1
|
Romero-Báez Ó, Murphy MA, Díaz de la Vega-Pérez AH, Vázquez-Domínguez E. Environmental and anthropogenic factors mediating the functional connectivity of the mesquite lizard along the eastern Trans-Mexican Volcanic Belt. Mol Ecol 2024; 33:e17469. [PMID: 39016177 DOI: 10.1111/mec.17469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Functional connectivity, the extent to which a landscape facilitates or impedes the dispersal of individuals across the landscape, is a key factor for the survival of species. Anthropogenic activities, such as urbanization, agriculture and roads, negatively impact functional connectivity of most species, particularly low-vagility species like lizards. Here, we examine how a landscape modified by anthropogenic activities affects the functional connectivity, at both broad and fine scales, of a widely distributed generalist lizard Sceloporus grammicus in the eastern Trans-Mexican Volcanic Belt, Mexico. We estimated for the first time the species' genetic structure, gene flow and functional connectivity in agricultural and forest zones using genomic data, a comprehensive landscape characterization and novel methods including gravity models. Our results showed not only marked genetic differentiation across the study region but also that functional connectivity is maintained for tens of kilometres despite S. grammicus low vagility. Specifically, we found that substrate and air temperature facilitated connectivity over broad and fine scales, respectively, while agricultural cover, relative humidity and slope were important for connectivity and gene flow. Contrastingly, forest cover and roads favoured (broad-scale) and limited (fine-scale) connectivity, likely associated with movement facilitated by small forest patches and with thermoregulation. Altogether, these results support that S. grammicus alternates its thermoregulatory behaviour depending on the distance travelled and the habitat environmental conditions, and that it can disperse through relatively modified landscapes, mainly using agricultural zones. The information obtained is crucial to understanding the response of lizards to current anthropogenic pressures and their potential to adapt.
Collapse
Affiliation(s)
- Óscar Romero-Báez
- Laboratorio de Genética y Ecología, Departamento de Ecología de La Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Melanie A Murphy
- Ecosystem Science and Management, Program in Ecology and Evolution, College of Agriculture, Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, USA
| | - Aníbal H Díaz de la Vega-Pérez
- Consejo Nacional de Humanidades Ciencias y Tecnologías-Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Ella Vázquez-Domínguez
- Laboratorio de Genética y Ecología, Departamento de Ecología de La Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
2
|
González-Morales JC, Rivera-Rea J, Moreno-Rueda G, Plasman M, Quintana E, Bastiaans E. Seasonal and altitudinal variation in dorsal skin reflectance and thermic rates in a high-altitude montane lizard. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1421-1435. [PMID: 38652160 DOI: 10.1007/s00484-024-02677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/26/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Temperature is one of the most important factors in the life histories of ectotherms, as body temperature has an undeniable effect on growth, activity, and reproduction. Lizards have a wide variety of strategies to acquire and maintain body temperature in an optimal range. The "Thermal Melanism Hypothesis" proposes that individuals with lower skin reflectance can heat up faster as a result of absorbing more solar radiation compared to lighter conspecifics. Therefore, having a darker coloration might be advantageous in cold habitats. Dorsal skin reflectance has been found to change rapidly with body temperature in several lizard species, and it can also vary over longer, seasonal time scales. These variations may be important in thermoregulation, especially in lizards that inhabit areas with a large temperature variation during the year. Here, we study how dorsal reflectance fluctuates with body temperature and varies among seasons. We compared dorsal skin reflectance at three body temperature treatments, and measured thermal rates (i.e., heat and cool rate, thermic lapse, and net heat gain) by elevation (2500-4100 m) and seasons (spring, summer, and autumn) in the mesquite lizard, Sceloporus grammicus. Our results show that lizards were darker at high elevations and during the months with the lowest environmental temperatures. The rate of obtaining and retaining heat also varied during the year and was highest during the reproductive season. Our results indicate that the variation of dorsal skin reflectance and thermal rates follows a complex pattern in lizard populations and is affected by both elevation and season.
Collapse
Affiliation(s)
- J Carlos González-Morales
- Centro Universitario Amecameca, Universidad Autónoma del Estado de México, Estado de México, Instituto Literario No. 100, Col. Centro, Toluca, CP 50000, México.
