1
|
De S, Ehrlich M. Arrest and Attack: Microtubule-Targeting Agents and Oncolytic Viruses Employ Complementary Mechanisms to Enhance Anti-Tumor Therapy Efficacy. Genes (Basel) 2024; 15:1193. [PMID: 39336785 PMCID: PMC11431212 DOI: 10.3390/genes15091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Oncolytic viruses (OVs) are promising cancer immunotherapy agents that stimulate anti-tumor immunity through the preferential infection and killing of tumor cells. OVs are currently under limited clinical usage, due in part to their restricted efficacy as monotherapies. Current efforts for enhancement of the therapeutic potency of OVs involve their combination with other therapy modalities, aiming at the concomitant exploitation of complementary tumor weaknesses. In this context, microtubule-targeting agents (MTAs) pose as an enticing option, as they perturb microtubule dynamics and function, induce cell-cycle arrest, and cause mitotic cell death. MTAs induce therapeutic benefit through cancer-cell-autonomous and non-cell-autonomous mechanisms and are a main component of the standard of care for different malignancies. However, off-target effects and acquired resistance involving distinct cellular and molecular mechanisms may limit the overall efficacy of MTA-based therapy. When combined, OVs and MTAs may enhance therapeutic efficacy through increases in OV infection and immunogenic cell death and a decreased probability of acquired resistance. In this review, we introduce OVs and MTAs, describe molecular features of their activity in cancer cells, and discuss studies and clinical trials in which the combination has been tested.
Collapse
Affiliation(s)
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
2
|
Chatelain C, Berland L, Grard M, Jouand N, Fresquet J, Nader J, Hirigoyen U, Petithomme T, Combredet C, Pons-Tostivint E, Fradin D, Treps L, Blanquart C, Boisgerault N, Tangy F, Fonteneau JF. Interplay between oncolytic measles virus, macrophages and cancer cells induces a proinflammatory tumor microenvironment. Oncoimmunology 2024; 13:2377830. [PMID: 39005546 PMCID: PMC11244337 DOI: 10.1080/2162402x.2024.2377830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Attenuated measles virus (MV) exerts its oncolytic activity in malignant pleural mesothelioma (MPM) cells that lack type-I interferon (IFN-I) production or responsiveness. However, other cells in the tumor microenvironment (TME), such as myeloid cells, possess functional antiviral pathways. In this study, we aimed to characterize the interplay between MV and the myeloid cells in human MPM. We cocultured MPM cell lines with monocytes or macrophages and infected them with MV. We analyzed the transcriptome of each cell type and studied their secretion and phenotypes by high-dimensional flow cytometry. We also measured transgene expression using an MV encoding GFP (MV-GFP). We show that MPM cells drive the differentiation of monocytes into M2-like macrophages. These macrophages inhibit GFP expression in tumor cells harboring a defect in IFN-I production and a functional signaling downstream of the IFN-I receptor, while having minimal effects on GFP expression in tumor cells with defect of responsiveness to IFN-I. Interestingly, inhibition of the IFN-I signaling by ruxolitinib restores GFP expression in tumor cells. Upon MV infection, cocultured macrophages express antiviral pro-inflammatory genes and induce the expression of IFN-stimulated genes in tumor cells. MV also increases the expression of HLA and costimulatory molecules on macrophages and their phagocytic activity. Finally, MV induces the secretion of inflammatory cytokines, especially IFN-I, and PD-L1 expression in tumor cells and macrophages. These results show that macrophages reduce viral proteins expression in some MPM cell lines through their IFN-I production and generate a pro-inflammatory interplay that may stimulate the patient's anti-tumor immune response.
Collapse
Affiliation(s)
- Camille Chatelain
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
| | - Laurine Berland
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
| | - Marion Grard
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
| | - Nicolas Jouand
- LabEx IGO, Nantes Université, Nantes, France
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, Nantes, France
| | - Judith Fresquet
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
| | - Joëlle Nader
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
| | - Ugo Hirigoyen
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
| | - Tacien Petithomme
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
| | - Chantal Combredet
- Vaccines Innovation Laboratory, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Elvire Pons-Tostivint
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
- Centre Hospitalier Universitaire Nantes, Medical Oncology, Nantes University, Nantes, France
| | - Delphine Fradin
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
| | - Lucas Treps
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
| | - Christophe Blanquart
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
| | - Nicolas Boisgerault
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
| | - Frédéric Tangy
- Vaccines Innovation Laboratory, Institut Pasteur, Université de Paris Cité, Paris, France
- Oncovita, Paris, France
| | - Jean-François Fonteneau
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
| |
Collapse
|
3
|
