1
|
Cai H, He J, Zheng W, Cheng H, Ge X, Bao Y, Wei Y, Zhou Y, Liang X, Chen X, Liu C, Wang F, Yang X. Zinc Mitigates the Combined Neurotoxicity of Binary Metal Mixtures via Mitophagy and Mitochondrial Fusion. Mol Neurobiol 2025; 62:5961-5976. [PMID: 39673661 DOI: 10.1007/s12035-024-04648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024]
Abstract
Environmental metal mixtures can cause combined neurotoxicity, but the underlying mechanism remains unclear. Mitochondria are crucial for energy metabolism in the nervous system, and their dysfunction leads to neurodegeneration. Zinc (Zn) is a coenzyme of many mitochondrial enzymes that controls mitochondrial function. This study investigated the role of Zn in the neurotoxicity induced by Mn + Pb and Pb + As mixtures. Zn supplementation improved the survival rate and learning ability of Caenorhabditis elegans following their exposure to mixtures of Mn + Pb and Pb + As by enhancing their mitochondrial morphology, membrane potential, and respiratory chain. Similarly, in HT22 cells, Zn mitigated the decrease in cellular activity and increase in apoptosis induced by the Mn + Pb and Pb + As mixtures by improving mitochondrial morphology and function. Mechanistically, Zn activated the PINK1 and MFN-2/OPA-1 pathways, promoting mitophagy and mitochondrial fusion. However, inhibition of mitophagy reversed the protective effect of Zn, indicating its reliance on mitophagy for neuroprotection. Our study demonstrated that Zn alleviates the combined neurotoxicity of Mn + Pb and Pb + As mixtures by enhancing mitophagy and mitochondrial fusion, suggesting that Zn supplementation is a potential treatment for metal-induced neurotoxicity.
Collapse
Affiliation(s)
- Haiqing Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Junxiu He
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Wanting Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoting Ge
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Bao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yue Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yanfeng Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolin Liang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xing Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Chaoqun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Wei S, Ma X, Liang G, He J, Wang J, Chen H, Lu W, Qin H, Zou Y. The role of circHmbox1(3,4) in ferroptosis-mediated cognitive impairments induced by manganese. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135212. [PMID: 39024764 DOI: 10.1016/j.jhazmat.2024.135212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Excessive environmental exposure to manganese (Mn) has been linked to cognitive impairments, circular RNAs (circRNAs) have been recognized for their roles in epigenetic regulation in various biological processes, including neurological pathogenesis. Previous studies found that ferroptosis, an iron ion-dependent programmed cell death, may be involved in cognitive impairments. However, specific mechanisms underlying the relationship among circRNA, ferroptosis, and neurotoxicity of Mn are not well-understood. In the current study, RNA sequencing was performed to profile RNA expression in Neuro-2a (N2a) cells that were treated with 300 μM Mn. The potential molecular mechanisms of circHmbox1(3,4) in Mn-induced cognitive impairments were investigated via various experiments, such as Western blot and intracerebroventricular injection in mice. We observed a significant decrease in the expression of circHmbox1(3,4) both in vitro and in vivo following Mn treatment. The results of Y maze test and Morris water maze test demonstrated an improvement in learning and memory abilities following circHmbox1(3,4) overexpression in Mn treated mice. Mn treatment may reduce circHmbox1(3,4) biogenesis through lowered expression of E2F1/QKI. Inhibiting circHmbox1(3,4) expression led to GPX4 protein degradation through protein ligation and ubiquitination. Overall, the current study showed that Mn exposure-induced cognitive dysfunction may be mediated through ferroptosis regulated by circHmbox1(3,4).
Collapse
Affiliation(s)
- Shengtao Wei
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaoli Ma
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Guiqiang Liang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jiacheng He
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jian Wang
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China; Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Hao Chen
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China; Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Wenmin Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Huiyan Qin
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning 530028, Guangxi, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Nanning 530021, Guangxi, China.
| |
Collapse
|
3
|
Zheng XW, Fang YY, Lin JJ, Luo JJ, Li SJ, Aschner M, Jiang YM. Signal Transduction Associated with Mn-induced Neurological Dysfunction. Biol Trace Elem Res 2024; 202:4158-4169. [PMID: 38155332 DOI: 10.1007/s12011-023-03999-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Manganese (Mn) is a heavy metal that occurs widely in nature and has a vital physiological role in growth and development. However, excessive exposure to Mn can cause neurological damage, especially cognitive dysfunction, such as learning disability and memory loss. Numerous studies on the mechanisms of Mn-induced nervous system damage found that this metal targets a variety of metabolic pathways, for example, endoplasmic reticulum stress, apoptosis, neuroinflammation, cellular signaling pathway changes, and neurotransmitter metabolism interference. This article reviews the latest research progress on multiple signaling pathways related to Mn-induced neurological dysfunction.