| | - Jimena Rivera-Rea
- Doctorado en Ciencias Agropecuarias y Recursos Naturales, Universidad Autónoma del Estado de México, Instituto Literario No. 100, Col. Centro, Toluca, Estado de México, CP 50000, México
| | - Gregorio Moreno-Rueda
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Avenida Fuentenueva S/N, Granda, E-18071, España
| | - Melissa Plasman
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito exterior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, México
| | - Erendira Quintana
- Centro Universitario Amecameca, Universidad Autónoma del Estado de México, Estado de México, Instituto Literario No. 100, Col. Centro, Toluca, CP 50000, México
| | - Elizabeth Bastiaans
- Biology Departament, State University of New York at Oneonta, 108 Ravine Parkway, Oneonta, NY, 13820, USA
| |
Collapse
|
3
|
Altunışık A, Yıldız MZ, Tatlı HH, Yalçınkaya D, Akman B. Life-history evolution in the orange-tailed skink populations living in different climates. Ecol Evol 2024; 14:e11521. [PMID: 38895580 PMCID: PMC11183905 DOI: 10.1002/ece3.11521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The life-history traits of ectothermic animals can be influenced by many abiotic factors, including climate. As an ectothermic species, we questioned whether the life-history characteristics of the orange-tailed skink (Eumeces schneiderii) populations differ between two different environments/climates. Our findings showed that the average body size of lizards living in the Mediterranean climate zone was higher than those in the continental climate zone. However, although Mediterranean population had higher mean values regarding average age, there was no discernible difference between the two climate zone populations. When considering all populations collectively, it has been discovered that the species' maximum lifespan is 18 years. Body size notably increased with age in both populations. Through the utilization of the von Bertalanffy equation, the anticipated growth parameters portrayed a highly accurate connection between age and snout-vent length. In conclusion, lizards living in habitats characterized by milder Mediterranean climates were found to have larger body sizes than continental populations, but both populations were comparable in terms of mean age. This difference can be explained by several factors, including activation time, temperature, precipitation, food abundance, and the presence of predators.
Collapse
Affiliation(s)
- Abdullah Altunışık
- Biology Department, Faculty of Arts and SciencesUniversity of Recep Tayyip ErdoğanRizeTürkiye
| | - Mehmet Zülfü Yıldız
- Zoology Section, Biology Department, Faculty of Arts and SciencesAdıyaman UniversityAdıyamanTürkiye
| | - Hatice Hale Tatlı
- Biology Department, Faculty of Arts and SciencesUniversity of Recep Tayyip ErdoğanRizeTürkiye
| | - Deniz Yalçınkaya
- Medical Laboratory Techniques Program, Department of Medical Services and Techniques, Vocational SchoolToros UniversityMersinTürkiye
| | - Bahadır Akman
- Technical Sciences Vocational SchoolIğdır UniversityIğdırTürkiye
| |
Collapse
|
4
|
Gilbert E, Žagar A, López-Darias M, Megía-Palma R, Lister KA, Jones MD, Carretero MA, Serén N, Beltran-Alvarez P, Valero KCW. Environmental factors influence cross-talk between a heat shock protein and an oxidative stress protein modification in the lizard Gallotia galloti. PLoS One 2024; 19:e0300111. [PMID: 38470891 DOI: 10.1371/journal.pone.0300111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Better understanding how organisms respond to their abiotic environment, especially at the biochemical level, is critical in predicting population trajectories under climate change. In this study, we measured constitutive stress biomarkers and protein post-translational modifications associated with oxidative stress in Gallotia galloti, an insular lizard species inhabiting highly heterogeneous environments on Tenerife. Tenerife is a small volcanic island in a relatively isolated archipelago off the West coast of Africa. We found that expression of GRP94, a molecular chaperone protein, and levels of protein carbonylation, a marker of cellular stress, change across different environments, depending on solar radiation-related variables and topology. Here, we report in a wild animal population, cross-talk between the baseline levels of the heat shock protein-like GRP94 and oxidative damage (protein carbonylation), which are influenced by a range of available temperatures, quantified through modelled operative temperature. This suggests a dynamic trade-off between cellular homeostasis and oxidative damage in lizards adapted to this thermally and topologically heterogeneous environment.
Collapse
Affiliation(s)
- Edward Gilbert
- School of Natural Sciences, The University of Hull, Hull, United Kingdom
- Energy and Environment Institute, The University of Hull, Hull, United Kingdom
| | - Anamarija Žagar
- National Institute of Biology, Ljubljana, Slovenia
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto Campus de Vairão, Vairão, Portugal
| | - Marta López-Darias
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
| | - Rodrigo Megía-Palma
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto Campus de Vairão, Vairão, Portugal
- Universidad de Alcalá (UAH), Biomedicine and Biotechnology, Alcalá de Henares, Madrid, Spain
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Karen A Lister
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, United Kingdom
| | - Max Dolton Jones
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States of America
| | - Miguel A Carretero
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto Campus de Vairão, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Nina Serén
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto Campus de Vairão, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Pedro Beltran-Alvarez
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, United Kingdom
| | - Katharina C Wollenberg Valero
- School of Natural Sciences, The University of Hull, Hull, United Kingdom
- School of Biology and Environmental Science, University College Dublin, Belfield Campus, Dublin, Ireland
| |
Collapse
|
5
|
Yu W, Zhu Z, Zhao X, Cui S, Liu Z, Zeng Z. Altitudinal variation in life-history features of a Qinghai-Tibetan Plateau lizard. Curr Zool 2023; 69:284-293. [PMID: 37351291 PMCID: PMC10284057 DOI: 10.1093/cz/zoac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 09/18/2023] Open
Abstract
Environmental changes along an altitudinal gradient can facilitate the differentiation of life-history features in ectothermic species, but little attention has been devoted to the reciprocal influence of altitude and alpine slope directionality on life-history variation. According to life-history theory, increased environmental stress causes a change in reproductive allocation from number to quality of offspring, as well as a stronger trade-off between size and number of offspring. To clarify the influence of environmental pressures on the life-history features of the Qinghai toad-headed lizard Phrynocephalus vlangalii along an altitudinal cline, we surveyed late pregnant females from 3 populations of low (2,600 m), middle (3,400 m), and high (3,600 m) elevations in the Dangjin Mountain of Gansu, China from July to October 2019, and compared their inter-population differences in maternal body size, reproductive characteristics, offspring growth, and locomotor performance. Because of lower temperatures, higher humidity, and lower light intensity caused by slope aspect and altitude, the middle-altitude region experienced stronger environmental stress than the high- and low-altitude regions. Our results showed that females were larger at middle- and high-altitude sites and smaller at the low-altitude site, following Bergmann's rule. We also found that females from low-altitude population gave birth earlier than those from the middle and high altitudes. Our results showed a shift in the offspring size-number trade-off of P. vlangalii in response to colder and harsher environments, with lizards from the alpine steppe (i.e. the middle- and high-altitude habitats) producing fewer but larger offspring than those from the warm steppe (i.e. the low-altitude habitat). Low-altitude juveniles grew faster than high-altitude ones, but at the same rates as middle-altitude juveniles. This result demonstrates that the growth of P. vlangalii was associated with temperature and light intensity. Our findings contribute to enhancing our understanding of the altitudinal variation in life-history features of plateau ectotherms and their phenotypic plasticity or local adaptation.
