1
|
Williams MA, Poultney SJ, Hallam J, Hewitson TE, Littlefair JE. From anecdotes to evidence: Environmental DNA detection of Arctic charr (Salvelinus alpinus L.) at the southern limit of its circumpolar range. JOURNAL OF FISH BIOLOGY 2025. [PMID: 39838961 DOI: 10.1111/jfb.16048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025]
Abstract
The urgency of rapid species monitoring is at an all-time high due to the increasing threat of climate change to global ecosystems, in particular freshwater habitats. Fish such as Arctic charr, Salvelinus alpinus, are particularly vulnerable to increasing water temperatures and changes in land use due to their dependence on cold waters and confinement to lacustrine environments. Nonetheless, current monitoring practices, relying on physical capture of organisms, are hindered by resource constraints, desire to manage habitats for recreational fishing, and restricted access to sites. Here we applied a targeted environmental DNA (eDNA) assay in Northwest Scotland to circumvent these limitations and update existing knowledge of Arctic charr habitats, including in locations previously only supported by anecdotal knowledge. Arctic charr eDNA was detected in 10 out of the 16 sites sampled. Additionally, shore and outflow sampling successfully detected Arctic charr eDNA during spawning season, providing a viable sampling strategy where boat access may be limited. These data enabled Arctic charr distribution records to be updated and demonstrated the effectiveness of eDNA as a method for monitoring a vulnerable salmonid in a rapidly changing landscape.
Collapse
Affiliation(s)
- Molly Ann Williams
- NatureMetrics, Guildford, Surrey, UK
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Samuel J Poultney
- Dee District Salmon Fishery Board, Aboyne, Aberdeenshire, UK
- West Sutherland Fisheries Trust, Sutherland, UK
| | - Jane Hallam
- Yale School of the Environment, Yale University, New Haven, Connecticut, USA
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Tianna E Hewitson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Joanne E Littlefair
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
2
|
Akhila S, Varghese T, Sahu NP, Gupta S, Dasgupta S, Deo AD, Mannur VS, Paul Nathaniel T, Chandan NK. Hyperthermal stress potentiates enhanced lipid utilisation in genetically improved farmed Tilapia, Oreochromis niloticus juveniles. Comp Biochem Physiol B Biochem Mol Biol 2024:111033. [PMID: 39278536 DOI: 10.1016/j.cbpb.2024.111033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
The present experiment evaluated whether dietary protein (P) or lipid (L) is preferred as an energy source by genetically improved farmed tilapia (GIFT) reared at high temperatures. A 60-day feeding trial was conducted at 28.3 °C and 33.3 °C, testing five diets with varying protein (34,36,38 %) and lipid (8,10,12 %) levels, viz., P38L8, P36L8, P34L8, P34L10, P34L12. Parameters assessed included growth, body composition, serum lipids, enzyme activities, fatty acid profiles, and PPAR-α mRNA expression. Results indicated that the fish fed optimum protein and highest lipid level (P34L12) showed significantly higher (P < 0.05) weight gain percent and thermal growth coefficient. Increasing dietary lipid content reduced whole-body lipid deposition and mobilised serum triglycerides and cholesterol at higher temperatures (HT). Hepatic malic enzyme activity decreased with rising temperature and lipid content, while lipoprotein lipase activity in muscle increased. The fatty acid composition altered substantially with the changes in rearing temperature and diets. Unsaturated fats were preferred as direct fuels for β-oxidation, wherein the P34L12 groups preserved body (area %) EPA, DHA, and linolenic acid, especially at HT. The expression of PPAR-α, a lipolytic marker, was upregulated with increasing temperature and high dietary lipid content, peaking in P34L12 groups. The study concludes that high-lipid diets (12 %) are metabolically superior to high-protein diets for GIFT tilapia at elevated temperatures, optimising growth, enhancing metabolic efficiency, and maintaining essential fatty acid profiles under hyperthermal stress.
Collapse
Affiliation(s)
- S Akhila
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Tincy Varghese
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India.
