1
|
Meena A, Maggu K, De Nardo AN, Sbilordo SH, Eggs B, Al Toma Sho R, Lüpold S. Life stage-specific effects of heat stress on spermatogenesis and oogenesis in Drosophila melanogaster. J Therm Biol 2024; 125:104001. [PMID: 39486108 DOI: 10.1016/j.jtherbio.2024.104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Biodiversity is increasingly threatened by unpredictable, frequent, and intense climatic events like heatwaves that pose harmful impacts on ectotherms. Beyond the health and survival of organisms, reduced reproductive performance has emerged as a critical fitness consequence of thermal stress induced by high temperatures. Many studies on these effects expose organisms to heat stress during the adult stage or throughout development, often focusing on cumulative effects across life stages, and they tend to examine one or the other sex. This approach may not reflect the short-term nature of many extreme heat events and limits our understanding of stage- and sex-specific fitness consequences in short-lived organisms. To address this gap, we used Drosophila melanogaster to investigate the sex-specific reproductive performance following short heat stress of varying intensity at different developmental stages. We found the thermal sensitivity to be higher in males than females, and to increase toward adult emergence, leading to nearly complete reproductive failure and substantially slowed recovery. These results highlight how even brief bouts of heat stress during a sensitive phase could affect population dynamics and persistence. Our findings also underscore that incorporating both sex and life stage could improve predictions of species persistence.
Collapse
Affiliation(s)
- Abhishek Meena
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | - Komal Maggu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Alessio N De Nardo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Sonja H Sbilordo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Benjamin Eggs
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Rawaa Al Toma Sho
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Zhou J, Luo W, Song S, Wang Z, Zhu X, Gao S, He W, Xu J. The Impact of High-Temperature Stress on the Growth and Development of Tuta absoluta (Meyrick). INSECTS 2024; 15:423. [PMID: 38921138 PMCID: PMC11203633 DOI: 10.3390/insects15060423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024]
Abstract
Insect life processes and reproductive behaviors are significantly affected by extremely high temperatures. This study focused on Tuta absoluta, which poses a severe threat to tomato cultivars. The effects of intense heat stress on the growth, development, oviposition, and longevity of T. absoluta were investigated. This investigation encompassed various developmental stages, including eggs, pupae, and adults. This study revealed that egg hatching and pupa emergence rates were significantly reduced at a temperature of 44 °C maintained for 6 h. The longevity of adults that emerged after the egg and pupal stages were exposed to 44 °C for 6 h was significantly reduced compared to the control. Notably, there was no significant variation in adult fecundity after egg-stage exposure to high temperatures. However, all treatments exhibited significantly reduced fecundity compared to the control after exposure to high temperatures during the pupal stage. Adult survival rates after exposure to 40 °C and 44 °C for 3 h were 74.29% and 22.40%, respectively, dramatically less than that of the control, which was 100%. However, no significant differences were noted in terms of longevity and egg production. These results offer a better understanding of the complex interactions between extreme temperatures and the life history traits of T. absoluta, thereby offering valuable insights for implementing management strategies to alleviate its impact on tomato crops in response to climate change.
Collapse
Affiliation(s)
- Junhui Zhou
- Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China; (J.Z.); (W.L.); (S.S.); (X.Z.); (S.G.)
| | - Wenfang Luo
- Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China; (J.Z.); (W.L.); (S.S.); (X.Z.); (S.G.)
| | - Suqin Song
- Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China; (J.Z.); (W.L.); (S.S.); (X.Z.); (S.G.)
| | - Zhuhong Wang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xiafen Zhu
- Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China; (J.Z.); (W.L.); (S.S.); (X.Z.); (S.G.)
| | - Shuaijun Gao
- Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China; (J.Z.); (W.L.); (S.S.); (X.Z.); (S.G.)
| | - Wei He
- Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China; (J.Z.); (W.L.); (S.S.); (X.Z.); (S.G.)
| | - Jianjun Xu
- Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China; (J.Z.); (W.L.); (S.S.); (X.Z.); (S.G.)
| |
Collapse
|
3
|
Laugen AT, Hosken DJ, Reinhold K, Schwarzenbach GA, Hoeck PEA, Bussière LF, Blanckenhorn WU, Lüpold S. Sperm competition in yellow dung flies: No consistent effect of sperm size. J Evol Biol 2022; 35:1309-1318. [PMID: 35972882 DOI: 10.1111/jeb.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 01/07/2023]
Abstract
The male competition for fertilization that results from female multiple mating promotes the evolution of increased sperm numbers and can impact sperm morphology, with theory predicting that longer sperm can at times be advantageous during sperm competition. If so, males with longer sperm should sire more offspring than competitors with shorter sperm. Few studies have directly tested this prediction, and findings are inconsistent. Here we assessed whether longer sperm provide a competitive advantage in the yellow dung fly (Scathophaga stercoraria; Diptera: Scathophagidae). Initially, we let brothers with different temperature-mediated mean sperm lengths compete - thus minimizing confounding effects of genetic background - and found no clear advantage of longer sperm. We then used flies from lines subjected to bidirectional selection on phenoloxidase activity that had shown correlated evolutionary responses in sperm and female spermathecal duct lengths. This experiment also yielded no main effect of sperm size on siring success. Instead, there was a trend for a shorter-sperm advantage, but only when competing in females with longer spermathecal ducts. Our data corroborated many previously reported findings (last-male precedence, effects of copula duration and body size), suggesting our failure to find sperm size effects is not inherently due to our experimental protocols. We conclude that longer sperm are not competitively superior in yellow dung flies under most circumstances, and that, consistent with previous work, in this species competitive fertilization success is primarily determined by the relative numbers of sperm competing.
