1
|
Hamed S, El-Kassas S, Abo-Al-Ela HG, Abdo SE, Abou-Ismail UA, Mohamed RA. Temperature and feeding frequency: interactions with growth, immune response, and water quality in juvenile Nile tilapia. BMC Vet Res 2024; 20:520. [PMID: 39558328 PMCID: PMC11571909 DOI: 10.1186/s12917-024-04366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Water temperature and feeding frequency are critical abiotic factors regulating the growth and immune function of aquatic organisms. This study investigated the effects of water temperature and feeding frequency on growth and immune function in Nile tilapia (Oreochromis niloticus) over two months. A total of 360 juvenile fish (average weight: 20.00 ± 1.26 g) were divided into six groups, each with three replicates, based on a combination of three water temperatures (26, 28, and 30 °C) and two feeding frequencies (either 1 or 2 meals per day). RESULTS At 30 ºC and 28 ºC, water electrical conductivity and total dissolved salts increased, while total ammonia nitrogen and dissolved oxygen rose slightly in groups fed twice daily, with a significant interaction between temperature and feeding frequency. The group at 30 ºC with two meals per day showed the highest final body weight (FBW). The interaction between temperature and feeding frequency significantly influenced FBW, total feed intake, and body thickness. Fish at 30 ºC exhibited upregulated hepatic growth hormone receptor 1 and insulin-like growth factor 1, while those at 28 ºC with one meal per day, as well as those at 30 ºC regardless of meal frequency, also showed increased expression of hepatic fatty acid binding protein and intestinal cluster of differentiation 36. Fish at 30 ºC had upregulated leptin levels and downregulated cholecystokinin, while those at 26 ºC displayed the opposite trend, particularly with one meal daily. Higher temperatures significantly boosted serum IgM, superoxide dismutase (SOD), and lysozyme (LYZ) levels, with meal frequency also affecting malondialdehyde, IgM, and SOD levels. Additionally, 30 ºC enhanced the hepatic expression of mucin-like protein (muc), oligo-peptide transporter 1 (pept1), interleukin 1, nf-κB, complement C3, lyz, sod, catalase, and glutathione peroxidase, with twice-daily meals having a more pronounced effect. Conversely, 28 ºC with one meal per day upregulated some of these genes, such as muc, pept1, and sod. CONCLUSIONS Overall, 30 ºC with two meals per day significantly improved the growth and health of juvenile Nile tilapia, while 28 ºC with two meals maintained satisfactory performance.
Collapse
Affiliation(s)
- Sara Hamed
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Seham El-Kassas
- Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, 43221, Egypt.
| | - Safaa E Abdo
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Usama A Abou-Ismail
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St., Mansoura, 35516, Egypt
| | - Radi A Mohamed
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
2
|
Zhang W, Dan Z, Zheng J, Du J, Liu Y, Zhao Z, Gong Y, Mai K, Ai Q. Optimal dietary lipid levels alleviated adverse effects of high temperature on growth, lipid metabolism, antioxidant and immune responses in juvenile turbot (Scophthalmus maximus L.). Comp Biochem Physiol B Biochem Mol Biol 2024; 272:110962. [PMID: 38387739 DOI: 10.1016/j.cbpb.2024.110962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Fish physiological health is often negatively impacted by high-temperature environments and there are few studies on how dietary lipids affect fish growth and physiology when exposed to heat stress. The main objective of this research was to examine the impact of dietary lipid levels on growth and physiological status of juvenile turbot (Scophthalmus maximus L.) and determine if dietary lipid concentration could alleviate the possible adverse effects of heat stress. Five diets containing 6.81%, 9.35%, 12.03%, 14.74%, and 17.08% lipid, respectively, were formulated and fed to turbot (initial weight 5.13 ± 0.02 g) under high-temperature conditions (24.0-25.0 °C). Meanwhile, the diet with 12.03% lipid (considered by prior work to be an optimal dietary lipid level) was fed to turbot of the same size at normal temperature. Results suggested that, among the different dietary lipid levels under high-temperature conditions, fish fed the optimal lipid (12.03%) exhibited better growth