Collapse
Affiliation(s)
- Wei Yu
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zeyu Zhu
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaolong Zhao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, Hebei, China
| | - Shuang Cui
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, China
| | - Zhensheng Liu
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Conservation Biology, State Forestry Administration, Harbin 150040, China
| | - Zhigao Zeng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Rivera-Rea J, Macotela L, Moreno-Rueda G, Suárez-Varón G, Bastiaans E, Quintana E, González-Morales JC. Thermoregulatory behavior varies with altitude and season in the sceloporine mesquite lizard. J Therm Biol 2023. [DOI: 10.1016/j.jtherbio.2023.103539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
7
|
Morphological Correlates of Locomotion in the Aquatic and the Terrestrial Phases of Pleurodeles waltl Newts from Southwestern Iberia. DIVERSITY 2023. [DOI: 10.3390/d15020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Animals capable of moving in different environments might face conflicting selection on morphology, thus posing trade-offs on the relationships between morphology and locomotor performance in each of these environments. Moreover, given the distinct ecological roles of the sexes, these relationships can be sexually dimorphic. In this article, I studied the relationships between morphological traits and locomotor performance in male and female semiaquatic Pleurodeles waltl newts in their aquatic and their terrestrial stages. Morphology was sexually dimorphic: males have proportionally longer limbs and tails, as well as a better body condition (only in the aquatic phase), whereas females were larger and had greater body mass in both phases. Nonetheless, these morphological differences did not translate into sexual divergence in locomotor performance in either stage. This finding suggests other functions for the morphological traits measured, among which only SVL showed a positive relationship with locomotor performance in both stages, whereas the effect of SMI was negative only in the terrestrial stage, and that of tail length was positive only in the aquatic stage. In any case, the morphological correlates of terrestrial and aquatic locomotion did not conflict, which suggests no trade-off between both locomotory modes in the newts studied.
Collapse
|
8
|
Zamora-Camacho FJ. The relationships between toad behaviour, antipredator defences, and spatial and sexual variation in predation pressure. PeerJ 2022; 10:e12985. [PMID: 35194533 PMCID: PMC8858576 DOI: 10.7717/peerj.12985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/01/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Animal behaviour is under strong selection. Selection on behaviour, however, might not act in isolation from other fitness-related traits. Since predators represent outstanding selective forces, animal behaviour could covary with antipredator defences, such that individuals better suited against predators could afford facing the costs of riskier behaviours. Moreover, not all individuals undergo equivalent degrees of predation pressure, which can vary across sexes or habitats. Individuals under lower predation pressure might also exhibit riskier behaviours. METHODS In this work, I tested these hypotheses on natterjack toads (Epidalea calamita). Specifically, I gauged activity time, exploratory behaviour and boldness in standard laboratory conditions, and assessed whether they correlated with body size and antipredator strategies, namely sprint speed, parotoid gland area and parotoid gland colour contrast. Additionally, I compared these traits between sexes and individuals from an agrosystem and pine grove, since there is evidence that males and agrosystem individuals are subjected to greater predation pressure. RESULTS Sprint speed as well as parotoid gland contrast and size appeared unrelated to the behavioural traits studied. In turn, body mass was negatively related to activity time, boldness and exploration. This trend is consistent with the fact that larger toads could be more detectable to their predators, which are mostly gape unconstrained and could easily consume them. As predicted, females exhibited riskier behaviours. Nonetheless, agrosystem toads did not differ from pine grove toads in the behavioural traits measured, despite being under stronger predation pressure.
Collapse
Affiliation(s)
- Francisco Javier Zamora-Camacho
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Seville, Spain,Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|