Collapse
Affiliation(s)
- Ane T Laugen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland.,Centre for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - David J Hosken
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland.,Centre for Ecology and Conservation, University of Exeter in Cornwall, Penryn, UK
| | - Klaus Reinhold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland.,Evolutionsbiologie, Universität Bielefeld, Bielefeld, Germany
| | - Gioia A Schwarzenbach
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland
| | - Paquita E A Hoeck
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland
| | - Luc F Bussière
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland.,Biology and Environmental Sciences, University of Gothenburg and Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland
| |
Collapse
|
4
|
Yu Y, Chen M, Lu ZY, Liu Y, Li B, Gao ZX, Shen ZG. High-temperature stress will put the thermo-sensitive teleost yellow catfish (Tachysurus fulvidraco) in danger through reducing reproductivity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113638. [PMID: 35597142 DOI: 10.1016/j.ecoenv.2022.113638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Recently, concerns for species that sex differentiation is influenced by temperature in the context of global warming have increased because disrupted operational sex ratios could threaten population maintenance. In contrast, little attention has been given to the reproductive ability of populations that experienced elevated temperatures. In this study, we demonstrated that high temperature (HT) would decrease population size via three different aspects of reproductive ability for the first time. We show that, in a thermo-sensitive teleost yellow catfish, a short period of HT (+3 °C) exposure during the critical period of sex differentiation leads to a different percentage of masculinization of XX genotypic females (1-23%) in wet-lab and natural water bodies. Combining the results of gonadal appearance, histology, sperm parameters, and fertilization rate, we found that XX pseudo-males induced by HT display significantly discounted fertility and reproductive performance compared to XY normal males. We demonstrate that the survival of the XY genotype is lower than XX genotype under environmental stress, including HT, hypoxia, and parasite infection, and the differential survival seems unrelated to male-biased sexual size dimorphism. The mathematical model predicts that the phenotypic female percent will be stabilized at 50% and the population will be sustainably maintained when masculinizing force is less than 0.5, while HT will put the population in danger when the masculinizing force exceeds 0.5. However, when we combine the real-world data of reproductive ability and mathematic model, our results suggest the population size decreases and the long-term survival of the studied species are threatened under the projected pace of increasing temperature. These findings will be useful for understanding the long-term effects of increasing temperature on sex ratio, reproduction and population maintenance in teleost.
Collapse
Affiliation(s)
- Yue Yu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Min Chen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Zi-Yi Lu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Ya Liu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Bo Li
- Institute of Fisheries, Wuhan Academy of Agricultural Sciences, Wuhan, PR China
| | - Ze-Xia Gao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Zhi-Gang Shen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China.
| |
Collapse
|
5
|
Bota‐Sierra CA, García‐Robledo C, Escobar F, Novelo‐Gutiérrez R, Londoño GA. Environment, taxonomy and morphology constrain insect thermal physiology along tropical mountains. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cornelio A. Bota‐Sierra
- Red de Biodiversidad y Sistemática, Instituto de Ecología (INECOL A.C.), Xalapa Mexico
- Grupo de Entomología Universidad de Antioquia (GEUA), Universidad de Antioquia, Medellin Colombia
| | - Carlos García‐Robledo
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut U.S.A
| | - Federico Escobar
- Red de Ecoetología, Instituto de Ecología (INECOL A.C.), Xalapa Mexico
| | | | | |
Collapse
|
6
|
Tian M, Zhang Y, Liu TX, Zhang SZ. Effects of periodically repeated high-temperature exposure on the immediate and subsequent fitness of different developmental stages of Propylaea japonica. PEST MANAGEMENT SCIENCE 2022; 78:1649-1656. [PMID: 34989107 DOI: 10.1002/ps.6784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Repeated extreme high temperature occurs frequently in summer. Propylaea japonica is a predominant predator in South-East Asia and has been considered as a successful natural enemy to control aphids. However, how repeated extreme high temperature affects the fitness of P. japonica remains unclear. This study evaluated the immediate and subsequent fitness of P. japonica when egg, larva, pupa, and adult were exposed to repeated high temperatures (39, 41, or 43 °C for 3 h exposure duration per day) during several days. RESULTS The effect of repeated high temperatures on P. japonica fitness was stage-specific: the egg stage was the most sensitive, the larval and pupal stages were moderately resistant and the adult stage was the most resistant to heat. Repeated high temperatures extended the immature developmental time and decreased the sex ratio of eggs treated with these temperatures, compared to control eggs. A temperature of 39 °C had no significant effect on the pre-oviposition period, oviposition period, fecundity (except stress pupa), or longevity compared with the control, but negative carry-over effects above 39 °C on subsequent stages were found. CONCLUSION Repeated high temperature for consecutive days not only had a significant effect on the immediate survival and developmental time, but also had deleterious effects on the subsequent development and performance of P. japonica. The present study provides valuable information for understanding and utilizing P. japonica to control aphids in challenging environments. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mi Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Yi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Shi-Ze Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Walters RJ, Berger D, Blanckenhorn WU, Bussière LF, Rohner PT, Jochmann R, Thüler K, Schäfer MA. Growth rate mediates hidden developmental plasticity of female yellow dung fly reproductive morphology in response to environmental stressors. Evol Dev 2022; 24:3-15. [PMID: 35072984 PMCID: PMC9285807 DOI: 10.1111/ede.12396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/19/2021] [Accepted: 11/24/2021] [Indexed: 01/08/2023]
