1
|
Shao X, Fan T, Yan C, Cao X, Wang C, Wang X, Guan P, Fan L, Hu X. Multifunctional selenium-doped carbon dots for modulating Alzheimer's disease related toxic ions, inhibiting amyloid aggregation and scavenging reactive oxygen species. Int J Biol Macromol 2025; 293:139333. [PMID: 39743062 DOI: 10.1016/j.ijbiomac.2024.139333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
β-Amyloid (Aβ) protein deposition, oxidative stress, and metal ion imbalance are established pathological features of Alzheimer's disease (AD), highlighting the imperative to efficiently reduce Aβ aggregates formation, alleviate oxidative stress, and chelate metal ions. Existing research indicates the necessity of developing multifunctional nanomaterials to facilitate multi-target therapy. In this work, we designed and prepared multifunctional selenium-doped carbonized polymer dots (SeCDs), and examined the multifunctionality at inhibiting Aβ, cleaning reactive oxygen species (ROS), and modulating copper ions. SeCDs exhibit efficient clearance of active hydroxyl radicals and superoxide anion radicals. In addition, SeCDs can chelate Cu ions, therefore reducing the cytotoxicity linked to the Aβ-Cu complex. More importantly, SeCDs can effectively reduce the level of intracellular reactive oxygen species. This study demonstrates the potential of carbon dots as a multifunctional β-sheet disruptor, while multifunctional SeCDs offer promising avenues for further research in the multi-target treatment of Alzheimer's disease. Meanwhile, this strategy provides a new perspective on the development of zero-dimensional carbon materials in Alzheimer's therapy.
Collapse
Affiliation(s)
- Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China
| | - Tiange Fan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China
| | - Chaoren Yan
- School of Medicine, Xizang Minzu University, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xianyang, Shaanxi 712082, China.
| | - Xiuyun Cao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China
| | - Chao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China
| | - Xin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Li Fan
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, Shaanxi Key Laboratory of Chiral Drug and Vaccine Adjuvants, 169 Changle West Road, Xi'an 710032, China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| |
Collapse
|
3
|
El-Gazar AA, El-Emam SZ, M El-Sayyad S, El-Mancy SS, Fayez SM, Sheta NM, Al-Mokaddem AK, Ragab GM. Pegylated polymeric micelles of boswellic acid-selenium mitigates repetitive mild traumatic brain injury: Regulation of miR-155 and miR-146a/BDNF/ Klotho/Foxo3a cue. Int Immunopharmacol 2024; 134:112118. [PMID: 38705029 DOI: 10.1016/j.intimp.2024.112118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
This study aims to explore the protective machinery of pegylated polymeric micelles of boswellic acid-selenium (PMBS) against secondary neuronal damage triggered by mild repetitive traumatic brain injury (RTBI). After PMBS characterization in terms of particle size, size distribution, zeta potential, and transmission electronic microscopy, the selected formula was used to investigate its potency against experimental RTBI. Five groups of rats were used; group 1 (control) and the other four groups were subjected to RTBI. Groups 2 was RTBI positive control, while 3, 4, and 5 received boswellic acid (BSA), selenium (SEL), and PMBS, respectively. The open-field behavioral test was used for behavioral assessment. Subsequently, brain tissues were utilized for hematoxylin and eosin staining, Nissl staining, Western blotting, and ELISA in addition to evaluating microRNA expression (miR-155 and miR-146a). The behavioral changes, oxidative stress, and neuroinflammation triggered by RTBI were all improved by PMBS. Moreover, PMBS mitigated excessive glutamate-induced excitotoxicity and the dysregulation in miR-155 and miR-146a expression. Besides, connexin43 (Cx43) expression as well as klotho and brain-derived neurotrophic factor (BDNF) were upregulated with diminished neuronal cell death and apoptosis because of reduced Forkhead Box class O3a(Foxo3a) expression in the PMBS-treated group. The current study has provided evidence of the benefits produced by incorporating BSA and SEL in PEGylated polymeric micelles formula. PMBS is a promising therapy for RTBI. Its beneficial effects are attributed to the manipulation of many pathways, including the regulation of miR-155 and miR-146a expression, as well as the BDNF /Klotho/Foxo3a signaling pathway.
