1
|
da Silva ABS, da Silva Leal KN, Arruda MAZ. An acidless microwave-assisted wet digestion of biological samples as a greener alternative: applications from COVID-19 monitoring to plant nanobiotechnology. Anal Bioanal Chem 2025; 417:1271-1282. [PMID: 39164506 DOI: 10.1007/s00216-024-05472-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Sample preparation in an analytical sequence increases the number of errors, is highly time-consuming, and involves the manipulation of hazardous reagents. Therefore, when an improvement in an analytical method is required, the sample preparation step needs to be optimised or redesigned. Moreover, this step can involve significant toxic reagents and a high volume of waste. In that regard, this study proposes a new procedure based on microwave-assisted wet digestion combining two green strategies: a miniaturised system (with a few microlitres of volume) and the only use of hydrogen peroxide. Three biological samples (human serum, urine, and plant in vitro material) were chosen due to their high potential for disease monitoring, toxicological studies, and biotechnology applications. Several trace elements (Ca, Cd, Co, Cu, Fe, Mg, Mn, Mo, Ni, Se, and Zn) were determined by inductively coupled plasma optical emission spectroscopy and inductively coupled plasma mass spectrometry. For human serum and urine, a certified reference material was used to check for accuracy; the recovery ranged from 72% (Cd, ICP-MS) to 105% (Mg, ICP OES) for serum, while for urine, they varied from 82% (Ni, ICP-MS) to 122% (Zn, ICP-MS). For the soybean callus sample (in vitro plant material), a comparison between the proposed method and the acid digestion method was conducted to evaluate the accuracy, and the results agreed. The detection limits were 0.001-60 µg L-1 (lowest for Cd), thus demonstrating a suitable sensitivity. Moreover, the decomposition efficiency was demonstrated by determining the residual carbon, and a low amount was found in the final product digested (below 0.8% w v-1). A green metric approach was calculated for the proposed method, and according to AGREEprep software, it was found to be around 0.4. Finally, the method was applied to urine samples collected in patients with COVID-19 and soybean callus cultivated with silver nanoparticles. This sample preparation method is a new acidless and miniaturised alternative for elemental analysis involving biological samples.
Collapse
Affiliation(s)
- Ana Beatriz Santos da Silva
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
- Center of Environmental Studies, São Paulo State University, Rio Claro, 13506900, Brazil
| | - Ketolly Natanne da Silva Leal
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP, 13083-970, Brazil.
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
2
|
Wang Q, Su Z, Zhang J, Yan H, Zhang J. Unraveling the copper-death connection: Decoding COVID-19's immune landscape through advanced bioinformatics and machine learning approaches. Hum Vaccin Immunother 2024; 20:2310359. [PMID: 38468184 PMCID: PMC10936617 DOI: 10.1080/21645515.2024.2310359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/23/2024] [Indexed: 03/13/2024] Open
Abstract
This study aims to analyze Coronavirus Disease 2019 (COVID-19)-associated copper-death genes using the Gene Expression Omnibus (GEO) dataset and machine learning, exploring their immune microenvironment correlation and underlying mechanisms. Utilizing GEO, we analyzed the GSE217948 dataset with control samples. Differential expression analysis identified 16 differentially expressed copper-death genes, and Cell type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) quantified immune cell infiltration. Gene classification yielded two copper-death clusters, with Weighted Gene Co-expression Network Analysis (WGCNA) identifying key module genes. Machine learning models (random forest, Support Vector Machine (SVM), Generalized Linear Model (GLM), eXtreme Gradient Boosting (XGBoost)) selected 6 feature genes validated by the GSE213313 dataset. Ferredoxin 1 (FDX1) emerged as the top gene, corroborated by Area Under the Curve (AUC) analysis. Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) revealed enriched pathways in T cell receptor, natural killer cytotoxicity, and Peroxisome Proliferator-Activated Receptor (PPAR). We uncovered differentially expressed copper-death genes and immune infiltration differences, notably CD8 T cells and M0 macrophages. Clustering identified modules with potential implications for COVID-19. Machine learning models effectively predicted COVID-19 risk, with FDX1's pivotal role validated. FDX1's high expression was associated with immune pathways, suggesting its role in COVID-19 pathogenesis. This comprehensive approach elucidated COVID-19-related copper-death genes, their immune context, and risk prediction potential. FDX1's connection to immune pathways offers insights into COVID-19 mechanisms and therapy.