Collapse
Affiliation(s)
- Xiao-Wei Zheng
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Yuan-Yuan Fang
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Jun-Jie Lin
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Jing-Jing Luo
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Shao-Jun Li
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China.
| | - Michael Aschner
- The Department of Molecular Pharmacology at Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yue-Ming Jiang
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China.
| |
Collapse
|
4
|
Lu W, He J, Wei S, Tang C, Ma X, Li D, Chen H, Zou Y. Circular RNA circRest regulates manganese induced cell apoptosis by targeting the mmu-miR-6914-5p/Ephb3 axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123395. [PMID: 38266697 DOI: 10.1016/j.envpol.2024.123395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/23/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Overexposure to manganese (Mn) can lead to neurotoxicity, the underlying mechanisms remain incompletely understood. Circular RNAs (circRNAs) have emerged as important regulators in various biological processes. It is plausible that circRNAs may be involved in the biological mechanisms underlying Mn caused neurotoxicity. Here, circRest was downregulated in Mn-exposed mouse neuroblastoma cells (N2a cells) by RNA sequencing and quantitative real-time PCR. When circRest was overexpressed, it led to an increase in cell viability and a decrease in apoptosis following Mn exposure. Conversely, silencing circRest resulted in opposite effects in N2a cells. Further investigation revealed that circRest acts as a mmu-miR-6914-5p sponge, and mmu-miR-6914-5p could bind and inhibit Ephb3, thereby promoting apoptosis in N2a cells. This was confirmed through RNA antisense purification and dual luciferase reporter assays. Additionally, the circRest/mmu-miR-6914-5p/Ephb3 axis may influence memory and learning in mice following Mn exposure. In conclusion, our study uncovers a novel mechanism by which circRest may attenuate Mn caused neurotoxicity via the mmu-miR-6914-5p/Ephb3 axis.
Collapse
Affiliation(s)
- Wenmin Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiacheng He
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shengtao Wei
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chuanqiao Tang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoli Ma
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Danni Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hao Chen
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, Guangxi, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Nanning, 530021, Guangxi, China.
| |
Collapse
|
5
|
Cai H, Bao Y, Cheng H, Ge X, Zhang M, Feng X, Zheng Y, He J, Wei Y, Liu C, Li L, Huang L, Wang F, Chen X, Chen P, Yang X. Zinc homeostasis may reverse the synergistic neurotoxicity of heavy metal mixtures in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161699. [PMID: 36682567 DOI: 10.1016/j.scitotenv.2023.161699] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/08/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Heavy metal mixtures can cause nerve damage. However, the combined effects of metal mixtures are extremely complex and rarely studied. Zinc (Zn) homeostasis plays an integral role in neural function, but the role of Zn homeostasis in the toxicity of metal mixtures is not well understood. Here, we investigated the combined effects of manganese (Mn), lead (Pb) and arsenic (As) on nerves and the effect of Zn homeostasis on metal toxicity. Caenorhabditis elegans (Maupas, 1900) were exposed to single and multiple metals for 8 days, their movement, behavior, neurons and metal concentration were detected to evaluate the combined effect of metal mixtures. After nematodes were co-treated with metal mixtures and Zn, the nerve function, Zn concentration and redox balance were detected to evaluate the effect of Zn homeostasis on metal toxicity. The results showed that Mn + Pb and Pb + As mixtures induced synergistic toxicity for nematode nerves, which damaged movement, behavior and neurons, and decreased Zn concentration. While Zn supplementation recovered Zn homeostasis and promoted redox balance on nematodes, and then improved the nerve function. Our study demonstrated the combined effects of metal mixtures and the neuroprotective effect of Zn homeostasis. Therefore, assessment of metal mixtures toxicity should consider their interaction and the impacts of essential metals homeostasis.