Luke JJ, Davar D, Andtbacka RH, Bhardwaj N, Brody JD, Chesney J, Coffin R, de Baere T, de Gruijl TD, Fury M, Goldmacher G, Harrington KJ, Kaufman H, Kelly CM, Khilnani AD, Liu K, Loi S, Long GV, Melero I, Middleton M, Neyns B, Pinato DJ, Sheth RA, Solomon SB, Szapary P, Marabelle A. Society for Immunotherapy of Cancer (SITC) recommendations on intratumoral immunotherapy clinical trials (IICT): from premalignant to metastatic disease. J Immunother Cancer 2024; 12:e008378. [PMID: 38641350 PMCID: PMC11029323 DOI: 10.1136/jitc-2023-008378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Intratumorally delivered immunotherapies have the potential to favorably alter the local tumor microenvironment and may stimulate systemic host immunity, offering an alternative or adjunct to other local and systemic treatments. Despite their potential, these therapies have had limited success in late-phase trials for advanced cancer resulting in few formal approvals. The Society for Immunotherapy of Cancer (SITC) convened a panel of experts to determine how to design clinical trials with the greatest chance of demonstrating the benefits of intratumoral immunotherapy for patients with cancers across all stages of pathogenesis. METHODS An Intratumoral Immunotherapy Clinical Trials Expert Panel composed of international key stakeholders from academia and industry was assembled. A multiple choice/free response survey was distributed to the panel, and the results of this survey were discussed during a half-day consensus meeting. Key discussion points are summarized in the following manuscript. RESULTS The panel determined unique clinical trial designs tailored to different stages of cancer development-from premalignant to unresectable/metastatic-that can maximize the chance of capturing the effect of intratumoral immunotherapies. Design elements discussed included study type, patient stratification and exclusion criteria, indications of randomization, study arm determination, endpoints, biological sample collection, and response assessment with biomarkers and imaging. Populations to prioritize for the study of intratumoral immunotherapy, including stage, type of cancer and line of treatment, were also discussed along with common barriers to the development of these local treatments. CONCLUSIONS The SITC Intratumoral Immunotherapy Clinical Trials Expert Panel has identified key considerations for the design and implementation of studies that have the greatest potential to capture the effect of intratumorally delivered immunotherapies. With more effective and standardized trial designs, the potential of intratumoral immunotherapy can be realized and lead to regulatory approvals that will extend the benefit of these local treatments to the patients who need them the most.
Collapse
Affiliation(s)
- Jason J Luke
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Diwakar Davar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | - Nina Bhardwaj
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joshua D Brody
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jason Chesney
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | | | - Thierry de Baere
- Center for Biotherapies In Situ (BIOTHERIS), INSERM CIC1428, Interventional Radiology Unit, Department of Medical Imaging, Gustave Roussy Cancer Center, University of Paris Saclay, Villejuif, France
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunology, Amsterdam, Netherlands
| | - Matthew Fury
- Oncology Clinical Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | | | - Kevin J Harrington
- The Institute of Cancer Research, The Royal Marsden National Institute for Health and Care Research Biomedical Research Centre, London, UK
| | - Howard Kaufman
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Ankyra Therapeutics, Boston, Massachusetts, USA
| | - Ciara M Kelly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Ke Liu
- Marengo Therapeutics, Inc, Cambridge, Massachusetts, USA
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Georgina V Long
- Melanoma Institute Australia, University of Sydney, and Royal North Shore and Mater Hospitals, North Sydney, New South Wales, Australia
| | | | - Mark Middleton
- Department of Oncology, University of Oxford, Oxford, UK
| | - Bart Neyns
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Jette, Belgium
| | - David J Pinato
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Rahul A Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen B Solomon
- Chief of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Professor of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Philippe Szapary
- Interventional Oncology, Johnson & Johnson, New Brunswick, New Jersey, USA
| | - Aurelien Marabelle
- Center for Biotherapies In Situ (BIOTHERIS), INSERM CIC1428, Department for Therapeutic Innovation and Early Phase Trials (DITEP), Gustave Roussy Cancer Center, University of Paris Saclay, Villejuif, France
| |
Collapse
|
4
|
Paternot S, Raspé E, Meiller C, Tarabichi M, Assié J, Libert F, Remmelink M, Bisteau X, Pauwels P, Blum Y, Le Stang N, Tabone‐Eglinger S, Galateau‐Sallé F, Blanquart C, Van Meerbeeck JP, Berghmans T, Jean D, Roger PP. Preclinical evaluation of CDK4 phosphorylation predicts high sensitivity of pleural mesotheliomas to CDK4/6 inhibition. Mol Oncol 2024; 18:866-894. [PMID: 36453028 PMCID: PMC10994244 DOI: 10.1002/1878-0261.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/04/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer with limited therapeutic options. We evaluated the impact of CDK4/6 inhibition by palbociclib in 28 MPM cell lines including 19 patient-derived ones, using various approaches including RNA-sequencing. Palbociclib strongly and durably inhibited the proliferation of 23 cell lines, indicating a unique sensitivity of MPM to CDK4/6 inhibition. When observed, insensitivity to palbociclib was mostly explained by the lack of active T172-phosphorylated CDK4. This was associated with high p16INK4A (CDKN2A) levels that accompany RB1 defects or inactivation, or (unexpectedly) CCNE1 overexpression in the presence of wild-type RB1. Prolonged palbociclib treatment irreversibly inhibited proliferation despite re-induction of cell cycle genes upon drug washout. A senescence-associated secretory phenotype including various potentially immunogenic components was irreversibly induced. Phosphorylated CDK4 was detected in 80% of 47 MPMs indicating their sensitivity to CDK4/6 inhibitors. Its absence in some highly proliferative MPMs was linked to very high p16 (CDKN2A) expression, which was also observed in public datasets in tumours from short-survival patients. Our study supports the evaluation of CDK4/6 inhibitors for MPM treatment, in monotherapy or combination therapy.
