1
|
Wang B, Song Y, Yang X, Chen C. HER2 exon 20 insertion mutations and myelosuppression in lung adenocarcinoma patient: a case report and response to trastuzumab deruxtecan. J Cardiothorac Surg 2023; 18:97. [PMID: 37013547 PMCID: PMC10071679 DOI: 10.1186/s13019-023-02181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 03/12/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Human epidermal growth factor receptor 2 (HER2) mutations occur in 2% of lung cancers. CASE PRESENTATION In this report, we presented a case of an Asian female who was diagnosed with lung adenocarcinoma. NGS results indicated HER2 exon 20 insertion mutation and PET/CT results showed multiple metastases in lower lobes of both lungs. Thereafter, she was treated with chemotherapy alone, combination of chemotherapy and targeted therapy and immunotherapy. Due to progressive disease, she was then received DS-8201. Imaging data indicated partial response to DS-8201 and tumor marker values decreased significantly, suggesting good efficacy. Nevertheless, DS-8201 was discontinued because of the development of myelosuppression (grade 3). Finally, she died at home due to platelet deficiency, white blood cell (grade 4), granulocytopenia, intracranial hemorrhage and gastrointestinal hemorrhage. CONCLUSIONS This was an important case since it exerted effective response to DS-8201. Meanwhile, myelosuppression is also found in the patient, which requires attention to pulmonary symptoms and careful monitoring.
Collapse
Affiliation(s)
- Bin Wang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, China
- Department of Oncology, Daping Hospital, Army Medical University, #10 Daping Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Yang Song
- Department of Oncology, Daping Hospital, Army Medical University, #10 Daping Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Xin Yang
- Department of Pathology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Chuan Chen
- Department of Oncology, Daping Hospital, Army Medical University, #10 Daping Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
2
|
Bai L, Huo R, Fang G, Ma T, Shang Y. MMP11 is associated with the immune response and immune microenvironment in EGFR-mutant lung adenocarcinoma. Front Oncol 2023; 13:1055122. [PMID: 36756152 PMCID: PMC9900007 DOI: 10.3389/fonc.2023.1055122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Background High expression of matrix metalloproteinase-11 (MMP11) is associated with various tumors and immune microenvironments. Conversely, poor response to immunotherapy in epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma (LUAD) patients is closely related to the characteristics of immune microenvironment. Methods The Cancer Genome Atlas (TCGA)-LUAD database and our gathered clinical LUAD samples were used to examine the relationship between MMP11 expression and EGFR mutation. Then the correlation between MMP11 and immune response and the difference of immune cell infiltration in different groups were analyzed. Compared the differences in the immune microenvironment between the MMP11-positive and MMP11-negative expression groups using immunohistochemistry (IHC) and multiplex immunohistochemistry. Results The expression of MMP11 in samples with exon 19 deletions, exon 21 L858R or de novo exon 20 T790M mutations was higher than wild type, but there was no difference between the samples with uncommon mutation and the wild-type. The high MMP11 expression group had a higher Tumor Immune Dysfunction and Exclusion (TIDE) score. Pathways associated with enrichment in the extracellular matrix (ECM) were the main biological functions of differential genes between the high and low MMP11 groups. The IHC score of MMP11 in the EGFR-mutant group was higher than in the EGFR-wild group. In TCGA-LUAD, the high MMP11 group had a lower proportion of T cell CD8+ and NK cells activated. In the clinical samples, the infiltration levels of T cell CD8+ and NK cells in the tumor parenchyma of EGFR-mutant LUAD was lower in the MMP11-positive than in the MMP11-negative group. The expression levels of tumor cell PD-L1 were higher in the MMP11-positive expression group than in the MMP11-negative expression group, and the proportion of PD1+CD8+ T cells infiltrated was reduced in the MMP11-positive group compared to the MMP11-negative group. Conclusions High expression of MMP11 was associated with EGFR mutations. Patients with EGFR-mutant LUAD with high expression of MMP11 responded poorly to immunotherapy, and the percentage of T cell CD8+ and NK cells in immune cell infiltration was lower in MMP11. Consequently, MMP11 is related to the immunological microenvironment of EGFR-mutant lung adenocarcinoma, which may be a predictor of possible immunotherapeutic response.