Collapse
Affiliation(s)
- Qi Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhenzhong Su
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Zhang
- Department of General Gynecology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - He Yan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Leal KNDS, Santos da Silva AB, Fonseca EKB, Moreira OBDO, de Lemos LM, Leal de Oliveira MA, Stewart AJ, Arruda MAZ. Metallomic analysis of urine from individuals with and without Covid-19 infection reveals extensive alterations in metal homeostasis. J Trace Elem Med Biol 2024; 86:127557. [PMID: 39500269 DOI: 10.1016/j.jtemb.2024.127557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 12/08/2024]
Abstract
BACKGROUND Metal ions perform important functions in the body and their concentrations in cells and tissues are tightly controlled. Alterations in metal homeostasis can occur in certain disease states including infection. In this study urinary excretion of several metals including calcium, cadmium, cobalt, copper, iron, magnesium, nickel, selenium, and zinc in Covid-19 patients (n=35) and control (n=60) individuals, spanning ages and sexes. METHODS Urinary samples were analysed using ICP-MS and the differences in metal concentrations between the Covid-19-infected and control groups were assessed using multivariate data analysis and univariate data analysis employing Student's t-test and Pearson's correlation, with significance set at p<0.05. RESULTS The urinary concentrations of all metals analysed were significantly higher in the Covid-infected group (compared to controls), with the exception of copper, which was markedly reduced. The increase in calcium excretion was lower and magnesium excretion greater in Covid-19-positive individuals aged 41 or over compared to those aged 40 or lower. Whilst the increase in iron excretion was lower, and cobalt excretion greater in Covid-19-positive males compared to females. CONCLUSIONS The study highlights significant alterations in the handling of a range of metals in the body during Covid-19 infection. It also highlights both age and sex-specific differences in metal homeostasis. The results suggest an important role for copper in the body during Covid-19 infection and suggests that urinary concentrations of copper and other metals may serve as markers to predict progression of the disease.
Collapse
Affiliation(s)
- Ketolly Natanne da Silva Leal
- Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil; School of Medicine, Medical and Biological Sciences Building, University of St Andrews, North Haugh, St Andrews, KY16 9TF, United Kingdom
| | - Ana Beatriz Santos da Silva
- Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil
| | - Elisânia Kelly Barbosa Fonseca
- Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil
| | - Olívia Brito de Oliveira Moreira
- Analytical Chemistry and Chemometrics Group (GQAQ), Institute of Exact Sciences, Juiz de Fora Federal University - UFJF, Juiz de Fora, MG 36036-90, Brazil
| | | | - Marcone Augusto Leal de Oliveira
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil; Analytical Chemistry and Chemometrics Group (GQAQ), Institute of Exact Sciences, Juiz de Fora Federal University - UFJF, Juiz de Fora, MG 36036-90, Brazil
| | - Alan J Stewart
- School of Medicine, Medical and Biological Sciences Building, University of St Andrews, North Haugh, St Andrews, KY16 9TF, United Kingdom
| | - Marco Aurélio Zezzi Arruda
- Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil.