compared to non-optimal lipid groups, as evidenced by higher weight gain and specific growth rate. Simultaneously, the optimal lipid diet may better maintain lipid homeostasis, as attested by lower liver and serum lipid, along with higher liver mRNA levels of lipolysis-related genes (pgc1α, lipin1, pparα, lpl and hl) and lower levels of synthesis-related genes (lxr, fas, scd1, pparγ, dgat1 and dgat2). Also, the optimal lipid diet might mitigate oxidative damage by improving antioxidant enzyme activity, decreasing malondialdehyde levels, and up-regulating oxidation-related genes (sod1, sod2, cat, gpx and ho-1). Furthermore, the optimal lipid may enhance fish immunity, as suggested by the decrease in serum glutamic-oxalacetic/pyruvic transaminase activities, down-regulation of pro-inflammatory genes and up-regulation of anti-inflammation genes. Correspondingly, the optimal lipid level suppressed MAPK signaling pathway via decreased phosphorylation levels of p38, JNK and ERK proteins in liver. In summary, the optimal dietary lipid level facilitated better growth and physiological status in turbot under thermal stress.
Collapse
Affiliation(s)
- Wencong Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, People's Republic of China
| | - Zhijie Dan
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jichang Zheng
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jianlong Du
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yongtao Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, People's Republic of China
| | - Zengqi Zhao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, People's Republic of China
| | - Ye Gong
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, People's Republic of China.
| |
Collapse
|
3
|
Mao Y, Lv W, Huang W, Yuan Q, Yang H, Zhou W, Li M. Effects on growth performance and immunity of Monopterus albus after high temperature stress. Front Physiol 2024; 15:1397818. [PMID: 38720786 PMCID: PMC11076714 DOI: 10.3389/fphys.2024.1397818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
To investigate the impact of the effect of high temperature stimulation on Monopterus albus larvae after a certain period of time, five experimental groups were established at different temperatures. Then, the M. albus under high temperature stress was fed at 30°C for 70 days. After that, the growth index of the M. albus was counted and analyzed. In terms of growth index, high temperature stress had significant effects on FCR, FBW, WGR, and SGR of M. albus (p < 0.05). The SR increased after being stimulated by temperature (p < 0.1). The study revealed that liver cells of M. albus were harmed by elevated temperatures of 36°C and 38°C. In the experimental group, the activities of digestive enzymes changed in the same trend, reaching the highest point in the 32°C group and then decreasing, and the AMS activity in the 38°C group was significantly different from that in the 30°C group (p < 0.05). The activities of antioxidase in liver reached the highest at 34°C, which was significantly different from those at 30°C (p < 0.05). In addition, the expression levels of TLR1, C3, TNF-α, and other genes increased in the experimental group, reaching the highest point at 34°C, and the expression level of the IL-1β gene reached the highest point at 32°C, which was significantly different from that at 30°C (p < 0.05). However, the expression level of the IRAK3 gene decreased in the experimental group and reached its lowest point at 34°C (p < 0.05). The expression level of the HSP90α gene increased with the highest temperature stimulus and reached its highest point at 38°C (p < 0.05). In the α diversity index of intestinal microorganisms in the experimental group, the observed species, Shannon, and Chao1 indexes in the 34°C group were the highest (p < 0.05), and β diversity analysis revealed that the intestinal microbial community in the experimental group was separated after high temperature stimulation. At the phylum level, the three dominant flora are Proteus, Firmicutes, and Bacteroides. Bacteroides and Macrococcus abundance increased at the genus level, but Vibrio and Aeromonas abundance decreased. To sum up, appropriate high-temperature stress can enhance the immunity and adaptability of M. albus. These results show that the high temperature stimulation of 32°C-34°C is beneficial to the industrial culture of M. albus.