| | - Narottam Prasad Sahu
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Subodh Gupta
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Subrata Dasgupta
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Ashutosh D Deo
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | | | - T Paul Nathaniel
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Nitish Kumar Chandan
- Fish Nutrition & Physiology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| |
Collapse
|
3
|
Nuic B, Bowden A, Franklin CE, Cramp RL. Atlantic salmon Salmo salar do not prioritize digestion when energetic budgets are constrained by warming and hypoxia. JOURNAL OF FISH BIOLOGY 2024; 104:1718-1731. [PMID: 38426401 DOI: 10.1111/jfb.15693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/10/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
During summer, farmed Atlantic salmon (Salmo salar) can experience prolonged periods of warming and low aquatic oxygen levels due to climate change. This often results in a drop in feed intake; however, the physiological mechanism behind this behaviour is unclear. Digestion is a metabolically expensive process that can demand a high proportion of an animal's energy budget and might not be sustainable under future warming scenarios. We investigated the effects of elevated temperature and acute hypoxia on specific dynamic action (SDA; the energetic cost of digestion), and how much of the energy budget (i.e. aerobic scope, AS) was occupied by SDA in juvenile Atlantic salmon. AS was 9% lower in 21°C-acclimated fish compared to fish reared at their optimum temperature (15°C) and was reduced by ~50% by acute hypoxia (50% air saturation) at both temperatures. Furthermore, we observed an increase in peak oxygen uptake rate during digestion which occupied ~13% of the AS at 15°C and ~20% of AS at 21°C, and increased the total cost of digestion at 21°C. The minimum oxygen tolerance threshold in digesting fish was ~42% and ~53% at 15 and 21°C, respectively, and when digesting fish were exposed to acute hypoxia, gut transit was delayed. Thus, these stressors result in a greater proportion of the available energy budget being directed away from digestion. Moderate environmental hypoxia under both optimal and high temperatures severely impedes digestion and should be avoided to limit exacerbating temperature effects on fish growth.
Collapse
Affiliation(s)
- Barbara Nuic
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | - Alyssa Bowden
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | - Craig E Franklin
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | - Rebecca L Cramp
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Nelson JA, Thorarensen HT. Thermal tolerance of cultured and wild Icelandic arctic charr (Salvelinus alpinus) at self-selected flow rates. J Therm Biol 2024; 121:103863. [PMID: 38723312 DOI: 10.1016/j.jtherbio.2024.103863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/26/2024]
Abstract
Climate change is predicted to change not only the temperature of many freshwater systems but also flow dynamics. Understanding how fishes will fare in the future requires knowing how they will respond to both extended variations of temperature and flow. Arctic charr have had their thermal tolerance measured, but never with respect to flow. Additionally, this circumpolar species has multiple populations exhibiting dramatic phenotypic plasticity which may mean that regional differences in thermal tolerance are unaccounted for. In Iceland, Arctic charr populations have experienced highly variable flow and temperature conditions over the past 10,000 years. The Icelandic climate, topography and geothermal activity have created a mosaic of freshwater habitats inhabited by charr that vary substantially in both temperature and flow. Our purpose was to test whether populations from these varied environments had altered thermal tolerance and whether phenotypic plasticity of thermal tolerance in charr depends on flow. We raised cultured Icelandic charr from hatch under a 2 X 2 matrix of flow and temperature and compared them to wild charr captured from matching flow and temperature environments. Wild fish were more thermally tolerant than cultured fish at both acclimation temperatures and were more thermally plastic. Icelandic Arctic charr were more thermally tolerant than comparison charr populations across Europe and North America, but only when acclimated to 13 °C; fish acclimated to 5 °C compared equably with comparison charr populations. Icelandic Arctic charr were also more thermally plastic than all but one other salmonine species. Neither flow of rearing or the flow selected during a thermal tolerance (CTmax) test factored into thermal tolerance. Thermal tolerance was also independent of body size, condition factor, heart and gill size. In summary, wild Icelandic Arctic charr have greater thermal tolerance and plasticity than predicted from the literature and their latitude, but artificial selection for properties like growth rate or fecundity may be breeding that increased tolerance out of cultured fish. As the world moves toward a warmer climate and increased dependence on cultured fish, this is a noteworthy result and merits further study.
Collapse
Affiliation(s)
- Jay A Nelson
- Department of Aquaculture and Fish Biology, Hólar University College, 551, Sauðárkrókur, Iceland.
| | - Helgi Thor Thorarensen
- Department of Aquaculture and Fish Biology, Hólar University College, 551, Sauðárkrókur, Iceland
| |
Collapse
|
5
|
Effects of Early Thermal Environment on Growth, Age at Maturity, and Sexual Size Dimorphism in Arctic Charr. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effects of early thermal environment on growth, age at maturity, and sexual size dimorphism in Arctic charr (Salvelinus alpinus) are investigated. This study is a 654-day long rearing trial split into two sequential experimental phases termed EP1 and EP2 and lasting 315 and 339 days, respectively. EP1 started at the end of the yolk sac stage when the experimental fish were divided into three groups and reared at different target temperatures (7, 10 and 12 °C). During EP2, all groups were reared at the same temperature (7–8 °C) until harvest (~1300 g). Growth rates increased with temperature from 7 to 12 °C, and at the end of EP1 the 12C group had 49.0% and 19.2% higher mean weight than groups 7C and 10C, respectively. Elevated early rearing temperatures were, however, found to cause precocious sexual maturation and reduce the long-term growth performance. At the end of EP2, the 7C group had 3.6% and 14.1% higher mean weight than 10C and 12C, respectively. Elevated early rearing temperatures had a much stronger effect on the maturity incidence of females, and while male-biased sexual size dimorphism (SSD) was found in all groups, the magnitude of SSD was positively associated with temperature.
Collapse
|