| |
Collapse
|
4
|
Kazemi N, Khorasgani MR, Noorbakhshnia M, Razavi SM, Narimani T, Naghsh N. Protective effects of a lactobacilli mixture against Alzheimer's disease-like pathology triggered by Porphyromonas gingivalis. Sci Rep 2024; 14:27283. [PMID: 39516514 PMCID: PMC11549306 DOI: 10.1038/s41598-024-77853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is one of the pathogens involved in gingival inflammation, which may trigger neuroinflammatory diseases such as Alzheimer's disease (AD). This study aimed to investigate the protective (preventive and treatment) effects of a lactobacilli mixture combining Lactobacillus reuteri PTCC1655, Lactobacillus brevis CD0817, Lacticaseibacillus rhamnosus PTCC1637, and Lactobacillus plantarum PTCC1058 against P. gingivalis-induced gingival inflammation and AD-like pathology in rats. These probiotic strains exhibited cognitive enhancement effects, but this study proposed to assess their activity in a mixture. To propose a probable mechanism for P. gingivalis cognitive impairments, the TEs balance were analyzed in hippocampus and cortex tissues. Animals were divided into five groups: the control, lactobacilli, P. gingivalis, lactobacilli + P. gingivalis (prevention), and P. gingivalis + lactobacilli group (treatment) groups. The behavioral and histopathological changes were compared among them. Finally, The Trace elements (TEs) levels in the hippocampus and cortex tissues were analyzed. The palatal tissue sections of the P. gingivalis infected rats showed moderate inflammation with dense infiltration of inflammatory cells, a limited area of tissue edema, and vascular congestion. Additionally, passive avoidance learning and spatial memory were impaired. Histopathological tests revealed the presence of Aβ-positive cells in the P. gingivalis group. While the Aβ-positive cells decreased in the treatment group, their formation was inhibited in the preventive group. Administration of a mixture of lactobacilli (orally) effectively mitigated the gingival inflammation, Aβ production, and improved learning and memory functions. Moreover, Zn, Cu, and Mn levels in the hippocampus were dramatically elevated by P. gingivalis infection, whereas lactobacilli mixture mitigated these disruptive effects. The lactobacilli mixture significantly prevented the disruptive effects of P. gingivalis on gingival and brain tissues in rats. Therefore, new formulated combination of lactobacilli may be a good candidate for inhibiting the P. gingivalis infection and its subsequent cognitive effects. The current study aimed to evaluate the effects of a lactobacilli mixture to manage the disruptive effects of P. gingivalis infection on memory.
Collapse
Affiliation(s)
- Niloofar Kazemi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammad Rabbani Khorasgani
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Maryam Noorbakhshnia
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Seyed Mohammad Razavi
- Department of Oral and Maxillofacial Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tahmineh Narimani
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Naghsh
- Department of Periodontology, Torabinejad Dental Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Rostami S, Alavi SM, Daghagheleh R, Maraghi E, Hosseini SA. A randomized clinical trial investigating the impact of magnesium supplementation on clinical and biochemical measures in COVID-19 patients. Virol J 2024; 21:91. [PMID: 38654355 PMCID: PMC11040844 DOI: 10.1186/s12985-024-02362-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND This study sought to examine the impact of magnesium supplementation on clinical outcomes and biochemical factors among hospitalized patients with COVID-19. METHODS This double-blind, randomized clinical trial was conducted at Razi Hospital, Ahvaz, Iran, between September 2021 and March 2022. Participants aged 18-70 years with moderate disease severity were enrolled. Magnesium supplementation (300 mg daily) was administered to the intervention group, while the control group received a placebo. Clinical outcomes, including the need for oxygen therapy, oxygen saturation, respiratory rate, fever, hs-CRP and TNF-α levels, as well as quality of life and mental health, were assessed. Blood samples were collected to measure biochemical variables. RESULTS The main result was the count of individuals requiring oxygen therapy. Additional outcomes comprised of oxygen saturation, respiratory rate, fever, hs-CRP and TNF-α levels, as well as quality of life and mental health. Out of 64 participants, 60 completed the study. The results showed that magnesium supplementation significantly reduced the number of patients requiring oxygen therapy (9 vs. 14; P < 0.001). Moreover, the magnesium group demonstrated improved oxygen saturation compared to the control group (4.55 ± 2.35 vs. 1.8 ± 1.67; P < 0.001). Furthermore, we observed a noteworthy enhancement in the quality of life and depression score in the magnesium group. No significant differences were observed in respiratory rate, fever, hs-CRP, and TNF-α levels (P > 0.05). CONCLUSION The findings suggest that magnesium supplementation may have beneficial effects on clinical outcomes and arterial oxygen saturation in COVID-19 patients. More investigation is necessary to delve into its potential mechanisms and long-term effects on patient outcomes. TRIAL REGISTRATION This study is registered on Iranian Registry of Clinical Trials (IRCT) under identifier IRCT20210413050957N1. (The registration date: May 1, 2021).