Collapse
Affiliation(s)
- Amira A El-Gazar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza, Egypt.
| | - Soad Z El-Emam
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Shorouk M El-Sayyad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Shereen S El-Mancy
- Pharmaceutics and industrial pharmacy department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Sahar M Fayez
- Pharmaceutics and industrial pharmacy department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Nermin M Sheta
- Pharmaceutics and industrial pharmacy department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ghada M Ragab
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12585, Egypt
| |
Collapse
|
4
|
Xiao W, Zhang Q, You DH, Li NB, Zhou GM, Luo HQ. Construction of a novel flavonol fluorescent probe for copper (II) ion detection and its application in actual samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124175. [PMID: 38565051 DOI: 10.1016/j.saa.2024.124175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Copper is an essential trace element in the human body, and its level is directly related to many diseases. While the source of copper in human body is mainly intake from food, then the detection of copper ions (Cu2+) in food becomes crucial. Here, we synthesized a novel probe (E)-3-hydroxy-2-styryl-4H-benzo[h]chromen-4-one (NSHF) and explored the binding ability of NSHF for Cu2+ using nuclear magnetic resonance hydrogen spectroscopy (1H NMR), high-resolution mass spectrometry (HRMS), Job's plot method and density functional theory (DFT). NSHF shows the advantages of fast response time, good selectivity and high sensitivity for Cu2+. The fluorescence intensity ratio (F/F0) of NSHF shows a good linear relationship with the concentration of Cu2+ and the detection limit is 0.061 μM. NSHF was successfully applied to the detection of Cu2+ in real samples. In addition, a simple and convenient Cu2+ detection platform was constructed by combining NSHF with a smartphone and a UV lamp, which can realize the rapid detection of Cu2+. This work provides an effective tool for the real-time detection of Cu2+.
Collapse
Affiliation(s)
- Wei Xiao
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Qing Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Dong Hui You
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Guang Ming Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
6
|
Schwarz M, Meyer CE, Löser A, Lossow K, Hackler J, Ott C, Jäger S, Mohr I, Eklund EA, Patel AAH, Gul N, Alvarez S, Altinonder I, Wiel C, Maares M, Haase H, Härtlova A, Grune T, Schulze MB, Schwerdtle T, Merle U, Zischka H, Sayin VI, Schomburg L, Kipp AP. Excessive copper impairs intrahepatocyte trafficking and secretion of selenoprotein P. Nat Commun 2023; 14:3479. [PMID: 37311819 DOI: 10.1038/s41467-023-39245-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Abstract
Selenium homeostasis depends on hepatic biosynthesis of selenoprotein P (SELENOP) and SELENOP-mediated transport from the liver to e.g. the brain. In addition, the liver maintains copper homeostasis. Selenium and copper metabolism are inversely regulated, as increasing copper and decreasing selenium levels are observed in blood during aging and inflammation. Here we show that copper treatment increased intracellular selenium and SELENOP in hepatocytes and decreased extracellular SELENOP levels. Hepatic accumulation of copper is a characteristic of Wilson's disease. Accordingly, SELENOP levels were low in serum of Wilson's disease patients and Wilson's rats. Mechanistically, drugs targeting protein transport in the Golgi complex mimicked some of the effects observed, indicating a disrupting effect of excessive copper on intracellular SELENOP transport resulting in its accumulation in the late Golgi. Our data suggest that hepatic copper levels determine SELENOP release from the liver and may affect selenium transport to peripheral organs such as the brain.
Collapse
Affiliation(s)
- Maria Schwarz
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Caroline E Meyer
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Alina Löser
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Kristina Lossow
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Julian Hackler
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Institute for Experimental Endocrinology, Charité - University Medical School Berlin, Hessische Straße 3-4, 10115, Berlin, Germany
| | - Christiane Ott
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Susanne Jäger
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Isabelle Mohr
- Department of Internal Medicine IV, University Hospital Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Ella A Eklund
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Angana A H Patel
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Nadia Gul
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Samantha Alvarez
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Ilayda Altinonder
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Clotilde Wiel
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Maria Maares
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Food Chemistry and Toxicology, Technical University Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Hajo Haase
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Food Chemistry and Toxicology, Technical University Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Anetta Härtlova
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
- Institute of Biomedicine, Department of Microbiology and Immunology, University of Gothenburg, 41345, Gothenburg, Sweden
- The Institute of Medical Microbiology and Hygiene, University Medical Centre Freiburg, Freiburg, Germany
| | - Tilman Grune
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Matthias B Schulze
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Tanja Schwerdtle
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Biedersteinerstraße 29, 80802, Munich, Germany
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Volkan I Sayin
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Lutz Schomburg
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Institute for Experimental Endocrinology, Charité - University Medical School Berlin, Hessische Straße 3-4, 10115, Berlin, Germany
| | - Anna P Kipp
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany.
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany.
| |
Collapse
|