Abstract
Understanding how environmental variation influences even cryptic traits is important to clarify the roles of selection and developmental constraints in past evolutionary divergence and to predict future adaptation under environmental change. Female yellow dung flies (Scathophaga stercoraria) typically have three sperm storage compartments (3S), but occasionally four (4S). More spermathecae are thought to be a female adaptation facilitating sperm sorting after mating, but the phenotype is very rare in nature. We manipulated the flies' developmental environment by food restriction, pesticides, and hot temperatures to investigate the nature and extent of developmental plasticity of this trait, and whether spermatheca expression correlates with measures of performance and developmental stability, as would be expected if 4S expression is a developmental aberration. The spermathecal polymorphism of yellow dung fly females is heritable, but also highly developmentally plastic, varying strongly with rearing conditions. 4S expression is tightly linked to growth rate, and weakly positively correlated with fluctuating asymmetry of wings and legs, suggesting that the production of a fourth spermatheca could be a nonadaptive developmental aberration. However, spermathecal plasticity is opposite in the closely related and ecologically similar Scathophaga suilla, demonstrating that overexpression of spermathecae under developmental stress is not universal. At the same time, we found overall mortality costs as well as benefits of 4S pheno‐ and genotypes (also affecting male siblings), suggesting that a life history trade‐off may potentially moderate 4S expression. We conclude that the release of cryptic genetic variation in spermatheca number in the face of strong environmental variation may expose hidden traits (here reproductive morphology) to natural selection (here under climate warming or food augmentation). Once exposed, hidden traits can potentially undergo rapid genetic assimilation, even in cases when trait changes are first triggered by random errors that destabilize developmental processes. Female yellow dung flies naturally vary in number of sperm storage compartments (3S or 4S). This spermathecal polymorphism is strongly heritable but also developmentally plastic. 4S expression is linked to growth rate and weakly correlated with fluctuating asymmetry, so potentially a developmental aberration. There are mortality costs as well as benefits for 4S phenotypes, suggesting adaptive life‐history trade‐offs. Spermathecal plasticity differs in the closely related and ecologically similar Scathophaga suilla. Environmental changes can expose hidden traits with initially no function to natural selection.
Collapse
Affiliation(s)
- Richard J. Walters
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Centre for Environmental and Climate Research Lund University Lund Sweden
| | - David Berger
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Evolutionary Biology Centre University of Uppsala Uppsala Sweden
| | - Wolf U. Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Luc F. Bussière
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Biological and Environmental Sciences University of Stirling Stirling Scotland UK
- Biology and Environmental Sciences University of Gothenburg Gothenburg Sweden
| | - Patrick T. Rohner
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Department of Biology Indiana University Bloomington Indiana USA
| | - Ralf Jochmann
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Karin Thüler
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Martin A. Schäfer
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| |
Collapse
|
8
|
González-Tokman D, Bauerfeind SS, Schäfer MA, Walters RJ, Berger D, Blanckenhorn WU. Heritable responses to combined effects of heat stress and ivermectin in the yellow dung fly. CHEMOSPHERE 2022; 286:131030. [PMID: 34144808 DOI: 10.1016/j.chemosphere.2021.131030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
In current times of global change, several sources of stress such as contaminants and high temperatures may act synergistically. The extent to which organisms persist in stressful conditions will depend on the fitness consequences of multiple simultaneously acting stressors and the genetic basis of compensatory genetic responses. Ivermectin is an antiparasitic drug used in livestock that is excreted in dung of treated cattle, causing severe negative consequences on non-target fauna. We evaluated the effect of a combination of heat stress and exposure to ivermectin in the yellow dung fly, Scathophaga stercoraria (Diptera: Scathophagidae). In a first experiment we investigated the effects of high rearing temperature on susceptibility to ivermectin, and in a second experiment we assayed flies from a latitudinal gradient to assess potential effects of local thermal adaptation on ivermectin sensitivity. The combination of heat and ivermectin synergistically reduced offspring survival, revealing severe effects of the two stressors when combined. However, latitudinal populations did not systematically vary in how ivermectin affected offspring survival, body size, development time, cold and heat tolerance. We also found very low narrow-sense heritability of ivermectin sensitivity, suggesting evolutionary constraints for responses to the combination of these stressors beyond immediate maternal or plastic effects. If the revealed patterns hold also for other invertebrates, the combination of increasing climate warming and ivermectin stress may thus have severe consequences for biodiversity. More generally, our study underlines the need for quantitative genetic analyses in understanding wildlife responses to interacting stressors that act synergistically and threat biodiversity.
Collapse
Affiliation(s)
- Daniel González-Tokman
- CONACYT. Red de Ecoetología, Instituto de Ecología A. C. Carretera Antigua a Coatepec 351. El Haya, Xalapa, Veracruz, 91073, Mexico.
| | - Stephanie S Bauerfeind
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | - Martin A Schäfer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | - Richard J Walters
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden.
| | - David Berger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Department of Ecology and Genetics, Uppsala University, Sweden, Norbyvägen 18D, S-752 36, Uppsala, Sweden.
