1
|
Yao Z, Sun X, Wu X, Zhu F, Huang J, Zhang W, Ma W, Hua H, Lin Y. Functional and evolutionary analysis of key enzymes triacylglycerol lipase, glycogen hydrolases in the glycerol and glucose biosynthesis pathway and cellular chaperones for freeze-tolerance of the Rice stem borer, Chilo suppressalis. Int J Biol Macromol 2024; 282:136861. [PMID: 39490866 DOI: 10.1016/j.ijbiomac.2024.136861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Freeze-tolerance is an important physiological trait for terrestrial environmental adaptation and intraspecific geographic-lineage diversification in ectothermic animals, yet there remains a lack of systematic studies on its underlying genetic mechanisms and evolution. To address this problem, we employed the widely distributed rice pest, the Chilo suppressalis, as a model to explore the genetic mechanisms and evolutionary history of freeze-tolerance. First, we systematically characterized its antifreeze mechanisms by performing functional validation of potential key genes in laboratory-reared lines. This revealed the functional roles of glycerol biosynthesis in freeze-tolerance, including the triacylglycerol-originated pathway via triacylglycerol lipase (Tgl) hydrolysis and the glycogen-originated pathway via α-amylase (Aa) and maltase (Ma) hydrolysis, as well as the roles of the cellular chaperones Hsc70 and Hsf1. Then, we investigated the evolution of freeze-tolerance by collecting representative geographical samples and performing population genetic analyses, which suggested differentiated strategies of cold adaptation in different geographic populations. Taken together, our findings demonstrate the functional basis of cold resistance in Chilo suppressalis and reveal the evolutionary history of freeze-tolerance in natural populations, providing insights into organismal freeze-tolerance and clues for pest control.
Collapse
Affiliation(s)
- Zhuotian Yao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Xiujia Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| | - Xiaoshuang Wu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Fengqin Zhu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Jianhua Huang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Hongxia Hua
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
León-Quinto T, Antón-Ruiz N, Madrigal R, Serna A. Experimental evidence of a Neotropical pest insect moderately tolerant to complete freezing. J Therm Biol 2024; 123:103939. [PMID: 39116623 DOI: 10.1016/j.jtherbio.2024.103939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
Due to climate change, many regions are experiencing progressively milder winters. Consequently, pest insects from warm regions, particularly those with some tolerance to low temperatures, could expand their geographic range into these traditionally colder regions. The palm borer moth (Paysandisia archon) is a Neotropical insect that in recent decades has reached Europe and Asia as one of the worst pests of palm trees. Little is known about its ability to tolerate moderately cold winters and, therefore, to colonize new areas. In this work, we characterized the cold tolerance of Paysandisia archon by measuring its thermal limits: median lethal-temperature, LT50, chill-coma onset temperature, CTmin, supercooling point, SCP, freezing time and freezing survival. We found that this species was able to survive short periods of complete freezing, with survival rates of 87% after a 30-min freezing exposure, and 33% for a 1 h-exposure. It is then a moderately freeze-tolerant species, in contrast to all other lepidopterans native to warm areas, which are freeze-intolerant. Additionally, we investigated whether this insect improved its cold tolerance after either short or long pre-exposure to sub-lethal low temperatures. To that end, we studied potential changes in the main thermo-tolerance parameters and, using X-ray Computed Tomography, also in the morphological components of pretreated animals. We found that short pre-exposures did not imply significant changes in the SCP and CTmin values. In contrast, larvae with long pretreatments improved their survival to both freezing and low temperatures, and required longer times for complete freezing than the other groups. These long-term pre-exposed larvae also presented several morphological changes, including a reduction in water content that probably explained, at least in part, their longer freezing time and higher freezing survival. Our results represent the first cold tolerance characterization of this pest insect, which could be relevant to better design strategies to combat it.
Collapse
Affiliation(s)
- Trinidad León-Quinto
- Área de Zoología, Depto. Agroquímica y Medio Ambiente, Universidad Miguel Hernández, E3202-Elche, Alicante, Spain; Instituto de Bioingeniería, Universidad Miguel Hernández, E3202-Elche, Alicante, Spain.
| | - Noelia Antón-Ruiz
- Área de Zoología, Depto. Agroquímica y Medio Ambiente, Universidad Miguel Hernández, E3202-Elche, Alicante, Spain; Instituto de Bioingeniería, Universidad Miguel Hernández, E3202-Elche, Alicante, Spain.
| | - Roque Madrigal
- Departamento de Ciencia de Materiales, Óptica y Tecnología Electrónica, Universidad Miguel Hernández, E3202-Elche, Alicante, Spain.