Collapse
Affiliation(s)
- Sabine Paternot
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| | - Eric Raspé
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| | - Clément Meiller
- Université de ParisCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Functional Genomics of Solid TumorsFrance
| | - Maxime Tarabichi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| | - Jean‐Baptiste Assié
- Université de ParisCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Functional Genomics of Solid TumorsFrance
- CEpiA (Clinical Epidemiology and Ageing), EA 7376‐IMRBUniversity Paris‐Est CréteilFrance
- GRC OncoThoParisEst, Service de Pneumologie, CHI Créteil, UPECCréteilFrance
| | - Frederick Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
- BRIGHTCore, ULBBrusselsBelgium
| | - Myriam Remmelink
- Department of Pathology, Erasme HospitalUniversité Libre de BruxellesBelgium
| | - Xavier Bisteau
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE)Integrated Personalized and Precision Oncology Network (IPPON)WilrijkBelgium
- Department of PathologyAntwerp University HospitalEdegemBelgium
| | - Yuna Blum
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le CancerParisFrance
- Present address:
IGDR UMR 6290, CNRS, Université de Rennes 1France
| | - Nolwenn Le Stang
- MESOBANK, Department of Biopathology, Centre Léon BérardLyonFrance
| | | | - Françoise Galateau‐Sallé
- MESOBANK, Department of Biopathology, Centre Léon BérardLyonFrance
- Cancer Research Center INSERM U1052‐CNRS 5286RLyonFrance
| | | | | | - Thierry Berghmans
- Clinic of Thoracic OncologyInstitut Jules Bordet, Université Libre de BruxellesBrusselsBelgium
| | - Didier Jean
- Université de ParisCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Functional Genomics of Solid TumorsFrance
| | - Pierre P. Roger
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| |
Collapse
|
5
|
Febres-Aldana CA, Fanaroff R, Offin M, Zauderer MG, Sauter JL, Yang SR, Ladanyi M. Diffuse Pleural Mesothelioma: Advances in Molecular Pathogenesis, Diagnosis, and Treatment. ANNUAL REVIEW OF PATHOLOGY 2024; 19:11-42. [PMID: 37722697 DOI: 10.1146/annurev-pathol-042420-092719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Diffuse pleural mesothelioma (DPM) is a highly aggressive malignant neoplasm arising from the mesothelial cells lining the pleural surfaces. While DPM is a well-recognized disease linked to asbestos exposure, recent advances have expanded our understanding of molecular pathogenesis and transformed our clinical practice. This comprehensive review explores the current concepts and emerging trends in DPM, including risk factors, pathobiology, histologic subtyping, and therapeutic management, with an emphasis on a multidisciplinary approach to this complex disease.
Collapse
Affiliation(s)
- Christopher A Febres-Aldana
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Rachel Fanaroff
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Michael Offin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Marjorie G Zauderer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jennifer L Sauter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| |
Collapse
|
6
|
Al Shboul S, Boyle S, Singh A, Saleh T, Alrjoub M, Abu Al Karsaneh O, Mryyian A, Dawoud R, Gul S, Abu Baker S, Ball K, Hupp T, Brennan PM. FISH analysis reveals CDKN2A and IFNA14 co-deletion is heterogeneous and is a prominent feature of glioblastoma. Brain Tumor Pathol 2024; 41:4-17. [PMID: 38097874 DOI: 10.1007/s10014-023-00473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024]
Abstract
Deletion of CDKN2A occurs in 50% of glioblastomas (GBM), and IFNA locus deletion in 25%. These genes reside closely on chromosome 9. We investigated whether CDKN2A and IFNA were co-deleted within the same heterogeneous tumour and their prognostic implications. We assessed CDKN2A and IFNA14 deletions in 45 glioma samples using an in-house three-colour FISH probe. We examined the correlation between p16INK4a protein expression (via IHC) and CDKN2A deletion along with the impact of these genomic events on patient survival. FISH analyses demonstrated that grades II and III had either wildtype (wt) or amplified CDKN2A/IFNA14, whilst 44% of GBMs harboured homozygous deletions of both genes. Cores with CDKN2A homozygous deletion (n = 11) were negative for p16INK4a. Twenty p16INK4a positive samples lacked CDKN2A deletion with some of cells showing negative p16INK4a. There was heterogeneity in IFNA14/CDKN2A ploidy within each GBM. Survival analyses of primary GBMs suggested a positive association between increased p16INK4a and longer survival; this persisted when considering CDKN2A/IFNA14 status. Furthermore, wt (intact) CDKN2A/IFNA14 were found to be associated with longer survival in recurrent GBMs. Our data suggest that co-deletion of CDKN2A/IFNA14 in GBM negatively correlates with survival and CDKN2A-wt status correlated with longer survival, and with second surgery, itself a marker for improved patient outcomes.