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
9
|
Comparative Transcriptome Analysis of Two Populations of Dastarcus helophoroides (Fairmaire) under High Temperature Stress. FORESTS 2021. [DOI: 10.3390/f13010013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The differentially expressed genes (DEGs), key genes and metabolic pathways of the parasitic beetle, Dastarcus helophoroides (Fairmaire), were compared between the fiftieth commercially reared population and the first natural population to reveal the adaptive mechanism in response to high temperature stress. The high-throughput sequencing technique was employed for transcriptome sequencing of two populations of D. helophoroides. In total, 47,763 non-redundant transcripts with the average length of 989.31 bp and the N50 of 1607 bp were obtained. Under high temperature stress, 1108 DEGs were found in the commercial population; while there were 3946 DEGs in the natural population, which were higher than those in the commercial population (3.56 times). High temperature stress of D. helophoroides promoted the expression of heat shock proteins (HSPs) and metabolism-related genes in both populations, but metabolism synthesis and hydrolysis of natural population was much higher, allowing them to produce more resistant substances (such as HSPs, superoxide dismutase (SOD), peroxiredoxin (Prx), etc.). Therefore, HSPs may play a major role in the high temperature adaptation of a commercial population, while the natural population probably respond to heat stress with more resistant substances (such as HSPs, SOD, Prx, etc.). These results provide a reference to select and domesticate a specific ecotype with stronger adaptability to the high temperature weather in the forest and further improve the efficiency of D. helophoroides as a bio-control factor.
Collapse
|
10
|
Walsh BS, Parratt SR, Mannion NLM, Snook RR, Bretman A, Price TAR. Plastic responses of survival and fertility following heat stress in pupal and adult Drosophila virilis. Ecol Evol 2021; 11:18238-18247. [PMID: 35003670 PMCID: PMC8717264 DOI: 10.1002/ece3.8418] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/03/2022] Open
Abstract
The impact of rising global temperatures on survival and reproduction is putting many species at risk of extinction. In particular, it has recently been shown that thermal effects on reproduction, especially limits to male fertility, can underpin species distributions in insects. However, the physiological factors influencing fertility at high temperatures are poorly understood. Key factors that affect somatic thermal tolerance such as hardening, the ability to phenotypically increase thermal tolerance after a mild heat shock, and the differential impact of temperature on different life stages are largely unexplored for thermal fertility tolerance. Here, we examine the impact of high temperatures on male fertility in the cosmopolitan fruit fly Drosophila virilis. We first determined whether temperature stress at either the pupal or adult life history stage impacts fertility. We then tested the capacity for heat-hardening to mitigate heat-induced sterility. We found that thermal stress reduces fertility in different ways in pupae and adults. Pupal heat stress delays sexual maturity, whereas males heated as adults can reproduce initially following heat stress, but become sterile within seven days. We also found evidence that while heat-hardening in D. virilis can improve high temperature survival, there is no significant protective impact of this same hardening treatment on fertility. These results suggest that males may be unable to prevent the costs of high temperature stress on fertility through heat-hardening, which limits a species' ability to quickly and effectively reduce fertility loss in the face of short-term high temperature events.
Collapse
Affiliation(s)
| | | | | | | | - Amanda Bretman
- School of BiologyFaculty of Biological SciencesUniversity of LeedsLeedsUK
| | - Tom A. R. Price
- Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
11
|
Blanckenhorn WU, Berger D, Rohner PT, Schäfer MA, Akashi H, Walters RJ. Comprehensive thermal performance curves for yellow dung fly life history traits and the temperature-size-rule. J Therm Biol 2021; 100:103069. [PMID: 34503806 DOI: 10.1016/j.jtherbio.2021.103069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Ambient temperature strongly determines the behaviour, physiology, and life history of all organisms. The technical assessment of organismal thermal niches in form of now so-called thermal performance curves (TPC) thus has a long tradition in biological research. Nevertheless, several traits do not display the idealized, intuitive dome-shaped TPC, and in practice assessments often do not cover the entire realistic or natural temperature range of an organism. We here illustrate this by presenting comprehensive sex-specific TPCs for the major (juvenile) life history traits of yellow dung flies (Scathophaga stercoraria; Diptera: Scathophagidae). This concerns estimation of prominent biogeographic rules, such as the temperature-size-rule (TSR), the common phenomenon in ectothermic organisms that body size decreases as temperature increases. S. stercoraria shows an untypical asymptotic TPC of continuous body size increase with decreasing temperature without a peak (optimum), thus following the TSR throughout their entire thermal range (unlike several other insects presented here). Egg-to-adult mortality (our best fitness estimator) also shows no intermediate maximum. Both may relate to this fly entering pupal winter diapause below 12 °C. While development time presents a negative exponential relationship with temperature, development rate and growth rate typify the classic TPC form for this fly. The hitherto largely unexplored close relative S. suilla with an even more arctic distribution showed very similar responses, demonstrating large overlap among two ecologically similar, coexisting dung fly species, thus implying limited utility of even complete TPCs for predicting species distribution and coexistence.