Collapse
Affiliation(s)
- Sepideh Rostami
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mohammad Alavi
- Jundishapur Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Robab Daghagheleh
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Maraghi
- Department of Biostatistics and Epidemiology, Public Health Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Nutrition and Metabolic Disease Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
6
|
Liu Y, Gu X, Li H, Zhang H, Xu J. Mechanisms of long COVID: An updated review. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:231-240. [PMID: 39171285 PMCID: PMC11332859 DOI: 10.1016/j.pccm.2023.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Indexed: 08/23/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has been ongoing for more than 3 years, with an enormous impact on global health and economies. In some patients, symptoms and signs may remain after recovery from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which cannot be explained by an alternate diagnosis; this condition has been defined as long COVID. Long COVID may exist in patients with both mild and severe disease and is prevalent after infection with different SARS-CoV-2 variants. The most common symptoms include fatigue, dyspnea, and other symptoms involving multiple organs. Vaccination results in lower rates of long COVID. To date, the mechanisms of long COVID remain unclear. In this narrative review, we summarized the clinical presentations and current evidence regarding the pathogenesis of long COVID.
Collapse
Affiliation(s)
- Yan Liu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing 100029, China
- Department of Infectious Disease, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Xiaoying Gu
- Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Haibo Li
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing 100029, China
| | - Hui Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing 100029, China
- Department of Pulmonary and Critical Care Medicine, China–Japan Friendship Hospital, Capital Medical University, Beijing 100029, China
| | - Jiuyang Xu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
7
|
de Jesus JR, de Araujo Andrade T, de Figueiredo EC. Biomarkers in psychiatric disorders. Adv Clin Chem 2023; 116:183-208. [PMID: 37852719 DOI: 10.1016/bs.acc.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Psychiatric disorders represent a significant socioeconomic and healthcare burden worldwide. Of these, schizophrenia, bipolar disorder, major depressive disorder and anxiety are among the most prevalent. Unfortunately, diagnosis remains problematic and largely complicated by the lack of disease specific biomarkers. Accordingly, much research has focused on elucidating these conditions to more fully understand underlying pathophysiology and potentially identify biomarkers, especially those of early stage disease. In this chapter, we review current status of this endeavor as well as the potential development of novel biomarkers for clinical applications and future research study.