Collapse
Affiliation(s)
- Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Ashita Singh
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, Scotland, UK
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Moath Alrjoub
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ola Abu Al Karsaneh
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Amel Mryyian
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Rand Dawoud
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Sinem Gul
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, Scotland, UK
| | - Shaden Abu Baker
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Kathryn Ball
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, Scotland, UK
| | - Ted Hupp
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, Scotland, UK.
| | - Paul M Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Translational Neurosurgery, Department of Clinical Neurosciences, Royal Infirmary of Edinburgh, Edinburgh, EH16 4SB, Scotland, UK.
| |
Collapse
|
7
|
Grard M, Idjellidaine M, Arbabian A, Chatelain C, Berland L, Combredet C, Dutoit S, Deshayes S, Dehame V, Labarrière N, Fradin D, Boisgerault N, Blanquart C, Tangy F, Fonteneau JF. Oncolytic attenuated measles virus encoding NY-ESO-1 induces HLA I and II presentation of this tumor antigen by melanoma and dendritic cells. Cancer Immunol Immunother 2023; 72:3309-3322. [PMID: 37466668 PMCID: PMC10992919 DOI: 10.1007/s00262-023-03486-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/26/2023] [Indexed: 07/20/2023]
Abstract
Antitumor virotherapy stimulates the antitumor immune response during tumor cell lysis induced by oncolytic viruses (OVs). OV can be modified to express additional transgenes that enhance their therapeutic potential. In this study, we armed the spontaneously oncolytic Schwarz strain of measles viruses (MVs) with the gene encoding the cancer/testis antigen NY-ESO-1 to obtain MVny. We compared MV and MVny oncolytic activity and ability to induce NY-ESO-1 expression in six human melanoma cell lines. After MVny infection, we measured the capacity of melanoma cells to present NY-ESO-1 peptides to CD4 + and CD8 + T cell clones specific for this antigen. We assessed the ability of MVny to induce NY-ESO-1 expression and presentation in monocyte-derived dendritic cells (DCs). Our results show that MVny and MV oncolytic activity are similar with a faster cell lysis induced by MVny. We also observed that melanoma cell lines and DC expressed the NY-ESO-1 protein after MVny infection. In addition, MVny-infected melanoma cells and DCs were able to stimulate NY-ESO-1-specific CD4 + and CD8 + T cells. Finally, MVny was able to induce DC maturation. Altogether, these results show that MVny could be an interesting candidate to stimulate NY-ESO-1-specific T cells in melanoma patients with NY-ESO-1-expressing tumor cells.
Collapse
Affiliation(s)
- Marion Grard
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
- Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Mohamed Idjellidaine
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
- Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Atousa Arbabian
- Vaccines Innovation Laboratory, Institut Pasteur, Université de Paris Cité, 75015, Paris, France
| | - Camille Chatelain
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
- Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Laurine Berland
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
- Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Chantal Combredet
- Vaccines Innovation Laboratory, Institut Pasteur, Université de Paris Cité, 75015, Paris, France
| | - Soizic Dutoit
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
- Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Sophie Deshayes
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
- Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Virginie Dehame
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
- Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Nathalie Labarrière
- Labex IGO, Immunology Graft Oncology, Nantes, France
- Nantes Université, Université d'Angers, Inserm, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, 44000, Nantes, France
| | - Delphine Fradin
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
- Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Nicolas Boisgerault
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
- Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Christophe Blanquart
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
- Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Frédéric Tangy
- Vaccines Innovation Laboratory, Institut Pasteur, Université de Paris Cité, 75015, Paris, France
- Oncovita, 75015, Paris, France
| | - Jean-François Fonteneau
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France.
- Labex IGO, Immunology Graft Oncology, Nantes, France.
| |
Collapse
|
8
|
Wang Q, Xu C, Wang W, Zhang Y, Li Z, Song Z, Wang J, Yu J, Liu J, Zhang S, Cai X, Li W, Zhan P, Liu H, Lv T, Miao L, Min L, Li J, Liu B, Yuan J, Jiang Z, Lin G, Chen X, Pu X, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Guo H, Chu Q, Meng R, Liu X, Wu J, Hu X, Zhou J, Zhu Z, Chen X, Pan W, Pang F, Zhang W, Jian Q, Wang K, Wang L, Zhu Y, Yang G, Lin X, Cai J, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Wang X, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Yu J, Kang J, Zhang J, Zhang C, Wu L, Shi L, Ye L, Wang G, Wang Y, Gao F, Huang J, Wang G, Wei J, Huang L, Li B, Zhang Z, Li Z, Liu Y, Li Y, Liu Z, Yang N, Wu L, Wang Q, Huang W, Hong Z, Wang G, Qu F, Fang M, Fang Y, Zhu X, et alWang Q, Xu C, Wang W, Zhang Y, Li Z, Song Z, Wang J, Yu J, Liu J, Zhang S, Cai X, Li W, Zhan P, Liu H, Lv T, Miao L, Min L, Li J, Liu B, Yuan J, Jiang Z, Lin G, Chen X, Pu X, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Guo H, Chu Q, Meng R, Liu X, Wu J, Hu X, Zhou J, Zhu Z, Chen X, Pan W, Pang F, Zhang W, Jian Q, Wang K, Wang L, Zhu Y, Yang G, Lin X, Cai J, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Wang X, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Yu J, Kang J, Zhang J, Zhang C, Wu L, Shi L, Ye L, Wang G, Wang Y, Gao F, Huang J, Wang G, Wei J, Huang L, Li B, Zhang Z, Li Z, Liu Y, Li Y, Liu Z, Yang N, Wu L, Wang Q, Huang W, Hong Z, Wang G, Qu F, Fang M, Fang Y, Zhu X, Du K, Ji J, Shen Y, Chen J, Zhang Y, Ma S, Lu Y, Song Y, Liu A, Zhong W, Fang W. Chinese expert consensus on the diagnosis and treatment of malignant pleural mesothelioma. Thorac Cancer 2023; 14:2715-2731. [PMID: 37461124 PMCID: PMC10493492 DOI: 10.1111/1759-7714.15022] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 09/12/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a malignant tumor originating from the pleura, and its incidence has been increasing in recent years. Due to the insidious onset and strong local invasiveness of MPM, most patients are diagnosed in the late stage and early screening and treatment for high-risk populations are crucial. The treatment of MPM mainly includes surgery, chemotherapy, and radiotherapy. Immunotherapy and electric field therapy have also been applied, leading to further improvements in patient survival. The Mesothelioma Group of the Yangtze River Delta Lung Cancer Cooperation Group (East China LUng caNcer Group, ECLUNG; Youth Committee) developed a national consensus on the clinical diagnosis and treatment of MPM based on existing clinical research evidence and the opinions of national experts. This consensus aims to promote the homogenization and standardization of MPM diagnosis and treatment in China, covering epidemiology, diagnosis, treatment, and follow-up.