| | - Arturo Serna
- Departamento de Física Aplicada, Universidad Miguel Hernández, E3202-Elche, Alicante, Spain.
| |
Collapse
|
3
|
León-Quinto T, Madrigal R, Cabello E, Fimia A, Serna A. Morphological and biochemical responses of a neotropical pest insect to low temperatures. J Therm Biol 2024; 119:103795. [PMID: 38281313 DOI: 10.1016/j.jtherbio.2024.103795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/30/2024]
Abstract
As traditionally cold areas become warmer due to climate change, temperature could no longer be a barrier to the establishment of non-native insects. This is particularly relevant for pest insects from warm and tropical areas, mainly those with some tolerance to moderately low temperatures, which could expand their range into these new locations. From this perspective, in this work we studied the morphological and biochemical responses of the Neotropical pest Paysandisia archon to low temperatures, as part of a possible strategy to colonize new areas. To that end, wild larvae were exposed for 7 days to either low (1 and 5 °C) or ambient (23 °C) temperatures. We then quantified the inner and outer morphological changes, by X-Ray Computer Tomography and Digital Holographic Microscopy, as well as the accumulation of metabolites acting as potential endogenous cryoprotectants, by Spectrophotometry. We found that Paysandisia archon developed a cold-induced response based on different aspects. On the one hand, morphological changes occurred with a significant reduction both in fluids susceptible to freezing and fat body, together with the thickening, hardening and increased roughness of the integument. On the other hand, we found an increase in the hemolymph concentration of cryoprotective substances such as glucose (6-fold) and glycerol (2-fold), while trehalose remained unchanged. Surprisingly, this species did not show any evidence of cold-induced response unless the environmental temperature was remarkably low (1 °C). These results could be useful to improve models predicting the possible spread of such a pest, which should incorporate parameters related to its resistance to low temperatures.
Collapse
Affiliation(s)
- Trinidad León-Quinto
- Área de Zoología, Departamento Agroquímica y Medio Ambiente, Universidad Miguel Hernández, E3202-Elche, Alicante, Spain; Instituto de Bioingeniería, Universidad Miguel Hernández, E3202-Elche, Alicante, Spain.
| | - Roque Madrigal
- Departamento de Ciencia de Materiales, Óptica y Tecnología Electrónica, Universidad Miguel Hernández, E3202-Elche, Alicante, Spain.
| | - Esteban Cabello
- Centro de Investigación Operativa, Universidad Miguel Hernández, E3202-Elche, Alicante, Spain.
| | - Antonio Fimia
- Departamento de Ciencia de Materiales, Óptica y Tecnología Electrónica, Universidad Miguel Hernández, E3202-Elche, Alicante, Spain.
| | - Arturo Serna
- Departamento de Física Aplicada, Universidad Miguel Hernández, E3202-Elche, Alicante, Spain.
| |
Collapse
|
4
|
Niode NJ, Kepel BJ, Hessel SS, Kairupan TS, Tallei TE. Rhynchophorus ferrugineus larvae: A novel source for combating broad-spectrum bacterial and fungal infections. Vet World 2024; 17:156-170. [PMID: 38406375 PMCID: PMC10884581 DOI: 10.14202/vetworld.2024.156-170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 02/27/2024] Open
Abstract
Antimicrobial resistance is a growing concern due to the growth of antibiotic-resistant microorganisms, which makes it difficult to treat infection. Due to its broad-spectrum antimicrobial properties against a diverse array of bacteria, both Gram-positive and Gram-negative bacteria, and fungi, Rhynchophorus ferrugineus larval antimicrobial peptides (AMPs) have demonstrated potential as antimicrobial agents for the treatment of microbial infections and prevention of antibiotic resistance. This study emphasizes the unexplored mechanisms of action of R. ferrugineus larvae against microorganisms. Among the most widely discussed mechanisms is the effect of AMPs in larvae in response to a threat or infection. Modulation of immune-related genes in the intestine and phagocytic capacity of its hemocytes may also affect the antimicrobial activity of R. ferrugineus larvae, with an increase in phenoloxidase activity possibly correlated with microbial clearance and survival rates of larvae. The safety and toxicity of R. ferrugineus larvae extracts, as well as their long-term efficacy, are also addressed in this paper. The implications of future research are explored in this paper, and it is certain that R. ferrugineus larvae have the potential to be developed as a broad-spectrum antimicrobial agent with proper investigation.
