1
|
Fleites IR, Morales K, Roper SD. A simple, inexpensive battery-powered homeothermic warming pad for mice and rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.28.651075. [PMID: 40342967 PMCID: PMC12060995 DOI: 10.1101/2025.04.28.651075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Background Anesthesia decreases core body temperature, and this seriously compromises the physiological status of an experimental animal. Hypothermia alters many aspects of neural function. When recording nervous system activity in anesthetized animals, their core temperature must be stabilized. New method This report describes an inexpensive, battery-powered, temperature-controlled warming pad for mice and rats and documents its validity and utility. The device is portable, making it convenient for researchers who conduct procedures such as surgical preparations in one location and transport the anesthetized animal to another location for experimental recordings. Results The device keeps anesthetized mice normothermic ±0.7° for over 6 hours without supplemental warmth (e.g., heat lamp), despite >15° differential between ambient room temperature and core body temperature. We demonstrate how the warming pad can be used for in vivo imaging of neuronal activity for a prolonged period in mice. Comparison with existing methods Commercial heating pads for small animals are expensive, somewhat bulky, and require power cords and a 120/240V source. Transporting an anesthetized animal from one location (e.g. surgical suite) to another (e.g., imaging rig) involves moving power cords. Moreover, commercial devices are not always compatible with custom stereotaxic frames, microscope stages, or holding boxes. The device described here is small, inexpensive, battery-powered, and readily adaptable to experimental set ups. Conclusion The homeothermic heating pad provides a simple method for maintaining the core temperature of anesthetized small animals. It can be constructed in under 30 minutes, the components are readily available, and the cost is less than $100. It is exceptionally useful for experiments on mice or rats. Highlights Temperature-controlled warming pad for small rodentsLow cost, well under $100Components available from online suppliersCan be assembled in less than 30 minutesDoes not require specialty toolsThe device is stable and robust.
Collapse
|
2
|
Gozalo AS, Elkins WR. A Review of the Effects of Some Extrinsic Factors on Mice Used in Research. Comp Med 2023; 73:413-431. [PMID: 38217072 PMCID: PMC10752364 DOI: 10.30802/aalas-cm-23-000028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 11/15/2023] [Indexed: 01/14/2024]
Abstract
Animals have been used in research for over 2,000 y. From very crude experiments conducted by ancient scholars, animal research, as a science, was refined over hundreds of years to what we know it as today. However, the housing conditions of animals used for research did not improve significantly until less than 100 years ago when guidelines for housing research animals were first published. In addition, it was not until relatively recently that some extrinsic factors were recognized as a research variable, even when animals were housed under recommended guidelines. For example, temperature, humidity, light, noise, vibration, diet, water, caging, bedding, etc., can all potentially affect research using mice, contributing the inability of others to reproduce published findings. Consequently, these external factors should be carefully considered in the design, planning, and execution of animal experiments. In addition, as recommended by others, the housing and husbandry conditions of the animals should be described in detail in publications resulting from animal research to improve study reproducibility. Here, we briefly review some common, and less common, external factors that affect research in one of the most popular animal models, the mouse.
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - William R Elkins
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
3
|
Calvet C, Seebeck P. What to consider for ECG in mice-with special emphasis on telemetry. Mamm Genome 2023; 34:166-179. [PMID: 36749381 PMCID: PMC10290603 DOI: 10.1007/s00335-023-09977-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
Genetically or surgically altered mice are commonly used as models of human cardiovascular diseases. Electrocardiography (ECG) is the gold standard to assess cardiac electrophysiology as well as to identify cardiac phenotypes and responses to pharmacological and surgical interventions. A variety of methods are used for mouse ECG acquisition under diverse conditions, making it difficult to compare different results. Non-invasive techniques allow only short-term data acquisition and are prone to stress or anesthesia related changes in cardiac activity. Telemetry offers continuous long-term acquisition of ECG data in conscious freely moving mice in their home cage environment. Additionally, it allows acquiring data 24/7 during different activities, can be combined with different challenges and most telemetry systems collect additional physiological parameters simultaneously. However, telemetry transmitters require surgical implantation, the equipment for data acquisition is relatively expensive and analysis of the vast number of ECG data is challenging and time-consuming. This review highlights the limits of non-invasive methods with respect to telemetry. In particular, primary screening using non-invasive methods can give a first hint; however, subtle cardiac phenotypes might be masked or compensated due to anesthesia and stress during these procedures. In addition, we detail the key differences between the mouse and human ECG. It is crucial to consider these differences when analyzing ECG data in order to properly translate the insights gained from murine models to human conditions.