Collapse
Affiliation(s)
- Yifan Mao
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Weiwei Lv
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Weiwei Huang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Quan Yuan
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hang Yang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wenzong Zhou
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Mingyou Li
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
4
|
Kasihmuddin SM, Cob ZC, Noor NM, Das SK. Effect of different temperature variations on the physiological state of catfish species: a systematic review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:413-434. [PMID: 38367084 DOI: 10.1007/s10695-024-01323-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
Catfish are a highly diverse group of fish that are found in various regions across the globe. The significance of catfish culture extends to various aspects, including food security, economic advancement, preservation of cultural legacy, and ecological stewardship. The catfish industry is presently encountering unprecedented challenges as a consequence of the variability in water temperature caused by climate change. Temperature is a significant abiotic component that regulates and restricts fish physiology throughout their life cycle. The impact of severe temperatures on various species of catfish is dependent upon the magnitude of the stressor and additional influencing factors. This paper presents an analysis of the effects of temperature fluctuations on various aspects of catfish species, including growth and survival, blood parameters, enzymatic and hormone response, oxygen consumption rates, sound generation and hearing skills, nutritional requirements, and other phenotypic attributes. While this review is certainly not exhaustive, it offers a broad synopsis of the ideal temperature ranges that are most favorable for several catfish species. In-depth research to investigate the interacting impacts of severe temperature occurrences in conjunction with other associated environmental stresses on a wider variety of catfish species is crucial in order to further our understanding of how catfish species will respond to the anticipated climate change in the future.
Collapse
Affiliation(s)
- Sonia Mohd Kasihmuddin
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Zaidi Che Cob
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia
- Marine Ecosystem Research Centre (EKOMAR), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Noorashikin Md Noor
- Earth Observation Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia.
| | - Simon Kumar Das
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia
- Marine Ecosystem Research Centre (EKOMAR), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
5
|
Siciliani D, Kortner TM, Berge GM, Hansen AK, Krogdahl Å. Effects of dietary lipid level and environmental temperature on lipid metabolism in the intestine and liver, and choline requirement in Atlantic salmon ( Salmo salar L) parr. J Nutr Sci 2023; 12:e61. [PMID: 37252685 PMCID: PMC10214143 DOI: 10.1017/jns.2023.45] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/18/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Choline was recently established as an essential nutrient for Atlantic salmon at all life stages. Choline deficiency is manifested as an excessive accumulation of dietary fat within the intestinal enterocytes, a condition known as steatosis. Most of today's plant-based salmon feeds will be choline-deficient unless choline is supplemented. Choline's role in lipid transport suggests that choline requirement may depend on factors such as dietary lipid level and environmental temperature. The present study was therefore conducted to investigate whether lipid level and water temperature can affect steatosis symptoms, and thereby choline requirement in Atlantic salmon. Four choline-deficient plant-based diets were formulated differing in lipid level of 16, 20, 25 and 28 % and fed to salmon of 25 g initial weight in duplicate tanks per diet at two different environmental temperatures: 8 and 15 °C. After 8 weeks of feeding, samples of blood, tissue and gut content from six fish per tank were collected, for analyses of histomorphological, biochemical and molecular biomarkers of steatosis and choline requirement. Increasing lipid level did not affect growth rate but increased relative weight and lipid content of the pyloric caeca and histological symptoms of intestinal steatosis and decreased fish yield. Elevation of the water temperature from 8 to 15 °C, increased growth rate, relative weight of the pyloric caeca, and the histological symptoms of steatosis seemed to become more severe. We conclude that dietary lipid level, as well as environmental temperature, affect choline requirement to a magnitude of importance for fish biology and health, and for fish yield.