Collapse
Affiliation(s)
- Qian Wang
- Department of Respiratory MedicineAffiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese MedicineNanjingChina
| | - Chunwei Xu
- Institute of Cancer and Basic Medicine (ICBM)Chinese Academy of SciencesHangzhouChina
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Wenxian Wang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Ziming Li
- Department of Shanghai Lung Cancer Center, Shanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Zhengbo Song
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
| | - Jiandong Wang
- Department of PathologyAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Jinpu Yu
- Department of Cancer Molecular Diagnostics CoreTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Jingjing Liu
- Department of Thoracic CancerJilin Cancer HospitalChangchunChina
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer CenterZhejiang University School of MedicineHangzhouChina
| | - Xiuyu Cai
- Department of VIP Inpatient, Sun Yet‐Sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Cancer CenterZhejiang UniversityHangzhouChina
| | - Ping Zhan
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Hongbing Liu
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Tangfeng Lv
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Liyun Miao
- Department of Respiratory Medicine, Affiliated Drum Tower HospitalMedical School of Nanjing UniversityNanjingChina
| | - Lingfeng Min
- Department of Respiratory MedicineClinical Medical School of Yangzhou University, Subei People's Hospital of Jiangsu ProvinceYangzhouChina
| | - Jiancheng Li
- Department of Radiation OncologyFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
| | - Baogang Liu
- Department of OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Jingping Yuan
- Department of PathologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhansheng Jiang
- Department of Integrative OncologyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Gen Lin
- Department of Medical OncologyFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
| | - Xiaohui Chen
- Department of Thoracic SurgeryFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouChina
| | - Xingxiang Pu
- Department of Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Chuangzhou Rao
- Department of Radiotherapy and Chemotherapy, Hwamei HospitalUniversity of Chinese Academy of SciencesNingboChina
| | - Dongqing Lv
- Department of Pulmonary MedicineTaizhou Hospital of Wenzhou Medical UniversityTaizhouChina
| | - Zongyang Yu
- Department of Respiratory Medicine, the 900th Hospital of the Joint Logistics Team (the Former Fuzhou General Hospital)Fujian Medical UniversityFuzhouChina
| | - Xiaoyan Li
- Department of Oncology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chuanhao Tang
- Department of Medical OncologyPeking University International HospitalBeijingChina
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University(The First Affiliated Hospital of Guangzhou Medical University)GuangzhouChina
| | - Junping Zhang
- Department of Thoracic OncologyShanxi Academy of Medical Sciences, Shanxi Bethune HospitalTaiyuanChina
| | - Hui Guo
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuewen Liu
- Department of Oncology, the Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Jingxun Wu
- Department of Medical Oncology, the First Affiliated Hospital of MedicineXiamen UniversityXiamenChina
| | - Xiao Hu
- Zhejiang Key Laboratory of Radiation OncologyCancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)HangzhouChina
| | - Jin Zhou
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and TechnologyChengduChina
| | - Zhengfei Zhu
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Xiaofeng Chen
- Department of OncologyJiangsu Province Hospital and Nanjing Medical University First Affiliated HospitalNanjingChina
| | - Weiwei Pan
- Department of Cell Biology, College of MedicineJiaxing UniversityJiaxingChina
| | - Fei Pang
- Department of MedicalShanghai OrigiMed Co, LtdShanghaiChina
| | - Wenpan Zhang
- Department of MedicalShanghai OrigiMed Co, LtdShanghaiChina
| | - Qijie Jian
- Department of MedicalShanghai OrigiMed Co, LtdShanghaiChina
| | - Kai Wang
- Department of MedicalShanghai OrigiMed Co, LtdShanghaiChina
| | - Liping Wang
- Department of OncologyBaotou Cancer HospitalBaotouChina
| | - Youcai Zhu
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun HospitalThe Third Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Guocai Yang
- Department of Thoracic Surgery, Zhoushan HospitalWenzhou Medical UniversityZhoushanChina
| | - Xinqing Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University(The First Affiliated Hospital of Guangzhou Medical University)GuangzhouChina
| | - Jing Cai
- Department of OncologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Huijing Feng
- Department of Thoracic OncologyShanxi Academy of Medical Sciences, Shanxi Bethune HospitalTaiyuanChina
| | - Lin Wang
- Department of PathologyShanxi Academy of Medical Sciences, Shanxi Bethune HospitalTaiyuanChina
| | - Yingying Du
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Wang Yao
- Department of Interventional OncologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Dongmei Yuan
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Yanwen Yao
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Jianhui Huang
- Department of OncologyLishui Municipal Central HospitalLishuiChina
| | - Xiaomin Wang
- Department of Cell Biology, College of MedicineJiaxing UniversityJiaxingChina
| | - Yinbin Zhang
- Department of Oncologythe Second Affiliated Hospital of Medical College, Xi'an Jiaotong UniversityXi'anChina
| | - Pingli Sun
- Department of PathologyThe Second Hospital of Jilin UniversityChangchunChina
| | - Hong Wang
- Senior Department of OncologyThe 5th Medical Center of PLA General HospitalBeijingChina
| | - Mingxiang Ye
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Dong Wang
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Zhaofeng Wang
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Yue Hao
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
| | - Zhen Wang
- Department of Radiation OncologyAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Bing Wan
- Department of Respiratory MedicineThe Affiliated Jiangning Hospital of Nanjing Medical UniversityNanjingChina
| | - Donglai Lv
- Department of Clinical OncologyThe 901 Hospital of Joint Logistics Support Force of People Liberation ArmyHefeiChina
| | - Jianwei Yu