Collapse
Affiliation(s)
- Charlotte Calvet
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| | - Petra Seebeck
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
MacDonald C, Ministero S, Pandey M, Robinson D, Forti Hong E, Hylander B, McCarthy P, Gordon C, Repasky E, Mohammadpour H. Comparing thermal stress reduction strategies that influence MDSC accumulation in tumor bearing mice. Cell Immunol 2021; 361:104285. [PMID: 33484943 PMCID: PMC7883813 DOI: 10.1016/j.cellimm.2021.104285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022]
Abstract
Myeloid derived suppressor cells (MDSCs) are a diverse collection of immune cells that suppress anti-tumor immune responses. Decreasing MDSCs accumulation in the tumor microenvironment could improve the anti-tumor immune response and improve immunotherapy. Here, we examine the impact of physiologically relevant thermal treatments on the accumulation of MDSCs in tumors in mice. We found that different temperature-based protocols, including 1) weekly whole-body hyperthermia, 2) housing mice at their thermoneutral temperature (TT, ~30 °C), and 3) housing mice at a subthermoneutral temperature (ST,~22 °C) while providing a localized heat source, each resulted in a reduction in MDSC accumulation and improved tumor growth control compared to control mice housed at ST, which is the standard, mandated housing temperature for laboratory mice. Additionally, we found that low dose β-adrenergic receptor blocker (propranolol) therapy reduced MDSC accumulation and improved tumor growth control to a similar degree as the models that relieved cold stress. These results show that thermal treatments can decrease MDSC accumulation and tumor growth comparable to propranolol therapy.
Collapse
Affiliation(s)
- Cameron MacDonald
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Samuel Ministero
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Manu Pandey
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Denisha Robinson
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Evan Forti Hong
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Bonnie Hylander
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Philip McCarthy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | | | - Elizabeth Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States.
| | - Hemn Mohammadpour
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States.
| |
Collapse
|
5
|
Craig MC, Silva LO, Swoap SJ. Behavioral thermoregulation in the fasted C57BL/6 mouse. J Therm Biol 2021; 96:102821. [PMID: 33627261 DOI: 10.1016/j.jtherbio.2020.102821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/20/2020] [Accepted: 12/18/2020] [Indexed: 11/15/2022]
Abstract
Under relatively cool ambient temperatures and a caloric deficit, mice will undergo daily torpor - a short-term regulated reduction in metabolic rate with a concomitant drop in body temperature. Mice can alternatively achieve metabolic savings by utilizing behavioral changes, such as seeking a warmer environment. However, there is a lack of knowledge about the behavioral interaction between torpor utilization and thermotaxis. That is, if a fasted mouse is faced with a choice between a warm environment not conducive for torpor, and a cool environment that will induce torpor, which scenario will the fasting mouse choose? Here, the temperature preferences of fasted mice were studied using a temperature gradient device that allows a mouse to freely move along a gradient of temperatures. C57BL/6 mice were implanted with temperature telemeters that recorded location, core temperature (Tb), and activity concurrently over a 23-h period in the thermal gradient. When the gradient was on, mice preferred the warm end of the gradient when fed (71 ± 4% of the time) and even more so when fasted (84 ± 2%). When the gradient was on, the fasted minimum Tb was significantly higher (34.4 ± 0.3 °C) than when the gradient was off (27.7 ± 1.6 °C). Further, fasted mice lost significantly more weight when the gradient was off despite maintenance of a metabolically favorable lower minimum Tb in this condition. These results indicate that fasted mice not only prefer warm ambient temperatures when given the choice, but that it is also the pathway with more favorable metabolic outcomes in a period of reduced caloric intake.