Collapse
Affiliation(s)
- Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - David Berger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Evolutionary Biology Centre, University of Uppsala, Norbyvägen 18D, S-752 36, Uppsala, Sweden
| | - Patrick T Rohner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Martin A Schäfer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hiroshi Akashi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Department of Biological Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Richard J Walters
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Centre for Environmental and Climate Research, Lund University, Sweden
| |
Collapse
|
12
|
González-Tokman D, Córdoba-Aguilar A, Dáttilo W, Lira-Noriega A, Sánchez-Guillén RA, Villalobos F. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biol Rev Camb Philos Soc 2020; 95:802-821. [PMID: 32035015 DOI: 10.1111/brv.12588] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Surviving changing climate conditions is particularly difficult for organisms such as insects that depend on environmental temperature to regulate their physiological functions. Insects are extremely threatened by global warming, since many do not have enough physiological tolerance even to survive continuous exposure to the current maximum temperatures experienced in their habitats. Here, we review literature on the physiological mechanisms that regulate responses to heat and provide heat tolerance in insects: (i) neuronal mechanisms to detect and respond to heat; (ii) metabolic responses to heat; (iii) thermoregulation; (iv) stress responses to tolerate heat; and (v) hormones that coordinate developmental and behavioural responses at warm temperatures. Our review shows that, apart from the stress response mediated by heat shock proteins, the physiological mechanisms of heat tolerance in insects remain poorly studied. Based on life-history theory, we discuss the costs of heat tolerance and the potential evolutionary mechanisms driving insect adaptations to high temperatures. Some insects may deal with ongoing global warming by the joint action of phenotypic plasticity and genetic adaptation. Plastic responses are limited and may not be by themselves enough to withstand ongoing warming trends. Although the evidence is still scarce and deserves further research in different insect taxa, genetic adaptation to high temperatures may result from rapid evolution. Finally, we emphasize the importance of incorporating physiological information for modelling species distributions and ecological interactions under global warming scenarios. This review identifies several open questions to improve our understanding of how insects respond physiologically to heat and the evolutionary and ecological consequences of those responses. Further lines of research are suggested at the species, order and class levels, with experimental and analytical approaches such as artificial selection, quantitative genetics and comparative analyses.
Collapse
Affiliation(s)
- Daniel González-Tokman
- CONACYT, CDMX, 03940, Mexico.,Red de Ecoetología, Instituto de Ecología A. C, Xalapa, 91073, Mexico
| | - Alex Córdoba-Aguilar
- Instituto de Ecología, Universidad Nacional Autónoma de México. Circuito exterior s/n Ciudad Universitaria, CDMX, 04510, Mexico
| | - Wesley Dáttilo
- Red de Ecoetología, Instituto de Ecología A. C, Xalapa, 91073, Mexico
| | - Andrés Lira-Noriega
- CONACYT, CDMX, 03940, Mexico.,Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C, Xalapa, 91073, Mexico
| | | | - Fabricio Villalobos
- Red de Biología Evolutiva, Instituto de Ecología A. C, Xalapa, 91073, Mexico
| |
Collapse
|
13
|
Jia D, Yuan XF, Liu YH, Xu CQ, Wang YX, Gao LL, Ma RY. Heat sensitivity of eggs attributes to the reduction in Agasicles hygrophila population. INSECT SCIENCE 2020; 27:159-169. [PMID: 29851277 DOI: 10.1111/1744-7917.12611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/11/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Agasicles hygrophila has been introduced worldwide as a control agent for the invasive weed Alternanthera philoxeroides. However, global warming has potential impact on its controlling efficacy. The aim of this research was to explore the primary factors responsible for the greatly reduced A. hygrophila population in hot summers. To imitate the temperature conditions in summers, different developmental stages of A. hygrophila were treated with high temperatures from 32.5 °C to 45 °C for 1-5 h. Based on the survival rate, the heat tolerance of each developmental stage was ranked from lowest to highest as follows: egg, 1st, 2nd, 3rd instar larva, adult and pupa. Eggs showed the lowest heat tolerance with 37.5 °C as the critical temperature affecting larval hatching. Heat treatment of the A. hygrophila eggs at 37.5 °C for 1 h decreased the hatch rate to 24%. Our results indicated that when compared with the control at 25 °C, 1 h treatment at 37.5 °C prolonged the duration of the egg stage, shortened the duration of oviposition and total longevity, and changed the reproductive pattern of A. hygrophila. The net reproductive rate, intrinsic rate and finite rate were all significantly reduced. The results suggest that low heat tolerance of the eggs was the major factor responsible for the reduction of A. hygrophila populations, and the key temperature was 37.5 °C. Therefore, appropriate measures should be taken to protect eggs in order to maintain the efficacy of A. hygrophila in the biological control of A. philoxeroides in hot summers.
