M, Li Y, Lin Z, Pan H, Fang M, Wu T, Li S, Zhang J, Xia N, Zhao Q. Capsid destabilization and epitope alterations of human papillomavirus 18 in the presence of thimerosal. J Pharm Anal 2021; 11:617-627. [PMID: 34765275 PMCID: PMC8572666 DOI: 10.1016/j.jpha.2020.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/29/2020] [Accepted: 08/18/2020] [Indexed: 11/28/2022] Open
Abstract
Thimerosal has been widely used as a preservative in drug and vaccine products for decades. Due to the strong propensity to modify thiols in proteins, conformational changes could occur due to covalent bond formation between ethylmercury (a degradant of thimerosal) and thiols. Such a conformational change could lead to partial or even complete loss of desirable protein function. This study aims to investigate the effects of thimerosal on the capsid stability and antigenicity of recombinant human papillomavirus (HPV) 18 virus-like particles (VLPs). Dramatic destabilization of the recombinant viral capsid upon thimerosal treatment was observed. Such a negative effect on the thermal stability of VLPs preserved with thimerosal was shown to be dependent on the thimerosal concentration. Two highly neutralizing antibodies, 13H12 and 3C3, were found to be the most sensitive to thimerosal treatment. The kinetics of antigenicity loss, when monitored with 13H12 or 3C3 as probes, yielded two distinctly different sets of kinetic parameters, while the data from both monoclonal antibodies (mAbs) followed a biphasic exponential decay model. The potential effect of thimerosal on protein function, particularly for thiol-containing proteinaceous active components, needs to be comprehensively characterized during formulation development when a preservative is necessary. Altered antigenicity of thimerosal-treated HPV VLPs was observed with antibodies. Antigenicity reduction and capsid destabilization were concentration dependent. The kinetics of epitope-specific antigenicity loss were monitored in real time. The reduced antigenicity of adjuvant-adsorbed antigens was visualized.
Collapse
Affiliation(s)
- Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yike Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Meifeng Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Mingxi Yue
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yufang Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhijie Lin
- Xiamen Innovax Biotech Company, Xiamen, Fujian, 361005, China
| | - Huirong Pan
- Xiamen Innovax Biotech Company, Xiamen, Fujian, 361005, China
| | - Mujin Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Life Science, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Life Science, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| |
Collapse
|
4
|
Will JM, Erbacher C, Sperling M, Karst U. A mass spectrometry-based approach gives new insight into organotin-protein interactions. Metallomics 2020; 12:1702-1712. [PMID: 32930317 DOI: 10.1039/d0mt00171f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, the combination of speciation analysis and native mass spectrometry is presented as a powerful tool to gain new insight into the diverse interactions of environmentally relevant organotin compounds (OTCs) with proteins. Analytical standards of model proteins, such as β-lactoglobulin A (LGA), were thereby incubated with different phenyl- and butyltins. For adduct identification and characterization, the incubated samples were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) and electrospray ionization-mass spectrometry (ESI-MS) in combination with size exclusion chromatography (SEC). It allowed for a mild separation, which was most crucial to preserve the acid-labile organotin-protein adducts during their analyses. The binding of triorganotin compounds, such as triphenyltin, was shown to be sulfhydryl-directed by using cysteine-specific protein labeling. However, the sole availability of reduced cysteine residues in proteins did not automatically enable adduct formation. This observation complements previous studies and indicates the necessity of a highly specific binding pocket, which was identified for the model protein LGA via enzymatic digestion experiments. In contrast to triorganotins, their natural di- and mono-substituted degradation products, such as dibutyltin, revealed to be less specific regarding their binding to several proteins. Further, it also did not depend on reduced cysteine residues within the protein. In this context, they can probably act as linker molecules, interconnecting proteins, and leading to dimers and probably to higher oligomers. Furthermore, dibutyltin was observed to induce hydrolysis of the protein's peptide backbone at a specific site. Concerning unknown long-term toxic effects, our studies emphasize the importance of future studies on di- and mono-substituted OTCs.