Collapse
Affiliation(s)
| | | | - Eduardo Costa de Figueiredo
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
8
|
Guerrero-Romero F, Micke O, Simental-Mendía LE, Rodríguez-Morán M, Vormann J, Iotti S, Banjanin N, Rosanoff A, Baniasadi S, Pourdowlat G, Nechifor M. Importance of Magnesium Status in COVID-19. BIOLOGY 2023; 12:735. [PMID: 37237547 PMCID: PMC10215232 DOI: 10.3390/biology12050735] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
A large amount of published research points to the interesting concept (hypothesis) that magnesium (Mg) status may have relevance for the outcome of COVID-19 and that Mg could be protective during the COVID disease course. As an essential element, Mg plays basic biochemical, cellular, and physiological roles required for cardiovascular, immunological, respiratory, and neurological functions. Both low serum and dietary Mg have been associated with the severity of COVID-19 outcomes, including mortality; both are also associated with COVID-19 risk factors such as older age, obesity, type 2 diabetes, kidney disease, cardiovascular disease, hypertension, and asthma. In addition, populations with high rates of COVID-19 mortality and hospitalization tend to consume diets high in modern processed foods, which are generally low in Mg. In this review, we review the research to describe and consider the possible impact of Mg and Mg status on COVID-19 showing that (1) serum Mg between 2.19 and 2.26 mg/dL and dietary Mg intakes > 329 mg/day could be protective during the disease course and (2) inhaled Mg may improve oxygenation of hypoxic COVID-19 patients. In spite of such promise, oral Mg for COVID-19 has thus far been studied only in combination with other nutrients. Mg deficiency is involved in the occurrence and aggravation of neuropsychiatric complications of COVID-19, including memory loss, cognition, loss of taste and smell, ataxia, confusion, dizziness, and headache. Potential of zinc and/or Mg as useful for increasing drug therapy effectiveness or reducing adverse effect of anti-COVID-19 drugs is reviewed. Oral Mg trials of patients with COVID-19 are warranted.
Collapse
Affiliation(s)
- Fernando Guerrero-Romero
- Biomedical Research Unit, Mexican Social Security Institute, Durango 34067, Mexico; (F.G.-R.); (L.E.S.-M.); (M.R.-M.)
| | - Oliver Micke
- Department of Radiation Therapy and Radiation Oncology, Franziskus Hospital, 33615 Bielefeld, Germany;
| | - Luis E. Simental-Mendía
- Biomedical Research Unit, Mexican Social Security Institute, Durango 34067, Mexico; (F.G.-R.); (L.E.S.-M.); (M.R.-M.)
| | - Martha Rodríguez-Morán
- Biomedical Research Unit, Mexican Social Security Institute, Durango 34067, Mexico; (F.G.-R.); (L.E.S.-M.); (M.R.-M.)
| | - Juergen Vormann
- Institute for Prevention and Nutrition, 85737 Ismaning, Germany;
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, Universita di Bologna, 40126 Bologna, Italy;
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Nikolina Banjanin
- Institute of Hygiene and Medical Ecology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Andrea Rosanoff
- CMER Center for Magnesium Education & Research, Pahoa, HI 96778, USA
| | - Shadi Baniasadi
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran;
| | - Guitti Pourdowlat
- Chronic Respiratory Diseases Research Centre, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran;
| | - Mihai Nechifor
- Department of Pharmacology, Gr. T Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
9
|
Klich D, Łopucki R, Kaczor S, Zwolak I, Didkowska A, Wiącek D, Bielecki W, Perzanowski K, Wojciechowska M, Olech W. Comorbidities and concentration of trace elements in livers of European bison from Bieszczady Mountains (Poland). Sci Rep 2023; 13:4332. [PMID: 36922557 PMCID: PMC10017800 DOI: 10.1038/s41598-023-31245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
European bison is a species for which health monitoring is essential in conservation activities. So far, little research has been carried out on the concentration of elements in this species. Most previous studies did not associate the concentration of elements with susceptibility to diseases. In this study we investigate the relationship between comorbidities in European bison and concentrations of a wide spectrum of elements in the liver. Samples were collected during the monitoring of the European bison population in Bieszczady (southeast Poland) over the 2020-2022 period. Each individual was also visually inspected by a veterinarian in the field for the presence of lesions as a part of a post-mortem examination. The animals were divided into 3 groups: group A-one type of clinical sign; group B-two types of clinical signs; group C-three or more types of clinical signs. The ICP-OES method was applied to assess the concentration of 40 elements in livers. Discriminant analysis showed clear differences between the mineral status of individuals in the groups with one, two, and at least three types of clinical signs. Detailed analysis of selected elements showed that, in the case of eight elements, there was a relationship with age, sex, or comorbidities. Cu, Se, and Zn showed significant differences in relation to comorbidities, but only Cu concentration was lower when the frequency of lesions was higher. We concluded that in research on the mineral status of the population, apart from the availability of trace elements in the environment, the health condition of the studied individuals should also be considered. However, inferring the mineral status of the population on the basis of randomly obtained samples from dead individuals may give an incomplete view of the population, especially in the case of species susceptible to diseases, such as European bison.