Collapse
|
6
|
Liu JQ, Hu TY, Diao KY, Yu D, Song YN, Mo LH, Yang G, Liu ZQ, Liu ZG, Yang PC. Cold stress promotes IL-33 expression in intestinal epithelial cells to facilitate food allergy development. Cytokine 2020; 136:155295. [PMID: 32977238 DOI: 10.1016/j.cyto.2020.155295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/23/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The causative factors and pathogenesis of food allergy (FA) is not fully understood yet. Cold stress (CS) occurs frequently in human life that influences physiological activities in the body. In this study, we aimed to investigate the chronic CS (CS) effects on promoting the expression of IL-33 in intestinal epithelial cells. METHODS CS was carried out by placing mice at 4 °C for 1 h daily for 7 consecutive days. We developed a mouse model used to test the effects of CS on the FA development. RESULTS We found that, similar to conventional FA mouse model, CS induced the core body temperature to drop markedly in mice, increased intestinal epithelial barrier permeability and facilitated FA development. CS promoted interleukin (IL)-33 expression in intestinal epithelial cells through the adrenocorticotropic hormone (ACTH)/cortisol axis and via inducing the Il33 promoter methylation. CS facilitated the FA development in mice, that could be blocked by depletion of IL-33 expression in intestinal epithelial cells. CONCLUSIONS CS induces IL-33 expression in intestinal epithelial cells to promote Th2 polarization in the intestinal tissues and facilitates FA development.
Collapse
Affiliation(s)
- Jiang-Qi Liu
- Department of Allergy, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Tian-Yong Hu
- Department of Allergy, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Kai-Yuan Diao
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Dian Yu
- Department of Allergy, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Yan-Nan Song
- Department of Allergy, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Li-Hua Mo
- Department of Allergy, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China; Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Gui Yang
- Department of Otolaryngology, Longgagn Central Hospital, Shenzhen, China
| | - Zhi-Qiang Liu
- Department of Allergy, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.
| | - Zhi-Gang Liu
- Department of Allergy, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China.
| | - Ping-Chang Yang
- Department of Allergy, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China.
| |
Collapse
|
7
|
Lee VK, David JM, Huerkamp MJ. Micro- and Macroenvironmental Conditions and Stability of Terrestrial Models. ILAR J 2020; 60:120-140. [PMID: 33094820 DOI: 10.1093/ilar/ilaa013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 04/28/2020] [Accepted: 05/20/2020] [Indexed: 01/15/2023] Open
Abstract
Environmental variables can have profound effects on the biological responses of research animals and the outcomes of experiments dependent on them. Some of these influences are both predictable and unpredictable in effect, many are challenging to standardize, and all are influenced by the planning and conduct of experiments and the design and operation of the vivarium. Others are not yet known. Within the immediate environment where the research animal resides, in the vivarium and in transit, the most notable of these factors are ambient temperature, relative humidity, gaseous pollutant by-products of animal metabolism and physiology, dust and particulates, barometric pressure, electromagnetic fields, and illumination. Ambient temperatures in the animal housing environment, in particular those experienced by rodents below the thermoneutral zone, may introduce degrees of stress and thermoregulatory compensative responses that may complicate or invalidate study measurements across a broad array of disciplines. Other factors may have more subtle and specific effects. It is incumbent on scientists designing and executing experiments and staff responsible for animal husbandry to be aware of, understand, measure, systematically record, control, and account for the impact of these factors on sensitive animal model systems to ensure the quality and reproducibility of scientific studies.
Collapse
Affiliation(s)
- Vanessa K Lee
- Department of Pathology and Laboratory Medicine and Division of Animal Resources, School of Medicine, Emory University, Atlanta, Georgia
| | - John M David
- Translational Medicine Department, Vertex Pharmaceuticals, Boston, Massachusetts
| | - Michael J Huerkamp
- Department of Pathology and Laboratory Medicine and Division of Animal Resources, School of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
8
|
Abstract
In homeothermic animals sleep preparatory behaviours often promote thermal efficiency, including warmth-seeking, adopting particular postures (curling up, head tucking) and nest building, all promoting warmer skin microclimates. Skin warmth induces NREM sleep and body cooling via circuitry that connects skin sensation to the preoptic hypothalamus. Coupling sleep induction and lower body temperature could serve to minimise energy expenditure or allow energy reallocation. Cooling during NREM sleep may also induce transcriptional changes in genes whose products facilitate housekeeping functions or measure the time spent sleeping.
Collapse
Affiliation(s)
- Edward C Harding
- Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, UK
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, UK.,Centre for Neurotechnology, Imperial College London, SW7 2AZ, UK.,UK Dementia Research Institute at Imperial College London, UK
| | - William Wisden
- Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, UK.,Centre for Neurotechnology, Imperial College London, SW7 2AZ, UK.,UK Dementia Research Institute at Imperial College London, UK
| |
Collapse
|