1
|
Lin XN, Ma CY, Hu LS, Liao ML, Ma LX, Teske PR, Hoffmann A, Dong YW. Genomics-Informed Range Predictions Under Global Warming Reveal Reduced Adaptive Diversity Whilst Buffering Range Shifts for a Marine Snail. GLOBAL CHANGE BIOLOGY 2024; 30:e17571. [PMID: 39523661 DOI: 10.1111/gcb.17571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Understanding the genetic basis of local adaptation in thermal performance is useful for predicting species distribution shifts under anthropogenic climate change. Many species are distributed across multiple biogeographic regions, and the uniquely adapted populations in each region may respond to future ocean warming with distinct distribution changes. In the present study, we investigated phylogeographic patterns, thermal sensitivity, and genetic differentiation in the intertidal snail Littorina brevicula along China's coast. Whole-genome sequencing results based on a newly assembled chromosome-level genome revealed two genetic lineages, with a north-south divergence that is linked to the thermal environment. Within each lineage, individuals could be further subdivided into genetic subgroups that differ at key genomic loci underpinning differences in upper heat tolerance. Heat stress drives adaptive divergence across multiple levels of organization, from the individual to the biogeographic level. Taking into account genetic diversity associated with variation in heat tolerance, a physiological species distribution model (pSDM) was applied to predict the distributions of the different genetic subgroups in response to climate change. Both northern and southern lineages were predicted to experience declines in habitat suitability under a 4°C future warming scenario, and that a genotypic subset of snails from the southern lineage may even be driven to extinction. These findings illustrate that even when a species' range is maintained, it can nonetheless experience a significant decrease in adaptive diversity as a result of climate change. The integrated approach presented here, which considered both physiological and adaptive genetic variation at the level of individuals within a biogeographical context, provided new insights into how marine species can respond to global warming.
Collapse
Affiliation(s)
- Xiao-Nie Lin
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, People's Republic of China
| | - Chao-Yi Ma
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, People's Republic of China
- Academy of Future Ocean, Ocean University of China, Qingdao, People's Republic of China
| | - Li-Sha Hu
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, People's Republic of China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Qingdao, People's Republic of China
| | - Ming-Ling Liao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, People's Republic of China
| | - Lin-Xuan Ma
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, People's Republic of China
| | - Peter R Teske
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Ary Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
2
|
Gilmour KM, Daley MA, Egginton S, Kelber A, McHenry MJ, Patek SN, Sane SP, Schulte PM, Terblanche JS, Wright PA, Franklin CE. Through the looking glass: attempting to predict future opportunities and challenges in experimental biology. J Exp Biol 2023; 226:jeb246921. [PMID: 38059428 DOI: 10.1242/jeb.246921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
To celebrate its centenary year, Journal of Experimental Biology (JEB) commissioned a collection of articles examining the past, present and future of experimental biology. This Commentary closes the collection by considering the important research opportunities and challenges that await us in the future. We expect that researchers will harness the power of technological advances, such as '-omics' and gene editing, to probe resistance and resilience to environmental change as well as other organismal responses. The capacity to handle large data sets will allow high-resolution data to be collected for individual animals and to understand population, species and community responses. The availability of large data sets will also place greater emphasis on approaches such as modeling and simulations. Finally, the increasing sophistication of biologgers will allow more comprehensive data to be collected for individual animals in the wild. Collectively, these approaches will provide an unprecedented understanding of 'how animals work' as well as keys to safeguarding animals at a time when anthropogenic activities are degrading the natural environment.
Collapse
Affiliation(s)
| | - Monica A Daley
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Stuart Egginton
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Almut Kelber
- Department of Biology, Lund University, 22362 Lund, Sweden
| | - Matthew J McHenry
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Sheila N Patek
- Biology Department, Duke University, Durham, NC 27708, USA
| | - Sanjay P Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, Karnataka 560065, India
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - John S Terblanche
- Center for Invasion Biology, Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Craig E Franklin
- School of the Environment, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| |
Collapse
|