- Department of Respiratory MedicineAffiliated Hospital of Jiangxi University of Chinese Medicine, Jiangxi Province Hospital of Chinese MedicineNanchangChina
| | - Jin Kang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung CancerGuangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of MedicineGuangzhouChina
| | - Jiatao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung CancerGuangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of MedicineGuangzhouChina
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung CancerGuangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of MedicineGuangzhouChina
| | - Lixin Wu
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun HospitalThe Third Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Lin Shi
- Department of Respiratory MedicineZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Leiguang Ye
- Department of OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Gaoming Wang
- Department of Thoracic Surgery, Xuzhou Central HospitalXuzhou Clinical School of Xuzhou Medical UniversityXuzhouChina
| | - Yina Wang
- Department of Oncology, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Feng Gao
- Department of Thoracic SurgeryThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Jianfei Huang
- Department of Clinical BiobankAffiliated Hospital of Nantong UniversityNantongChina
| | - Guifang Wang
- Department of Respiratory MedicineHuashan Hospital, Fudan UniversityShanghaiChina
| | - Jianguo Wei
- Department of PathologyShaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine)ShaoxingChina
| | - Long Huang
- Department of OncologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Bihui Li
- Department of OncologyThe Second Affiliated Hospital of Guilin Medical UniversityGuilinChina
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of PharmacyJinan UniversityGuangzhouChina
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of PathologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Yueping Liu
- Department of PathologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yuan Li
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Zhefeng Liu
- Senior Department of OncologyThe 5th Medical Center of PLA General HospitalBeijingChina
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Lin Wu
- Department of Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Qiming Wang
- Department of Internal MedicineThe Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouChina
| | - Wenbin Huang
- Department of Pathologythe First Affiliated Hospital of Henan University of Science and TechnologyLuoyangChina
| | - Zhuan Hong
- Department of Medical Oncology, Jiangsu Cancer HospitalNanjing Medical University Affiliated Cancer HospitalNanjingChina
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinjian HospitalThird Military Medical UniversityChongqingChina
| | - Fengli Qu
- Institute of Cancer and Basic Medicine (ICBM)Chinese Academy of SciencesHangzhouChina
| | - Meiyu Fang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw HospitalZhejiang UniversityHangzhouChina
| | - Xixu Zhu
- Department of Radiation OncologyAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Kaiqi Du
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun HospitalThe Third Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Jiansong Ji
- Department of RadiologyLishui Municipal Central HospitalLishuiChina
| | - Yi Shen
- Department of Thoracic Surgery, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yiping Zhang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
| | - Shenglin Ma
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Cancer CenterZhejiang University School of MedicineHangzhouChina
| | - Yuanzhi Lu
- Department of Clinical PathologyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yong Song
- Department of Respiratory MedicineAffiliated Jinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Anwen Liu
- Department of OncologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung CancerGuangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of MedicineGuangzhouChina
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| |
Collapse
|
9
|
Yuile A, Satgunaseelan L, Wei JQ, Rodriguez M, Back M, Pavlakis N, Hudson A, Kastelan M, Wheeler HR, Lee A. CDKN2A/B Homozygous Deletions in Astrocytomas: A Literature Review. Curr Issues Mol Biol 2023; 45:5276-5292. [PMID: 37504251 PMCID: PMC10378679 DOI: 10.3390/cimb45070335] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
Genomic alterations of CDKN2A and CDKN2B in astrocytomas have been an evolving area of study for decades. Most recently, there has been considerable interest in the effect of CDKN2A and/or CDKN2B (CDKN2A/B) homozygous deletions (HD) on the prognosis of isocitrate dehydrogenase (IDH)-mutant astrocytomas. This is highlighted by the adoption of CDKN2A/B HD as an essential criterion for astrocytoma and IDH-mutant central nervous system (CNS) WHO grade 4 in the fifth edition of the World Health Organisation (WHO) Classification of Central Nervous System Tumours (2021). The CDKN2A and CDKN2B genes are located on the short arm of chromosome 9. CDKN2A encodes for two proteins, p14 and p16, and CDKN2B encodes for p15. These proteins regulate cell growth and angiogenesis. Interpreting the impact of CDKN2A/B alterations on astrocytoma prognosis is complicated by recent changes in tumour classification and a lack of uniform standards for testing CDKN2A/B. While the prognostic impact of CDKN2A/B HD is established, the role of different CDKN2A/B alterations-heterozygous deletions (HeD), point mutations, and promoter methylation-is less clear. Consequently, how these alternations should be incorporated into patient management remains controversial. To this end, we reviewed the literature on different CDKN2A/B alterations in IDH-mutant astrocytomas and their impact on diagnosis and management. We also provided a historical review of the changing impact of CDKN2A/B alterations as glioma classification has evolved over time. Through this historical context, we demonstrate that CDKN2A/B HD is an important negative prognostic marker in IDH-mutant astrocytomas; however, the historical data is challenging to interpret given changes in tumour classification over time, variation in the quality of evidence, and variations in the techniques used to identify CDKN2A/B deletions. Therefore, future prospective studies using uniform classification and detection techniques are required to improve the clinical interpretation of this molecular marker.