Collapse
Affiliation(s)
- Nurdjannah Jane Niode
- Department of Dermatology and Venereology, Faculty of Medicine, Sam Ratulangi University, Prof. Dr. R. D. Kandou Hospital Manado, Manado 95115, North Sulawesi, Indonesia
| | - Billy Johnson Kepel
- Department of Chemistry, Faculty of Medicine, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia
| | - Sofia Safitri Hessel
- Department of Biotechnology, Indonesia Biodiversity and Biogeography Research Institute (INABIG), Bandung 40132, West Java, Indonesia
| | - Tara Sefanya Kairupan
- Department of Dermatology and Venereology, Faculty of Medicine, Sam Ratulangi University, Prof. Dr. R. D. Kandou Hospital Manado, Manado 95115, North Sulawesi, Indonesia
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia
- Department of Biology, Faculty of Medicine, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia
| |
Collapse
|
5
|
Naveed H, Andoh V, Islam W, Chen L, Chen K. Sustainable Pest Management in Date Palm Ecosystems: Unveiling the Ecological Dynamics of Red Palm Weevil (Coleoptera: Curculionidae) Infestations. INSECTS 2023; 14:859. [PMID: 37999058 PMCID: PMC10671898 DOI: 10.3390/insects14110859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
The red palm weevil (RPW) poses a significant threat to date palm ecosystems, highlighting the necessity of sustainable pest management strategies that carefully consider the delicate ecological balance within these environments. This comprehensive review delves into innovative approaches to sustainable pest management, specifically focusing on date palm, and seeks to unravel the intricate ecological dynamics underlying RPW infestations. We thoroughly analyze biocontrol methods, eco-friendly chemical interventions, and integrated pest management (IPM) strategies, aiming to minimize the ecological impact while effectively addressing RPW infestations. By emphasizing the interplay of both living organisms (biotic) and environmental factors (abiotic) in shaping RPW dynamics, we advocate for a holistic and sustainable management approach that ensures the long-term resilience of date palm ecosystems. This review aims to contribute to an ecologically sound framework for pest management, promoting the sustainability and vitality of date palm ecosystems amidst the challenges posed by the RPW.
Collapse
Affiliation(s)
- Hassan Naveed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.N.); (V.A.)
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Vivian Andoh
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.N.); (V.A.)
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Waqar Islam
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.N.); (V.A.)
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
Cryoprotective Response as Part of the Adaptive Strategy of the Red Palm Weevil, Rhynchophorus ferrugineus, against Low Temperatures. INSECTS 2022; 13:insects13020134. [PMID: 35206708 PMCID: PMC8879650 DOI: 10.3390/insects13020134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/26/2022] [Indexed: 01/13/2023]
Abstract
Simple Summary Low environmental temperature acts as a barrier that imposes limits on the geographic distribution of insects. However, due to Earth’s global warming, temperature might no longer be an impediment for insects to colonize some new areas. The spread of pest insects will depend on their adaptive response to cold periods and to thermal anomalies associated with climate change. In this study we analyzed whether the red palm weevil (RPW), one of the worst palm pests worldwide and native to warm areas, has physiological mechanisms that could configure an adaptive response to cold. We find that RPW is capable of rapidly producing substances that reduce chill injuries, primarily glucose as well as glycerol and several amino acids (mainly alanine). Therefore, this work shows for the first time that RPW is able to develop adaptive biochemical responses to deal with low temperatures, similar to those used by overwintering insects. Our results could be useful to improve models predicting the possible spread of RPW to new geographical areas, and also to try to prevent its adaptive response by disrupting the metabolic pathways regulating the involved substances. Abstract The red palm weevil (RPW), Rhynchophorus ferrugineus, is one of the worst palm pests worldwide. In this work, we studied the physiological basis underlying its adaptive strategy against low temperatures. Specifically, we analyzed the main low-molecular-weight biochemical substances acting as possible endogenous cryoprotectants, as well as their efficiency in reducing cold injury by preserving K+/Na+ homeostasis. Wild pre-pupae were cold-treated (5.0 ± 0.5 °C) or non-treated (23 ± 1 °C) for 7 days. We then determined the levels of: (a) glucose, trehalose and glycerol, spectrophotometrically, (b) amino acids, by liquid chromatography and (c) potassium and sodium, by inductively coupled plasma mass-spectrometry. Cold-treated larvae increased their potassium level, suggesting some degree of chill injury. However, part of the cold-exposed animals was able to develop an efficient overall cryoprotective response which primarily includes glucose, as well as glycerol and several amino acids (mainly alanine). Our study shows for the first time that RPW is capable of deploying effective physiological mechanisms for a rapid response to cold, which could be relevant to improving predictive models of geographic distribution, especially in a context of climate change. The knowledge of the specific molecules involved would allow future studies to try to prevent its adaptive strategy, either by natural or chemical methods.
Collapse
|