Collapse
Affiliation(s)
- Daphne Siciliani
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Trond M. Kortner
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Åshild Krogdahl
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
6
|
Abdel-Ghany HM, Salem MES, Ezzat AA, Essa MA, Helal AM, Ismail RF, El-Sayed AFM. Effects of different levels of dietary lipids on growth performance, liver histology and cold tolerance of Nile tilapia (Oreochromis niloticus). J Therm Biol 2021; 96:102833. [PMID: 33627271 DOI: 10.1016/j.jtherbio.2020.102833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/20/2020] [Accepted: 12/30/2020] [Indexed: 11/25/2022]
Abstract
This study evaluated the effects of different levels of dietary lipids on the growth performance, feed utilization, body composition and cold tolerance of Nile tilapia (Oreochromis niloticus) fingerlings (7.33 ± 0.12 g fish-1). Four isonitrogenous (275 g kg-1 crude protein), isocaloric (18.5 MJ kg-1) diets containing a mixture of fish oil and corn oil (1:1 ratio) at different levels (70, 85, 110 and 130 g kg-1) were prepared and fed to Nile tilapia reared at a fixed water temperature 25 ± 1 °C for two months. After the feeding trial, the fish were exposed to a cold challenge. The best growth rates and feed utilization were achieved at 70 and 85 g kg-1 dietary lipid, whereas the lowest results were recorded at higher lipid levels (110 and 130 g kg-1). The ability of Nile tilapia to survive the acute cold stress was significantly improved as the lipid level increased from 70 to 110 g kg-1 and decreased with further increase in lipid levels. During the cold stress, saturated fatty acids (SFA) significantly decreased, while unsaturated fatty acids (UFA) tended to increase. Thus, this study demonstrates, to a certain level, that high dietary lipid levels have a positive effect on the cold tolerance of Nile tilapia fingerlings.
Collapse
Affiliation(s)
| | | | - Altaf A Ezzat
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed A Essa
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Amr M Helal
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Rania F Ismail
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | | |
Collapse
|
7
|
Development of SNP markers and validation 24 SNPs in darkbarbel catfish (Pelteobagrus vachelli). CONSERV GENET RESOUR 2020. [DOI: 10.1007/s12686-020-01134-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Qiang J, Wasipe A, He J, Tao YF, Xu P, Bao JW, Chen DJ, Zhu JH. Dietary vitamin E deficiency inhibits fat metabolism, antioxidant capacity, and immune regulation of inflammatory response in genetically improved farmed tilapia (GIFT, Oreochromis niloticus) fingerlings following Streptococcus iniae infection. FISH & SHELLFISH IMMUNOLOGY 2019; 92:395-404. [PMID: 31226419 DOI: 10.1016/j.fsi.2019.06.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Vitamin E plays an important role in maintaining normal metabolism and physiological functions in animals. The health of fish fingerlings directly affects the rate of disease incidence in adult fish, and healthy fingerlings ultimately result in better breeding outcomes for cultured fish. To date, no previous studies have focused on the effects vitamin E deficiency on tilapia at the fingerling stage. In this study, we investigated the effects of dietary vitamin E on the growth, fat metabolism, antioxidant capacity, and inflammatory response of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) fingerlings. Vitamin E at different concentrations (0, 20, 40, 80, 160, and 320 mg/kg) was added to the diet and GIFT were fed for 55 days. Then, the GIFT were intraperitoneally injected with Streptococcus iniae and tested for infection. Vitamin E deficiency decreased growth and increased the food conversion ratio of GIFT fingerlings. Vitamin E deficiency also reduced the white blood cell count, increased hematocrit and hemoglobin contents in the blood, increased serum aspartate aminotransferase and alanine aminotransferase activities, and increased liver stress (P < 0.05). Vitamin E deficiency inhibited fat metabolism, down-regulated the expression of genes encoding lipoprotein lipase and heart-type and liver-type fatty acid-binding proteins, and increased serum total protein and fat deposition. Vitamin E deficiency significantly decreased superoxide dismutase, glutathione peroxidase, and catalase activities, increased malondialdehyde content, and caused oxidative damage. Vitamin E deficiency also up-regulated the expression of genes encoding interleukin 1β and tumor necrosis factor α in the head kidney, and stimulated a pro-inflammatory response. Overall, vitamin E deficiency inhibited growth, impaired fat metabolism, and disrupted the inflammatory response of GIFT fingerlings, whereas vitamin E supplementation in the diet reversed these negative effects. The diets with high concentrations of vitamin E (160-320 mg/kg) led to vitamin E accumulation in the fish tissues and rapid activation of the inflammatory response and antioxidant capacity in GIFT fingerlings exposed to S. iniae.
