1
|
Nohesara S, Mostafavi Abdolmaleky H, Pirani A, Pettinato G, Thiagalingam S. The Obesity-Epigenetics-Microbiome Axis: Strategies for Therapeutic Intervention. Nutrients 2025; 17:1564. [PMID: 40362873 PMCID: PMC12073275 DOI: 10.3390/nu17091564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Obesity (OB) has become a serious health issue owing to its ever-increasing prevalence over the past few decades due to its contribution to severe metabolic and inflammatory disorders such as cardiovascular disease, type 2 diabetes, and cancer. The unbalanced energy metabolism in OB is associated with substantial epigenetic changes mediated by the gut microbiome (GM) structure and composition alterations. Remarkably, experimental evidence also indicates that OB-induced epigenetic modifications in adipocytes can lead to cellular "memory" alterations, predisposing individuals to weight regain after caloric restriction and subsequently inducing inflammatory pathways in the liver. Various environmental factors, especially diet, play key roles in the progression or prevention of OB and OB-related disorders by modulating the GM structure and composition and affecting epigenetic mechanisms. Here, we will first focus on the key role of epigenetic aberrations in the development of OB. Then, we discuss the association between abnormal alterations in the composition of the microbiome and OB and the interplays between the microbiome and the epigenome in the development of OB. Finally, we review promising strategies, including prebiotics, probiotics, a methyl-rich diet, polyphenols, and herbal foods for the prevention and/or treatment of OB via modulating the GM and their metabolites influencing the epigenome.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA;
| | - Ahmad Pirani
- Mental Health Research Center, Psychosocial Health Research Institute, Iran University of Medical Sciences, Tehran 14535, Iran;
| | - Giuseppe Pettinato
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA;
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
2
|
Carreras-Gallo N, Dargham R, Thorpe SP, Warren S, Mendez TL, Smith R, Macpherson G, Dwaraka VB. Effects of a natural ingredients-based intervention targeting the hallmarks of aging on epigenetic clocks, physical function, and body composition: a single-arm clinical trial. Aging (Albany NY) 2025; 17:699-725. [PMID: 40096467 PMCID: PMC11984428 DOI: 10.18632/aging.206221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Aging interventions have progressed in recent years due to the growing curiosity about how lifestyle impacts longevity. This study assessed the effects of SRW Laboratories' Cel System nutraceutical range on epigenetic methylation patterns, inflammation, physical performance, body composition, and epigenetic biomarkers of aging. A 1-year study was conducted with 51 individuals, collecting data at baseline, 3 months, 6 months, and 12 months. Participants were encouraged to walk 10 minutes and practice 5 minutes of mindfulness daily. Significant improvements in muscle strength, body function, and body composition metrics were observed. Epigenetic clock analysis showed a decrease in biological age with significant reductions in stem cell division rates. Immune cell subset analysis indicated significant changes, with increases in eosinophils and CD8T cells and decreases in B memory, CD4T memory, and T-regulatory cells. Predicted epigenetic biomarker proxies (EBPs) showed significant changes in retinol/TTHY, a regulator of cell growth, proliferation, and differentiation, and deoxycholic acid glucuronide levels, a metabolite of deoxycholic acid generated in the liver. Gene ontology analysis revealed significant CpG methylation changes in genes involved in critical biological processes related to aging, such as oxidative stress-induced premature senescence, pyrimidine deoxyribonucleotide metabolic process, TRAIL binding, hyaluronan biosynthetic process, neurotransmitter loading into synaptic vesicles, pore complex assembly, collagen biosynthetic process, protein phosphatase 2A binding activity, and activation of transcription factor binding. Our findings suggest that the Cel System supplement range may effectively reduce biological age and improve health metrics, warranting further investigation into its mechanistic pathways and long-term efficacy.