Collapse
Affiliation(s)
- Jonas M Will
- Institute of Inorganic and Analytical Chemistry, University of Muenster, Corrensstr. 28/30, 48149 Muenster, Germany.
| | | | | | | |
Collapse
|
5
|
Chen S, Huang X, Li Y, Wang X, Pan H, Lin Z, Zheng Q, Li S, Zhang J, Xia N, Zhao Q. Altered antigenicity and immunogenicity of human papillomavirus virus-like particles in the presence of thimerosal. Eur J Pharm Biopharm 2019; 141:221-231. [PMID: 31154067 DOI: 10.1016/j.ejpb.2019.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/07/2019] [Accepted: 05/28/2019] [Indexed: 11/25/2022]
Abstract
Thimerosal has been widely used as a preservative in human vaccines for decades. Thimerosal, a thiol capping agent with ethyl mercury being the active degradant, could have impacts on the vaccine potency due to potential thiol modification. The effects on the antigenicity and immunogenicity of human papillomavirus (HPV) virus-like particles (VLPs) in the presence of thimerosal was studied. In general, reduced binding activity was observed between HPV antigens and monoclonal antibodies (mAbs) upon thimerosal treatment, accompanied by reduced protein conformational stability. The immunogenicity of a pentavalent vaccine formulation (HPV6, HPV11, HPV16, HPV18 and hepatitis E virus) with or without thimerosal was studied in mice. The functional antibody titres, as well as the binding titres, were determined, showing a substantial decrease for vaccine formulations containing thimerosal for HPV16/18. Similarly, epitope-specific competition assays using specific and functional mAbs as tracers also showed a significant reduction in immunogenicity for HPV16/18 in the presence of thimerosal. Structural alterations in the capsid protein for HPV18 were observed with cryo-electron microscopy and 3-dimensional reconstruction in the comparative structural analysis. The results should alert scientists in formulation development field on the choice for vaccine preservatives, in particular for thiol-containing antigens.
Collapse
Affiliation(s)
- Siyi Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China; School of Life Science, Xiamen University, Xiamen, China
| | - Xiaofen Huang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yike Li
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xin Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Huirong Pan
- Xiamen Innovax Biotech Company, Ltd, Xiamen, China
| | - Zhijie Lin
- Xiamen Innovax Biotech Company, Ltd, Xiamen, China
| | - Qingbing Zheng
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Shaowei Li
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China; School of Life Science, Xiamen University, Xiamen, China
| | - Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China; School of Life Science, Xiamen University, Xiamen, China.
| | - Qinjian Zhao
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.
| |
Collapse
|
6
|
Nogara PA, Oliveira CS, Schmitz GL, Piquini PC, Farina M, Aschner M, Rocha JBT. Methylmercury's chemistry: From the environment to the mammalian brain. Biochim Biophys Acta Gen Subj 2019; 1863:129284. [PMID: 30659885 DOI: 10.1016/j.bbagen.2019.01.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/14/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
Methylmercury is a neurotoxicant that is found in fish and rice. MeHg's toxicity is mediated by blockage of -SH and -SeH groups of proteins. However, the identification of MeHg's targets is elusive. Here we focus on the chemistry of MeHg in the abiotic and biotic environment. The toxicological chemistry of MeHg is complex in metazoans, but at the atomic level it can be explained by exchange reactions of MeHg bound to -S(e)H with another free -S(e)H group (R1S(e)-HgMe + R2-S(e)H ↔ R1S(e)H + R2-S(e)-HgMe). This reaction was first studied by professor Rabenstein and here it is referred as the "Rabenstein's Reaction". The absorption, distribution, and excretion of MeHg in the environment and in the body of animals will be dictated by Rabenstein's reactions. The affinity of MeHg by thiol and selenol groups and the exchange of MeHg by Rabenstein's Reaction (which is a diffusion controlled reaction) dictates MeHg's neurotoxicity. However, it is important to emphasize that the MeHg exchange reaction velocity with different types of thiol- and selenol-containing proteins will also depend on protein-specific structural and thermodynamical factors. New experimental approaches and detailed studies about the Rabenstein's reaction between MeHg with low molecular mass thiol (LMM-SH) molecules (cysteine, GSH, acetyl-CoA, lipoate, homocysteine) with abundant high molecular mass thiol (HMM-SH) molecules (albumin, hemoglobin) and HMM-SeH (GPxs, Selenoprotein P, TrxR1-3) are needed. The study of MeHg migration from -S(e)-Hg- bonds to free -S(e)H groups (Rabenstein's Reaction) in pure chemical systems and neural cells (with special emphasis to the LMM-SH and HMM-S(e)H molecules cited above) will be critical to developing realistic constants to be used in silico models that will predict the distribution of MeHg in humans.
Collapse
Affiliation(s)
- Pablo A Nogara
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Cláudia S Oliveira
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela L Schmitz
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Paulo C Piquini
- Departamento de Física, CCNE, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|