Collapse
Affiliation(s)
- Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, Jiangsu, China.
| | - Anthony Wasipe
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, Jiangsu, China
| | - Jie He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, Jiangsu, China
| | - Yi-Fan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, Jiangsu, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, Jiangsu, China.
| | - Jin-Wen Bao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, Jiangsu, China
| | - De-Ju Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, Jiangsu, China
| | - Jun-Hao Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, Jiangsu, China
| |
Collapse
|
9
|
Qiang J, Zhong CY, Bao JW, Liang M, Liang C, Tao YF, Li HX, He J, Xu P. Synergistic effect of water temperature and dissolved oxygen concentration on rates of fertilization, hatching and deformity of hybrid yellow catfish (Tachysurus fulvidraco♀×Pseudobagrus vachellii♂). J Therm Biol 2019; 83:47-53. [DOI: 10.1016/j.jtherbio.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 01/20/2023]
|
10
|
Balbuena-Pecino S, Riera-Heredia N, Vélez EJ, Gutiérrez J, Navarro I, Riera-Codina M, Capilla E. Temperature Affects Musculoskeletal Development and Muscle Lipid Metabolism of Gilthead Sea Bream ( Sparus aurata). Front Endocrinol (Lausanne) 2019; 10:173. [PMID: 30967839 PMCID: PMC6439310 DOI: 10.3389/fendo.2019.00173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
World population is expected to increase to approximately 9 thousand million people by 2050 with a consequent food security decline. Besides, climate change is a major challenge that humanity is facing, with a predicted rise in mean sea surface temperature of more than 2°C during this century. This study aims to determine whether a rearing temperature of 19, 24, or 28°C may influence musculoskeletal development and muscle lipid metabolism in gilthead sea bream juveniles. The expression of growth hormone (GH)/insulin-like growth factors (IGFs) system-, osteogenic-, myogenic-, and lipid metabolism-related genes in bone and/or white muscle of treated fish, and the in vitro viability, mineralization, and osteogenic genes expression in primary cultured cells derived from bone of the same fish were analyzed. The highest temperature significantly down-regulated igf-1, igf-2, the receptor igf-1ra, and the binding proteins igfbp-4 and igfbp-5b in bone, and in muscle, igf-1 and igf-1ra, suggesting impaired musculoskeletal development. Concerning myogenic factors expression, contrary responses were observed, since the increase to 24°C significantly down-regulated myod1 and mrf4, while at 28°C myod2 and myogenin were significantly up-regulated. Moreover, in the muscle tissue, the expression of the fatty acid transporters cd36 and fabp11, and the lipases lipa and lpl-lk resulted significantly increased at elevated temperatures, whereas β-oxidation markers cpt1a and cpt1b were significantly reduced. Regarding the primary cultured bone-derived cells, a significant up-regulation of the extracellular matrix proteins on, op, and ocn expression was found with increased temperatures, together with a gradual decrease in mineralization along with fish rearing temperature. Overall, these results suggest that increasing water temperature in this species appears to induce unfavorable growth and development of bone and muscle, through modulating the expression of different members of the GH/IGFs axis, myogenic and osteogenic genes, while accelerating the utilization of lipids as an energy source, although less efficiently than at optimal temperatures.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Qiang J, Tao YF, Bao JW, Chen DJ, Li HX, He J, Xu P. High Fat Diet-Induced miR-122 Regulates Lipid Metabolism and Fat Deposition in Genetically Improved Farmed Tilapia (GIFT, Oreochromis niloticus) Liver. Front Physiol 2018; 9:1422. [PMID: 30344495 PMCID: PMC6182080 DOI: 10.3389/fphys.2018.01422] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022] Open
Abstract