Collapse
|
3
|
Liu Z, Gao Z, Yang W, Zhang L, Xiao N, Qu D, Su Z, Xu K, Liu G, Wang Y, Ren Q, Yu S, Cheng Y, Zhou Y, Deng Q, Zhao Y, Wang Z, Yang H. A randomized, double-blind, single-dose, parallel phase I clinical trial to compare the bioequivalence, immunogenicity and safety of bevacizumab biosimilar and bevacizumab in healthy Chinese subjects. Expert Opin Drug Metab Toxicol 2022; 18:519-527. [PMID: 35961948 DOI: 10.1080/17425255.2022.2113382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Bevacizumab, a humanized monoclonal antibody against VEGF, can be used as a target therapy for colorectal cancer. A phase I clinical trial was conducted to compare the bioequivalence, immunogenicity and safety of bevacizumab biosimilar (Chia Tai Tianqing Pharmaceutical Group Co., Ltd.) and Bevacizumab (Roche Diagnostics GmbH) in healthy Chinese males. RESEARCH DESIGN & METHOD Healthy Chinese subjects (N = 98) were randomly divided into two groups. A single-dose bevacizumab biosimilar or Bevacizumab was given for per cycle. Plasma drug concentrations were detected by liquid chromatography-tandem mass spectrometry (LC-MC/MS) assay. We detected the levels of anti-drug antibody (ADA) to evaluate drug immunogenicity and the safety of drugs throughout the study. RESULTS The geometric mean ratios (GMRs) of AUC0-t, Cmax and AUC0-∞ for bevacizumab biosimilar and Bevacizumab were 96.27%, 93.69% and 97.01%, respectively. The 90% CIs were all within 80%-125%, meeting the bioequivalence standards. The levels of ADA were similar. In addition, the two drugs both demonstrated excellent safety in the trial. CONCLUSION This study showed that bevacizumab biosimilar and Bevacizumab had similar pharmacokinetics (PK) parameters and safety in healthy Chinese subjects. CLINICAL TRIAL REGISTRATION INFORMATION This trial was registered in ClinicalTrials.gov (Number: NCT05476341, date registered: 25, Jul 2022) and Drug Clinical Trial Registration and Information Disclosure Platform (Number: CTR20171308, date registered: 16, Nov 2017).
Collapse
Affiliation(s)
- Zhengzhi Liu
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Zhenyue Gao
- Department of clinical research center, Chia Tai Tianqing Pharmaceutical Group Co.,Ltd., Nanjing, China
| | - Wei Yang
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Lixiu Zhang
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Nan Xiao
- Department of clinical research center, Chia Tai Tianqing Pharmaceutical Group Co.,Ltd., Nanjing, China
| | - Dongmei Qu
- Ansiterui Medical Technology Consulting Co.,Ltd., Changchun, China
| | - Zhengjie Su
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Kaibo Xu
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Guangwen Liu
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yanli Wang
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Qing Ren
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Yu
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yang Cheng
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yannan Zhou
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Qiaohuan Deng
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yicheng Zhao
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Wang
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China.,Scientific Research Department, Changchun University of Chinese Medicine, Changchun, China
| | - Haimiao Yang
- Phase I Clinical Trial Laboratory, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
4
|
Conley BA, Staudt L, Takebe N, Wheeler DA, Wang L, Cardenas MF, Korchina V, Zenklusen JC, McShane LM, Tricoli JV, Williams PM, Lubensky I, O’Sullivan-Coyne G, Kohn E, Little RF, White J, Malik S, Harris LN, Mann B, Weil C, Tarnuzzer R, Karlovich C, Rodgers B, Shankar L, Jacobs PM, Nolan T, Berryman SM, Gastier-Foster J, Bowen J, Leraas K, Shen H, Laird PW, Esteller M, Miller V, Johnson A, Edmondson EF, Giordano TJ, Kim B, Ivy SP. The Exceptional Responders Initiative: Feasibility of a National Cancer Institute Pilot Study. J Natl Cancer Inst 2021; 113:27-37. [PMID: 32339229 PMCID: PMC7781457 DOI: 10.1093/jnci/djaa061] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 02/27/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Tumor molecular profiling from patients experiencing exceptional responses to systemic therapy may provide insights