Collapse
Affiliation(s)
- Haiqing Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Bao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoting Ge
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China; Guangxi Key Laboratory of Research on Medical Engineering Integration and Innovation, Liuzhou, Guangxi, China
| | - Mengdi Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiuming Feng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuan Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Junxiu He
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yue Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Chaoqun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Longman Li
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Lulu Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xing Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
6
|
Pajarillo E, Nyarko-Danquah I, Digman A, Multani HK, Kim S, Gaspard P, Aschner M, Lee E. Mechanisms of manganese-induced neurotoxicity and the pursuit of neurotherapeutic strategies. Front Pharmacol 2022; 13:1011947. [PMID: 36605395 PMCID: PMC9808094 DOI: 10.3389/fphar.2022.1011947] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/01/2022] [Indexed: 01/07/2023] Open
Abstract
Chronic exposure to elevated levels of manganese via occupational or environmental settings causes a neurological disorder known as manganism, resembling the symptoms of Parkinson's disease, such as motor deficits and cognitive impairment. Numerous studies have been conducted to characterize manganese's neurotoxicity mechanisms in search of effective therapeutics, including natural and synthetic compounds to treat manganese toxicity. Several potential molecular targets of manganese toxicity at the epigenetic and transcriptional levels have been identified recently, which may contribute to develop more precise and effective gene therapies. This review updates findings on manganese-induced neurotoxicity mechanisms on intracellular insults such as oxidative stress, inflammation, excitotoxicity, and mitophagy, as well as transcriptional dysregulations involving Yin Yang 1, RE1-silencing transcription factor, transcription factor EB, and nuclear factor erythroid 2-related factor 2 that could be targets of manganese neurotoxicity therapies. This review also features intracellular proteins such as PTEN-inducible kinase 1, parkin, sirtuins, leucine-rich repeat kinase 2, and α-synuclein, which are associated with manganese-induced dysregulation of autophagy/mitophagy. In addition, newer therapeutic approaches to treat manganese's neurotoxicity including natural and synthetic compounds modulating excitotoxicity, autophagy, and mitophagy, were reviewed. Taken together, in-depth mechanistic knowledge accompanied by advances in gene and drug delivery strategies will make significant progress in the development of reliable therapeutic interventions against manganese-induced neurotoxicity.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Alexis Digman
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Harpreet Kaur Multani
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL, United States
| | - Sanghoon Kim
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Patric Gaspard
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY, United States
| | - Eunsook Lee
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| |
Collapse
|
7
|
Li Z, Lewin M, Ruiz P, Nigra AE, Henderson NB, Jarrett JM, Ward C, Zhu J, Umans JG, O'Leary M, Zhang Y, Ragin-Wilson A, Navas-Acien A. Blood cadmium, lead, manganese, mercury, and selenium levels in American Indian populations: The Strong Heart Study. ENVIRONMENTAL RESEARCH 2022; 215:114101. [PMID: 35977585 PMCID: PMC9644284 DOI: 10.1016/j.envres.2022.114101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 05/15/2023]
Abstract
BACKGROUND Many American Indian (AI) communities are in areas affected by environmental contamination, such as toxic metals. However, studies assessing exposures in AI communities are limited. We measured blood metals in AI communities to assess historical exposure and identify participant characteristics associated with these levels in the Strong Heart Study (SHS) cohort. METHOD Archived blood specimens collected from participants (n = 2014, all participants were 50 years of age and older) in Arizona, Oklahoma, and North and South Dakota during SHS Phase-III (1998-1999) were analyzed for cadmium, lead, manganese, mercury, and selenium using inductively coupled plasma triple quadrupole mass spectrometry. We conducted descriptive analyses for the entire cohort and stratified by selected subgroups, including selected demographics, health behaviors, income, waist circumference, and body mass index. Bivariate associations were conducted to examine associations between blood metal levels and selected socio-demographic and behavioral covariates. Finally, multivariate regression models were used to assess the best model fit that predicted blood metal levels. FINDINGS All elements were detected in 100% of study participants, with the exception of mercury (detected in 73% of participants). The SHS population had higher levels of blood cadmium and manganese than the general U.S. population 50 years and older. The median blood mercury in the SHS cohort was at about 30% of the U.S. reference population, potentially due to low fish consumption. Participants in North Dakota and South Dakota had the highest blood cadmium, lead, manganese, and selenium, and the lowest total mercury levels, even after adjusting for covariates. In addition, each of the blood metals was associated with selected demographic, behavioral, income, and/or weight-related factors in multivariate models. These findings will help guide the tribes to develop education, outreach, and strategies to reduce harmful exposures and increase beneficial nutrient intake in these AI communities.