Collapse
Affiliation(s)
- Dong Jia
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiao-Fang Yuan
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yan-Hong Liu
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Chao-Qian Xu
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yuan-Xin Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Ling-Ling Gao
- CSIRO Agriculture and Food, Centre for Environment and Life Sciences, Wembley, Western Australia, Australia
| | - Rui-Yan Ma
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
14
|
Austin CJ, Moehring AJ. Local thermal adaptation detected during multiple life stages across populations of
Drosophila melanogaster. J Evol Biol 2019; 32:1342-1351. [DOI: 10.1111/jeb.13530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 11/30/2022]
Affiliation(s)
| | - Amanda J. Moehring
- Department of Biology The University of Western Ontario London ON Canada
| |
Collapse
|
15
|
Chen H, Solangi GS, Zhao C, Yang L, Guo J, Wan F, Zhou Z. Physiological Metabolic Responses of Ophraella communa to High Temperature Stress. Front Physiol 2019; 10:1053. [PMID: 31507435 PMCID: PMC6718515 DOI: 10.3389/fphys.2019.01053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
Considering the predicted rising temperatures under current climate change and heat wave scenarios, organisms are expected to suffer more intense and frequent thermal stress. Induced heat is accumulated by organisms and can cause a variety of physiological stress responses. Ophraella communa is an effective biological control agent of common ragweed, Ambrosia artemisiifolia, but the responses of this biocontrol agent to heat stress have not been fully elucidated and, therefore, its potential responses to climate change are uncertain. We investigated the physiological metabolism of subsequent O. communa adults after: (1) different developmental stages (egg, larval, pupal, and adult) were exposed to thermal stress for 3 h each day for 3, 5, 5, and 5 days, respectively (by stage); and (2) individuals were exposed to thermal stress throughout the egg-to-adult period for 3 h each day. The high temperatures of 40, 42, and 44°C were used to induce thermal stress. A control group was reared at 28 ± 2°C. The results showed that short- or long-term exposure to daily phasic high temperatures significantly decreased water and lipid contents and significantly increased glycogen and glycerol contents in all adults (i.e., after exposure of different stages or throughout the egg-to-adult period). However, the total sugar content significantly increased in adults after the eggs and larvae were exposed to brief short-term thermal stress. Compared to the control, the total sugar content was also significantly higher in the adults and pupae exposed to 44°C. Total sugar content in females increased significantly in response to long-term phasic thermal stress at 40°C. However, sugar content of males exposed to 44°C decreased significantly. After long-term phasic thermal stress, water and glycogen contents in males were significantly higher than in females; however, females had higher total sugar and lipid contents. Therefore, our study provides a basic understanding of the metabolic responses of O. communa to thermal stress and offers insights into its potential as a natural biocontrol agent against A. artemisiifolia during the summer season and under predicted climate change scenarios.
Collapse
Affiliation(s)
- Hongsong Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ghulam Sarwar Solangi
- Department of Entomology, Sindh Agriculture University Sub Campus, Umerkot, Pakistan
| | - Chenchen Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Henan, China
| | - Lang Yang
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Zhao F, Xing K, Hoffmann AA, Ma CS. The importance of timing of heat events for predicting the dynamics of aphid pest populations. PEST MANAGEMENT SCIENCE 2019; 75:1866-1874. [PMID: 30663223 DOI: 10.1002/ps.5344] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Heatwaves are increasing in frequency and there is growing interest in their impact on pest organisms. Previous work indicates that effects depend on the timing of the stress event, whose impact needs to be characterized across the full set of developmental stages and exposure periods of an organism. Here, we undertake such a detailed assessment using heat stress (20-35 °C diurnal cycle) across the nymph and adult stages of the English grain aphid, Sitobion avenae (Fabricius). RESULTS Stress-related mortality increased with stress duration at all stages; effects were less severe at the late nymphal stage. Effects on longevity adults after stress showed a complex pattern with nymphal heat stress, increasing with stress duration at the late nymphal stage, but decreasing with duration at the early nymphal stage. Longevity was also reduced by adult stress although to a lesser extent, and patterns were not connected to duration. Post-stress productivity decreased following adult and nymphal stress and the decrease tended to be correlated with stress duration. The rate of offspring production was more affected by adult stress than nymphal stress. Productivity and longevity effects, when combined, showed that the largest effect of heat stress occurred at the early nymphal stage. CONCLUSION These findings highlight the complex ways in which heat stress at a particular life stage influences later fitness and they also emphasize the importance of considering multiple fitness components when assessing stress effects. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fei Zhao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, China
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kun Xing
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Sasaki M, Hedberg S, Richardson K, Dam HG. Complex interactions between local adaptation, phenotypic plasticity and sex affect vulnerability to warming in a widespread marine copepod. ROYAL SOCIETY OPEN SCIENCE 2019; 6:182115. [PMID: 31032052 PMCID: PMC6458359 DOI: 10.1098/rsos.182115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/27/2019] [Indexed: 05/06/2023]
Abstract
Predicting the response of populations to climate change requires an understanding of how various factors affect thermal performance. Genetic differentiation is well known to affect thermal performance, but the effects of sex and developmental phenotypic plasticity often go uncharacterized. We used common garden experiments to test for effects of local adaptation, developmental phenotypic plasticity and individual sex on thermal performance of the ubiquitous copepod, Acartia tonsa (Calanoida, Crustacea) from two populations strongly differing in thermal regimes (Florida and Connecticut, USA). Females had higher thermal tolerance than males in both populations, while the Florida population had higher thermal tolerance compared with the Connecticut population. An effect of developmental phenotypic plasticity on thermal tolerance was observed only in the Connecticut population. Our results show clearly that thermal performance is affected by complex interactions of the three tested variables. Ignoring sex-specific differences in thermal performance may result in a severe underestimation of population-level impacts of warming because of population decline due to sperm limitation. Furthermore, despite having a higher thermal tolerance, low-latitude populations may be more vulnerable to warming as they lack the ability to respond to increases in temperature through phenotypic plasticity.