Collapse
Affiliation(s)
- Daniel Klich
- Department of Animal Genetics and Conservation, Warsaw University of Life Sciences (SGGW), Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Rafał Łopucki
- Department of Biomedicine and Environmental Research, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708, Lublin, Poland
| | - Stanisław Kaczor
- County Veterinary Inspectorate, Młynarska 45, 38-500, Sanok, Poland
| | - Iwona Zwolak
- Department of Biomedicine and Environmental Research, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708, Lublin, Poland
| | - Anna Didkowska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Dariusz Wiącek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Wojciech Bielecki
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Kajetan Perzanowski
- The Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708, Lublin, Poland
| | - Marlena Wojciechowska
- Department of Animal Genetics and Conservation, Warsaw University of Life Sciences (SGGW), Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Wanda Olech
- Department of Animal Genetics and Conservation, Warsaw University of Life Sciences (SGGW), Ciszewskiego 8, 02-786, Warsaw, Poland
| |
Collapse
|
10
|
Arnaud J, González-Estecha M, Skalny A. The different faces of inorganic elements in SARS-CoV-2 infection. J Trace Elem Med Biol 2022; 74:127083. [PMID: 36174459 PMCID: PMC9489959 DOI: 10.1016/j.jtemb.2022.127083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Josiane Arnaud
- SFERETE (French Speaking Society for Trace and Toxic Element Studies and Research), University Hospital of Grenoble, CS 10217, 38043 Grenoble Cedex 9, France.
| | - Montserrat González-Estecha
- Department of Laboratory Medicine, Hospital General Universitario Gregorio Marañón, Calle del Dr. Esquerdo, 46, 28007 Madrid, Spain; Department of Medicine, Faculty of Medicine, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain.
| | - Anatoly Skalny
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University, Russia.
| |
Collapse
|
11
|
Content of Essential Trace Elements in the Hair of Residents of the Caspian Region of the Republic of Kazakhstan Who Recovered from COVID-19. Diagnostics (Basel) 2022; 12:diagnostics12112734. [PMID: 36359577 PMCID: PMC9689738 DOI: 10.3390/diagnostics12112734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
This study aimed to investigate the content of essential elements in the hair of unvaccinated residents of the Caspian region who recovered from COVID-19. This cross-sectional study involved 260 unvaccinated permanent residents of Mangistau oblast aged 18−60. The diagnosis and severity of COVID-19 were based on clinical signs and symptoms, laboratory data, R-graph results, and oxygen saturation by the Clinical Protocol of the Ministry of Health of the Republic of Kazakhstan. Inductively coupled plasma mass spectrometry determined the content of trace elements cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), iodine (I), manganese (Mn), selenium (Se), and zinc (Zn). The content of Cr (p < 0.05), Cu (p < 0.05), Fe (p < 0.001), I (p < 0.05), Mn (p < 0.001), and Zn (p < 0.05) in the hair of individuals who had a coronavirus infection was lower than those who did not have this infection. There were significantly higher levels of Cu (p < 0.05) in the hair of participants who had moderate or severe COVID-19 compared to those with mild forms. The results of multiple regression analysis showed that in the presence of a COVID-19 infection in a subject’s history, the content of Cr (0.871 (95% CI: 0.811; 0.936)), Cu (0.875 (95% CI: 0.803; 0.955)), Fe (0.745 (95% CI: 0.636; 0.873)), and Mn (0.642 (95%CI: 00.518; 0.795)) decreased in the hair. The data obtained indicate that past COVID-19 infections affect the trace element status of the inhabitants of the Caspian region of Kazakhstan.
Collapse
|