The liver is an important organ for the regulation of lipid metabolism. In genetically improved farmed tilapia (GIFT, Oreochromis niloticus), fat deposition in the liver occurs when they are fed high-lipid diets over a long term. This can affect their growth, meat quality, and disease resistance. MicroRNAs (miRNAs) are known to be crucial regulatory factors involved in lipid metabolism; however, the mechanism by which they regulate lipid deposition in GIFT remains unclear. Comparative miRNA expression profiling between GIFT fed a normal diet and those fed a high-lipid diet showed that miR-122 is closely related to lipid deposition. Using miR-122 as a candidate, we searched for a binding site for miR-122 in the 3'-untranslated region (UTR) of the stearoyl-CoA desaturase gene (SCD) using bioinformatics tools, and then confirmed its functionality using the luciferase reporter gene system. Then, the regulatory relationship between this miRNA and its target gene SCD was analyzed using real-time polymerase chain reaction (qRT-PCR) and western blotting analyses. Last, we investigated the effect of the loss of miR-122 expression on lipid metabolism in GIFT. The results showed that a sequence in the 3'-UTR region of SCD of GIFT was complementary to the miR-122 seed region, and there was a negative relationship between the expression of miRNA and SCD expression. Inhibition of miR-122 up-regulated SCD, increased the expression of fat synthesis-related genes, increased hepatic triglyceride and cholesterol contents, and promoted weight gain in fish. Our results showed that miR-122 targets SCD to mediate hepatic fat metabolism. These results provide new insights for the prevention and treatment of fatty liver disease in GIFT.
Collapse
Affiliation(s)
- Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yi Fan Tao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jing Wen Bao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - De Ju Chen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Hong Xia Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jie He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
12
|
Qiang J, Bao J, Tao Y, Li H, He J, Shi W, Xu P, Sun Y. CCD and RSM optimization approach for antioxidative activity and immune regulation in head kidney of yellow catfish (Pelteobagrus fulvidraco) based on different lipid levels and temperatures. FISH & SHELLFISH IMMUNOLOGY 2018; 72:77-85. [PMID: 29107064 DOI: 10.1016/j.fsi.2017.10.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/13/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Yellow catfish (Pelteobagrus fulvidraco) is an important economic cultured fish in China. Here we report antioxidative activity and immune regulation in head kidney using a central composite design based on water temperature (20-34 °C) and dietary lipid (2-17%). Response values were optimized using response surface methodology to maximize the immune response and relieve oxidative stress. The experiment was conducted under laboratory conditions and lasted for seven weeks. The results showed that the linear effects of lipid level on superoxide dismutase (SOD, and lysozyme (LYZ) activity, and malondialdehyde (MDA) content in head kidney, respiratory burst activity (RBA) of head kidney macrophages, and cumulative mortality of fish infected by Streptococcus iniae (S. iniae) were significant (P < 0.05). Similarly, the linear effects of water temperature on SOD activity, MDA content, and cumulative mortality were significant (P < 0.05). In addition, the quadratic effects of water temperature and lipid level on all experimental response values were significant (P < 0.05), and no interactive effect was found between water temperature and lipid level (P > 0.05). High water temperature and high lipid diet significantly reduced the antioxidative activity and immune response in head kidney, and increased MDA content, which caused increased mortality of the S. iniae-infected fish. The adjusted R2 values for SOD activity, MDA content, LYZ activity, RBA, phagocytic activity, and cumulative mortality regression models were 0.76, 0.85, 0.87, 0.79, 0.64, and 0.87, respectively. The optimal combination of water temperature and lipid level was 26.9 °C and 7.7%, at which good antioxidative activity and immune regulation were achieved, with reliability of 0.878. This combination was close to the optimal combination of water temperature and lipid level for growth performance (27.5 °C and 9.2%) reported previously. Thus, the optimal combination may not only promote growth, but also enhance antioxidant and immune levels.
Collapse
Affiliation(s)
- Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jingwen Bao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yifan Tao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hongxia Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China
| | - Jie He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China
| | - Wenbo Shi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Yilan Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China
| |
Collapse
|