Collapse
Affiliation(s)
- Matthew Sasaki
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
- Author for correspondence: Matthew Sasaki e-mail:
| | | | | | - Hans G. Dam
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| |
Collapse
|
18
|
Mutamiswa R, Chidawanyika F, Nyamukondiwa C. Comparative assessment of the thermal tolerance of spotted stemborer, Chilo partellus (Lepidoptera: Crambidae) and its larval parasitoid, Cotesia sesamiae (Hymenoptera: Braconidae). INSECT SCIENCE 2018; 25:847-860. [PMID: 28374539 DOI: 10.1111/1744-7917.12466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 03/09/2017] [Accepted: 03/19/2017] [Indexed: 06/07/2023]
Abstract
Under stressful thermal environments, insects adjust their behavior and physiology to maintain key life-history activities and improve survival. For interacting species, mutual or antagonistic, thermal stress may affect the participants in differing ways, which may then affect the outcome of the ecological relationship. In agroecosystems, this may be the fate of relationships between insect pests and their antagonistic parasitoids under acute and chronic thermal variability. Against this background, we investigated the thermal tolerance of different developmental stages of Chilo partellus Swinhoe (Lepidoptera: Crambidae) and its larval parasitoid, Cotesia sesamiae Cameron (Hymenoptera: Braconidae) using both dynamic and static protocols. When exposed for 2 h to a static temperature, lower lethal temperatures ranged from -9 to 6 °C, -14 to -2 °C, and -1 to 4 °C while upper lethal temperatures ranged from 37 to 48 °C, 41 to 49 °C, and 36 to 39 °C for C. partellus eggs, larvae, and C. sesamiae adults, respectively. Faster heating rates improved critical thermal maxima (CTmax ) in C. partellus larvae and adult C. partellus and C. sesamiae. Lower cooling rates improved critical thermal minima (CTmin ) in C. partellus and C. sesamiae adults while compromising CTmin in C. partellus larvae. The mean supercooling points (SCPs) for C. partellus larvae, pupae, and adults were -11.82 ± 1.78, -10.43 ± 1.73 and -15.75 ± 2.47, respectively. Heat knock-down time (HKDT) and chill-coma recovery time (CCRT) varied significantly between C. partellus larvae and adults. Larvae had higher HKDT than adults, while the latter recovered significantly faster following chill-coma. Current results suggest developmental stage differences in C. partellus thermal tolerance (with respect to lethal temperatures and critical thermal limits) and a compromised temperature tolerance of parasitoid C. sesamiae relative to its host, suggesting potential asynchrony between host-parasitoid population phenology and consequently biocontrol efficacy under global change. These results have broad implications to biological pest management insect-natural enemy interactions under rapidly changing thermal environments.
Collapse
Affiliation(s)
- Reyard Mutamiswa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology (BIUST), Private Bag 16, Palapye, Botswana
| | - Frank Chidawanyika
- Agricultural Research Council, Plant Protection Research, Weeds Division, Private Bag X6006, Hilton 3245, South Africa
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology (BIUST), Private Bag 16, Palapye, Botswana
| |
Collapse
|
19
|
Effect of short-term high-temperature exposure on the life history parameters of Ophraella communa. Sci Rep 2018; 8:13969. [PMID: 30228344 PMCID: PMC6143555 DOI: 10.1038/s41598-018-32262-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 09/05/2018] [Indexed: 12/31/2022] Open
Abstract
Extreme heat in summer is frequent in parts of China, and this likely affects the fitness of the beetle Ophraella communa, a biological control agent of invasive common ragweed. Here, we assessed the life history parameters of O. communa when its different developmental stages were exposed to high temperatures (40, 42 and 44 °C, with 28 °C as a control) for 3 h each day for 3, 5, 5, and 5 days, respectively (by stage). The larval stage was the most sensitive stage, with the lowest survival rate under heat stress. Egg and pupal survival significantly decreased only at 44 °C, and these two stages showed relative heat tolerance, while the adult stage was the most tolerant stage, with the highest survival rates. High temperatures showed positive effects on the female proportion, but there was no stage-specific response. Treated adults showed the highest fecundity under heat stress and a similar adult lifespan to that in the control. High temperatures decreased the F1 egg hatching rate, but the differences among stages were not significant. Negative carry-over effects of heat stress on subsequent stages and progenies’ survival were also observed. Overall, heat effects depend on the temperature and life stage, and the adult stage was the most tolerant stage. Ophraella communa possesses a degree of heat tolerance that allows it to survive on hot days in summer.
Collapse
|
20
|
Bauerfeind SS, Sørensen JG, Loeschcke V, Berger D, Broder ED, Geiger M, Ferrari M, Blanckenhorn WU. Geographic variation in responses of European yellow dung flies to thermal stress. J Therm Biol 2018; 73:41-49. [PMID: 29549990 DOI: 10.1016/j.jtherbio.2018.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/29/2017] [Accepted: 01/19/2018] [Indexed: 01/29/2023]
Abstract
Climatic conditions can be very heterogeneous even over small geographic scales, and are believed to be major determinants of the abundance and distribution of species and populations. Organisms are expected to evolve in response to the frequency and magnitude of local thermal extremes, resulting in local adaptation. Using replicate yellow dung fly (Scathophaga stercoraria; Diptera: Scathophagidae) populations from cold (northern Europe) and warm climates (southern Europe), we compared 1) responses to short-term heat and cold shocks in both sexes, 2) heat shock protein (Hsp70) expression in adults and eggs, and 3) female reproductive traits when facing short-term heat stress during egg maturation. Contrary to expectations, thermal traits showed minor geographic differentiation, with weak evidence for greater heat resistance of southern flies but no differentiation in cold resistance. Hsp70 protein expression was little affected by heat stress, indicating systemic rather than induced regulation of the heat stress response, possibly related to this fly group's preference for cold climes. In contrast, sex differences were pronounced: males (which are larger) endured hot temperatures longer, while females featured higher Hsp70 expression. Heat stress negatively affected various female reproductive traits, reducing first clutch size, overall reproductive investment, egg lipid content, and subsequent larval hatching. These responses varied little across latitude but somewhat among populations in terms of egg size, protein content, and larval hatching success. Several reproductive parameters, but not Hsp70 expression, exhibited heritable variation among full-sib families. Rather than large-scale clinal geographic variation, our study suggests some local geographic population differentiation in the ability of yellow dung flies to buffer the impact of heat stress on reproductive performance.