Collapse
Affiliation(s)
- Zheng Li
- Office of Community Health and Hazard Assessment, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Michael Lewin
- Office of Community Health and Hazard Assessment, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Patricia Ruiz
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Anne E Nigra
- Department of Environmental Health Sciences, School of Public Health, Columbia University, New York City, NY, USA
| | - Noelle B Henderson
- Office of Community Health and Hazard Assessment, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jeffery M Jarrett
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cynthia Ward
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jianhui Zhu
- MedStar Health Research Institute, Hyattsville, MD, USA
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, MD, USA; Georgetown-Howard Universities Center for Clinical and Translational Science, Washington DC, USA
| | - Marcia O'Leary
- Missouri Breaks Industries and Research, Inc., Eagle Butte, SD, USA
| | - Ying Zhang
- Center for American Indian Health Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Angela Ragin-Wilson
- Office of Associate Director, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, School of Public Health, Columbia University, New York City, NY, USA
| |
Collapse
|
8
|
Wang X, Wang R, Zhang Z, Luo C, Zhao Z, Ruan J, Huang R, Zhang H, Wu Q, Yu S, Tang J, Zhao X. Level-specific associations of urinary antimony with cognitive function in US older adults from the National Health and Nutrition Examination Survey 2011-2014. BMC Geriatr 2022; 22:663. [PMID: 35962346 PMCID: PMC9375424 DOI: 10.1186/s12877-022-03351-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have looked at antimony (Sb) as a new neurotoxin which causes neuronal apoptosis in animal studies. At the population level, however, there is no direct evidence for a relationship between Sb exposure and cognitive performance. METHOD The study comprehensively assessed the correlation between urinary antimony levels and cognitive test scores in 631 creatinine-corrected older persons using data from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2014. RESULTS Using logistic regression, the study looked at the prevalence of cognitive impairment at different levels of urine antimony concentrations and found that, after controlling for covariates, higher doses of urinary antimony were positively associated with cognitive function compared to controls, odds ratio (ORs) with 95% confidence interval (CI) were 0.409 (0.185-0.906) and 0.402 (0.186-0.871) respectively. Restricted cubic spline curves showed a non-linear and dose-specific correlation between urinary antimony and cognitive performance, with lower doses associated with better cognitive performance, while higher doses may be associated with cognitive impairment. CONCLUSIONS Our data provide evidence for a correlation between Sb and cognitive function at the population level, although the specific mechanisms need to be investigated further.
Collapse
Affiliation(s)
- Xiangdong Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Rui Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Zeyao Zhang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Chao Luo
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Zixuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Junpu Ruan
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Rongrong Huang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, China
| | - Hongbing Zhang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Qiyun Wu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China.
| |
Collapse
|
9
|
Yu J, Leung MY, Ma G, Xia J. Older Adults' Access to and Satisfaction With Primary Hospitals Based on Spatial and Non-spatial Analyses. Front Public Health 2022; 10:845648. [PMID: 35570922 PMCID: PMC9096154 DOI: 10.3389/fpubh.2022.845648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/14/2022] [Indexed: 11/14/2022] Open
Abstract
In order to improve the health and quality of life of older adults, the Chinese government is dedicated to establishing an equilibrium level of primary healthcare services for all communities. However, little attention has been paid to measuring the accessibility of primary hospitals to older adults, nor to understanding the seniors' satisfaction with and needs for primary healthcare services. Therefore, this study sought to investigate the spatial accessibility of primary hospitals to older adults, and also to examine the impact of walking distances on the seniors' satisfaction with their healthcare services. A two-step floating catchment area method was applied to measure the spatial accessibility of primary hospitals to older adults at the level of subdistricts. In order to investigate the actual opinions of older adults and verify the results of spatial analysis, a large-scale questionnaire survey was also conducted. The analyses found that (1) primary hospitals were not equally distributed; (2) most older adults did not have access to primary hospitals within a threshold walking distance of 1,000 m, but they usually could reach a hospital in their subdistrict within a threshold distance of 2,000 m; (3) older adults' satisfaction levels with primary hospitals were significantly different among subdistricts; (4) long walking distances negatively influenced older adults' satisfaction with primary hospitals; (5) the satisfaction of older adults was highest with a threshold distance of 500 m; and (6) a piecewise regression model indicated that older adults' satisfaction with primary hospitals would decrease with an increase in walking distance to the hospital. When the walking distances exceeded 1,000 m, the slope of the linear regression model increased significantly compared with the slope for walking distances less than 1,000 m. By adopting multiple research methods and capturing older adults' behaviors and satisfaction, our results provide (1) data on the importance of accessibility of primary hospitals to older adults, and (2) insights for future planning to achieve equity in primary healthcare and enhance the spatial distribution of primary hospitals.
Collapse
Affiliation(s)
- Jingyu Yu
- School of Civil Engineering, Hefei University of Technology, Hefei, China
| | - Mei-Yung Leung
- Department of Architectural and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Guixia Ma
- School of Foreign Studies, Hefei University of Technology, Hefei, China
| | - Jingcheng Xia
- School of Foreign Studies, Hefei University of Technology, Hefei, China
| |
Collapse
|