Collapse
Affiliation(s)
- Alexander Yuile
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia
- The Brain Cancer Group, North Shore Private Hospital, Sydney, NSW 2065, Australia
| | - Laveniya Satgunaseelan
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Joe Q Wei
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia
| | - Michael Rodriguez
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- The Brain Cancer Group, North Shore Private Hospital, Sydney, NSW 2065, Australia
- Department of Pathology, Prince of Wales Hospital, Sydney, NSW 2065, Australia
| | - Michael Back
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia
- The Brain Cancer Group, North Shore Private Hospital, Sydney, NSW 2065, Australia
- Department of Radiation Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Nick Pavlakis
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia
| | - Amanda Hudson
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia
| | - Marina Kastelan
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- The Brain Cancer Group, North Shore Private Hospital, Sydney, NSW 2065, Australia
| | - Helen R Wheeler
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia
- The Brain Cancer Group, North Shore Private Hospital, Sydney, NSW 2065, Australia
| | - Adrian Lee
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia
- The Brain Cancer Group, North Shore Private Hospital, Sydney, NSW 2065, Australia
| |
Collapse
|
10
|
Felley-Bosco E. Exploring the Expression of the «Dark Matter» of the Genome in Mesothelioma for Potentially Predictive Biomarkers for Prognosis and Immunotherapy. Cancers (Basel) 2023; 15:cancers15112969. [PMID: 37296931 DOI: 10.3390/cancers15112969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Recent high-throughput RNA sequencing technologies have confirmed that a large part of the non-coding genome is transcribed. The priority for further investigations is nevertheless generally given in cancer to coding sequences, due to the obvious interest of finding therapeutic targets. In addition, several RNA-sequencing pipelines eliminate repetitive sequences, which are difficult to analyze. In this review, we shall focus on endogenous retroviruses. These sequences are remnants of ancestral germline infections by exogenous retroviruses. These sequences represent 8% of human genome, meaning four-fold the fraction of the genome encoding for proteins. These sequences are generally mostly repressed in normal adult tissues, but pathological conditions lead to their de-repression. Specific mesothelioma-associated endogenous retrovirus expression and their association to clinical outcome is discussed.
Collapse
Affiliation(s)
- Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Zürich University Hospital, 8091 Zurich, Switzerland
| |
Collapse
|
11
|
Liu T, Li Y, Wang X, Yang X, Fu Y, Zheng Y, Gong H, He Z. The role of interferons in ovarian cancer progression: Hinderer or promoter? Front Immunol 2022; 13:1087620. [PMID: 36618371 PMCID: PMC9810991 DOI: 10.3389/fimmu.2022.1087620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer (OC) is a common gynecologic malignancy with poor prognosis and high mortality. Changes in the OC microenvironment are closely related to the genesis, invasion, metastasis, recurrence, and drug-resistance. The OC microenvironment is regulated by Interferons (IFNs) known as a type of important cytokines. IFNs have a bidirectional regulation for OC cells growth and survival. Meanwhile, IFNs positively regulate the recruitment, differentiation and activation of immune cells. This review summarizes the secretion and the role of IFNs. In particular, we mainly elucidate the actions played by IFNs in various types of therapy. IFNs assist radiotherapy, targeted therapy, immunotherapy and biotherapy for OC, except for some IFN pathways that may cause chemo-resistance. In addition, we present some advances in OC treatment with the help of IFN pathways. IFNs have the ability to powerfully modulate the tumor microenvironment and can potentially provide new combination strategies for OC treatment.