Collapse
Affiliation(s)
| | - Rita Dargham
- TruDiagnostic, Inc., 881 Corporate Dr. Lexington, KY 40503, USA
| | | | - Steve Warren
- Regenerative Wellness, 4698 Highland Dr. Millcreek, UT 84117, USA
| | - Tavis L. Mendez
- TruDiagnostic, Inc., 881 Corporate Dr. Lexington, KY 40503, USA
| | - Ryan Smith
- TruDiagnostic, Inc., 881 Corporate Dr. Lexington, KY 40503, USA
| | | | | |
Collapse
|
3
|
Górczyńska-Kosiorz S, Kosiorz M, Dzięgielewska-Gęsiak S. Exploring the Interplay of Genetics and Nutrition in the Rising Epidemic of Obesity and Metabolic Diseases. Nutrients 2024; 16:3562. [PMID: 39458556 PMCID: PMC11510173 DOI: 10.3390/nu16203562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Obesity has become a significant global health issue. This multifaceted condition is influenced by genetic, environmental, and lifestyle factors, significantly influenced by nutrition. Aim: The study's objective is to elucidate the relationship between obesity-related genes, nutrient intake, and the development of obesity and the importance of other metabolic diseases. Methods: A comprehensive literature review spanning the past two decades was conducted to analyze the contributions of genetic variants-including FTO, MC4R, and LEPR-and their associations with dietary habits, highlighting how specific nutrients affect gene expression and obesity risk and how the coexistence of metabolic diseases such as type 2 diabetes and osteoporosis may modulate these factors. Moreover, the role of epigenetic factors, such as dietary patterns that encourage the development of obesity, was explored. Discussion and Conclusions: By understanding the intricate relationships among genetics, nutrients, and obesity development, this study highlights the importance of personalized dietary strategies in managing obesity. Overall, an integrated approach that considers genetic predispositions alongside environmental influences is essential for developing effective prevention and treatment methodologies, ultimately contributing to better health outcomes in diverse populations.
Collapse
Affiliation(s)
- Sylwia Górczyńska-Kosiorz
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Matylda Kosiorz
- Students’ Scientific Association by the Department of Internal Diseases Propaedeutics and Emergency Medicine, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland;
| | - Sylwia Dzięgielewska-Gęsiak
- Department of Internal Diseases Propaedeutics and Emergency Medicine, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland;
| |
Collapse
|
4
|
Lv J, Yang F, Li Y, Gao N, Zeng Q, Ma H, He J, Zhang Y. Characterization and Function Analysis of miRNA Editing during Fat Deposition in Chinese Indigenous Ningxiang Pigs. Vet Sci 2024; 11:183. [PMID: 38668450 PMCID: PMC11054885 DOI: 10.3390/vetsci11040183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
This study aimed to identify active miRNA editing sites during adipose development in Ningxiang pigs and analyze their characteristics and functions. Based on small RNA-seq data from the subcutaneous adipose tissues of Ningxiang pigs at four stages-30 days (piglet), 90 days (nursery), 150 days (early fattening), and 210 days (late fattening)-we constructed a developmental map of miRNA editing in the adipose tissues of Ningxiang pigs. A total of 505 miRNA editing sites were identified using the revised pipeline, with C-to-U editing types being the most prevalent, followed by U-to-C, A-to-G, and G-to-U. Importantly, these four types of miRNA editing exhibited base preferences. The number of editing sites showed obvious differences among age groups, with the highest occurrence of miRNA editing events observed at 90 days of age and the lowest at 150 days of age. A total of nine miRNA editing sites were identified in the miRNA seed region, with significant differences in editing levels (p < 0.05) located in ssc-miR-23a, ssc-miR-27a, ssc-miR-30b-5p, ssc-miR-15a, ssc-miR-497, ssc-miR-15b, and ssc-miR-425-5p, respectively. Target gene prediction and KEGG enrichment analyses indicated that the editing of miR-497 might potentially regulate fat deposition by inhibiting adipose synthesis via influencing target binding. These results provide new insights into the regulatory mechanism of pig fat deposition.
Collapse
Affiliation(s)
- Jiayu Lv
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.L.); (F.Y.); (Y.L.); (N.G.); (Q.Z.); (H.M.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410000, China
| | - Fang Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.L.); (F.Y.); (Y.L.); (N.G.); (Q.Z.); (H.M.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410000, China
| | - Yiyang Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.L.); (F.Y.); (Y.L.); (N.G.); (Q.Z.); (H.M.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410000, China
| | - Ning Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.L.); (F.Y.); (Y.L.); (N.G.); (Q.Z.); (H.M.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410000, China
| | - Qinghua Zeng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.L.); (F.Y.); (Y.L.); (N.G.); (Q.Z.); (H.M.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410000, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.L.); (F.Y.); (Y.L.); (N.G.); (Q.Z.); (H.M.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410000, China
| | - Jun He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.L.); (F.Y.); (Y.L.); (N.G.); (Q.Z.); (H.M.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410000, China
| | - Yuebo Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.L.); (F.Y.); (Y.L.); (N.G.); (Q.Z.); (H.M.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410000, China
| |
Collapse
|