Collapse
Affiliation(s)
- Stephanie S Bauerfeind
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurer Str. 190, CH-8057 Zurich, Switzerland.
| | - Jesper G Sørensen
- Department of Bioscience, Section for Genetics, Ecology and Evolution, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | - Volker Loeschcke
- Department of Bioscience, Section for Genetics, Ecology and Evolution, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | - David Berger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurer Str. 190, CH-8057 Zurich, Switzerland; Evolutionary Biology Centre, University of Uppsala, Norbyvägen 18D, S-752 36 Uppsala, Sweden.
| | - E Dale Broder
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurer Str. 190, CH-8057 Zurich, Switzerland; Interdisciplinary Research Incubator for the Study of (in)Equality, University of Denver, Denver, CO 80208, USA.
| | - Madeleine Geiger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurer Str. 190, CH-8057 Zurich, Switzerland.
| | - Manuela Ferrari
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurer Str. 190, CH-8057 Zurich, Switzerland.
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurer Str. 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
21
|
Svensson O, Gräns J, Celander MC, Havenhand J, Leder EH, Lindström K, Schöld S, van Oosterhout C, Kvarnemo C. Immigrant reproductive dysfunction facilitates ecological speciation. Evolution 2017; 71:2510-2521. [PMID: 28791680 DOI: 10.1111/evo.13323] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/01/2017] [Accepted: 08/05/2017] [Indexed: 01/20/2023]
Abstract
The distributions of species are not only determined by where they can survive - they must also be able to reproduce. Although immigrant inviability is a well-established concept, the fact that immigrants also need to be able to effectively reproduce in foreign environments has not been fully appreciated in the study of adaptive divergence and speciation. Fertilization and reproduction are sensitive life-history stages that could be detrimentally affected for immigrants in non-native habitats. We propose that "immigrant reproductive dysfunction" is a hitherto overlooked aspect of reproductive isolation caused by natural selection on immigrants. This idea is supported by results from experiments on an externally fertilizing fish (sand goby, Pomatoschistus minutus). Growth and condition of adults were not affected by non-native salinity whereas males spawning as immigrants had lower sperm motility and hatching success than residents. We interpret these results as evidence for local adaptation or acclimation of sperm, and possibly also components of paternal care. The resulting loss in fitness, which we call "immigrant reproductive dysfunction," has the potential to reduce gene flow between populations with locally adapted reproduction, and it may play a role in species distributions and speciation.
Collapse
Affiliation(s)
- Ola Svensson
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden.,Centre for Marine Evolutionary Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden.,Current Address: School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| | - Johanna Gräns
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Malin C Celander
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden.,Centre for Marine Evolutionary Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Jonathan Havenhand
- Centre for Marine Evolutionary Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden.,Department of Marine Sciences, University of Gothenburg, Tjärnö, SE-452 96 Strömstad, Sweden
| | - Erica H Leder
- Centre for Marine Evolutionary Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden.,Department of Biology, University of Turku, FI-20014 Turun yliopisto, Finland.,Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318, Oslo, Norway
| | - Kai Lindström
- Environmental and Marine Biology, Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland
| | - Sofie Schöld
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden.,Current Address: Swedish Meteorological and Hydrological Institute, Folkborgsvägen 17, SE-603 80 Norrköping, Sweden
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Charlotta Kvarnemo
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden.,Centre for Marine Evolutionary Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
22
|
RNA sequencing reveals differential thermal regulation mechanisms between sexes of Glanville fritillary butterfly in the Tianshan Mountains, China. Mol Biol Rep 2016; 43:1423-1433. [PMID: 27649991 DOI: 10.1007/s11033-016-4076-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
Abstract
The Glanville fritillary butterfly (Melitaea cinxia; Nymphalidae) has been extensively studied as a model species in metapopulation ecology. We investigated in the earlier studies that female butterflies exhibit higher thermal tolerance than males in the Tianshan Mountains of China. We aim to understand the molecular mechanism of differences of thermal responses between sexes. We used RNA-seq approach and performed de novo assembly of transcriptome to compare the gene expression patterns between two sexes after heat stress. All the reads were assembled into 84,376 transcripts and 72,701 unigenes. The number of differential expressed genes (DEGs) between control and heat shock samples was 175 and 268 for males and females, respectively. Heat shock proteins genes (hsps) were up-regulated in response to heat stress in both males and females. Most of the up-regulated hsps showed higher fold changes in males than in females. Females expressed more ribosomal subunit protein genes, transcriptional elongation factor genes, and methionine-rich storage protein genes, participating in protein synthesis. It indicated that protein synthesis is needed for females to replace the damaged proteins due to heat shock. In addition, aspartate decarboxylase might contribute to thermal tolerance in females. These differences in gene expression may at least partly explain the response to high temperature stress, and the fact that females exhibit higher thermal tolerance.
Collapse
|