into cancer biology and improve treatment tailoring. This pilot study evaluates the feasibility of identifying exceptional responders retrospectively, obtaining pre-exceptional response treatment tumor tissues, and analyzing them with state-of-the-art molecular analysis tools to identify potential molecular explanations for responses. METHODS Exceptional response was defined as partial (PR) or complete (CR) response to a systemic treatment with population PR or CR rate less than 10% or an unusually long response (eg, duration >3 times published median). Cases proposed by patients' clinicians were reviewed by clinical and translational experts. Tumor and normal tissue (if possible) were profiled with whole exome sequencing and, if possible, targeted deep sequencing, RNA sequencing, methylation arrays, and immunohistochemistry. Potential germline mutations were tracked for relevance to disease. RESULTS Cases reflected a variety of tumors and standard and investigational treatments. Of 520 cases, 476 (91.5%) were accepted for further review, and 222 of 476 (46.6%) proposed cases met requirements as exceptional responders. Clinical data were obtained from 168 of 222 cases (75.7%). Tumor was provided from 130 of 168 cases (77.4%). Of 117 of the 130 (90.0%) cases with sufficient nucleic acids, 109 (93.2%) were successfully analyzed; 6 patients had potentially actionable germline mutations. CONCLUSION Exceptional responses occur with standard and investigational treatment. Retrospective identification of exceptional responders, accessioning, and sequencing of pretreatment archived tissue is feasible. Data from molecular analyses of tumors, particularly when combining results from patients who received similar treatments, may elucidate molecular bases for exceptional responses.
Collapse
Affiliation(s)
- Barbara A Conley
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Lou Staudt
- Center for Cancer Genomics, National Cancer Institute, Bethesda, MD, USA
| | - Naoko Takebe
- Developmental Therapeutics Clinic, National Cancer Institute, Bethesda, MD, USA
| | - David A Wheeler
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria F Cardenas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Viktoriya Korchina
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Lisa M McShane
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - James V Tricoli
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Paul M Williams
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Irina Lubensky
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | | | - Elise Kohn
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Richard F Little
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Jeffrey White
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Shakun Malik
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Lyndsay N Harris
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Bhupinder Mann
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Carol Weil
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Roy Tarnuzzer
- Center for Cancer Genomics, National Cancer Institute, Bethesda, MD, USA
| | - Chris Karlovich
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Brian Rodgers
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Lalitha Shankar
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Paula M Jacobs
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Tracy Nolan
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sean M Berryman
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Julie Gastier-Foster
- Nationwide Children’s Hospital, Columbus, OH, USA; Van Andel Research Institute, Grand Rapids, MI, USA
| | - Jay Bowen
- Nationwide Children’s Hospital, Columbus, OH, USA; Van Andel Research Institute, Grand Rapids, MI, USA
| | - Kristen Leraas
- Nationwide Children’s Hospital, Columbus, OH, USA; Van Andel Research Institute, Grand Rapids, MI, USA
| | - Hui Shen
- Van Andel Research Institute, Grand Rapids, MI, USA
| | | | - Manel Esteller
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Catalonia, Spain
| | | | | | - Elijah F Edmondson
- Pathology and Histology Laboratory, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Benjamin Kim
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - S Percy Ivy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|