Collapse
Affiliation(s)
- Taiqing Liu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yinqi Li
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Wang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaodong Yang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yunhai Fu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yeteng Zheng
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Hanlin Gong, ; Zhiyao He,
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China,*Correspondence: Hanlin Gong, ; Zhiyao He,
| |
Collapse
|
12
|
Hariharan A, Qi W, Rehrauer H, Wu L, Ronner M, Wipplinger M, Kresoja‐Rakic J, Sun S, Oton‐Gonzalez L, Sculco M, Serre‐Beinier V, Meiller C, Blanquart C, Fonteneau J, Vrugt B, Rüschoff JH, Opitz I, Jean D, de Perrot M, Felley‐Bosco E. Heterogeneous RNA editing and influence of ADAR2 on mesothelioma chemoresistance and the tumor microenvironment. Mol Oncol 2022; 16:3949-3974. [PMID: 36221913 PMCID: PMC9718120 DOI: 10.1002/1878-0261.13322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/13/2022] [Accepted: 10/11/2022] [Indexed: 12/24/2022] Open
Abstract
We previously observed increased levels of adenosine-deaminase-acting-on-dsRNA (Adar)-dependent RNA editing during mesothelioma development in mice exposed to asbestos. The aim of this study was to characterize and assess the role of ADAR-dependent RNA editing in mesothelioma. We found that tumors and mesothelioma primary cultures have higher ADAR-mediated RNA editing compared to mesothelial cells. Unsupervised clustering of editing in different genomic regions revealed heterogeneity between tumor samples as well as mesothelioma primary cultures. ADAR2 expression levels are higher in BRCA1-associated protein 1 wild-type tumors, with corresponding changes in RNA editing in transcripts and 3'UTR. ADAR2 knockdown and rescue models indicated a role in cell proliferation, altered cell cycle, increased sensitivity to antifolate treatment, and type-1 interferon signaling upregulation, leading to changes in the microenvironment in vivo. Our data indicate that RNA editing contributes to mesothelioma heterogeneity and highlights an important role of ADAR2 not only in growth regulation in mesothelioma but also in chemotherapy response, in addition to regulating inflammatory response downstream of sensing nucleic acid structures.
Collapse
Affiliation(s)
- Ananya Hariharan
- Laboratory of Molecular Oncology, Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| | - Weihong Qi
- Functional Genomics Center, ETH ZurichUniversity of ZurichSwitzerland
| | - Hubert Rehrauer
- Functional Genomics Center, ETH ZurichUniversity of ZurichSwitzerland
| | - Licun Wu
- Latner Thoracic Surgery Laboratories, Division of Thoracic SurgeryUniversity Health NetworkTorontoCanada
| | - Manuel Ronner
- Laboratory of Molecular Oncology, Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| | - Martin Wipplinger
- Laboratory of Molecular Oncology, Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| | - Jelena Kresoja‐Rakic
- Laboratory of Molecular Oncology, Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| | - Suna Sun
- Laboratory of Molecular Oncology, Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| | - Lucia Oton‐Gonzalez
- Laboratory of Molecular Oncology, Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| | - Marika Sculco
- Laboratory of Molecular Oncology, Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| | | | - Clément Meiller
- Centre de Recherche des Cordeliers, InsermSorbonne Université, Université Paris Cité, Functional Genomics of Solid TumorsFrance
| | - Christophe Blanquart
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NAFrance
| | | | - Bart Vrugt
- Institute of Pathology and Molecular PathologyUniversity Hospital ZurichSwitzerland
| | - Jan Hendrik Rüschoff
- Institute of Pathology and Molecular PathologyUniversity Hospital ZurichSwitzerland
| | - Isabelle Opitz
- Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| | - Didier Jean
- Centre de Recherche des Cordeliers, InsermSorbonne Université, Université Paris Cité, Functional Genomics of Solid TumorsFrance
| | - Marc de Perrot
- Latner Thoracic Surgery Laboratories, Division of Thoracic SurgeryUniversity Health NetworkTorontoCanada
| | - Emanuela Felley‐Bosco
- Laboratory of Molecular Oncology, Department of Thoracic SurgeryUniversity Hospital ZurichSwitzerland
| |
Collapse
|
13
|
Transcriptome Analysis of Human Glioblastoma Cells Susceptible to Infection with the Leningrad-16 Vaccine Strain of Measles Virus. Viruses 2022; 14:v14112433. [PMID: 36366531 PMCID: PMC9696624 DOI: 10.3390/v14112433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma multiforme (GBM) accounts for almost half of all primary malignant brain tumors in adults and has a poor prognosis. Here we demonstrated the oncolytic potential of the L-16 vaccine strain of measles virus (MV) against primary human GBM cells and characterized the genetic patterns that determine the sensitivity of primary human GBM cells to oncolytic therapy. MV replicated in all GBM cells, and seven out of eight cell lines underwent complete or partial oncolysis. RNA-Seq analysis identified about 1200 differentially expressed genes (FDR < 0.05) with at least two-fold expression level change between MV-infected and uninfected cells. Among them, the most significant upregulation was observed for interferon response, apoptosis and cytokine signaling. One out of eight GBM cell lines was defective in type I interferon production and, thus, in the post-interferon response, other cells lacked expression of different cellular defense factors. Thus, none of the cell lines displayed induction of the total gene set necessary for effective inhibition of MV replication. In the resistant cells, we detected aberrant expression of metalloproteinase genes, particularly MMP3. Thus, such genes could be considered intriguing candidates for further study of factors responsible for cell sensitivity and resistance to L-16 MV infection.
Collapse
|
14
|
Vorobjeva IV, Zhirnov OP. Modern approaches to treating cancer with oncolytic viruses. MICROBIOLOGY INDEPENDENT RESEARCH JOURNAL 2022. [DOI: 10.18527/2500-2236-2022-9-1-91-112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
According to the World Health Organization, cancer is the second leading cause of death in the world. This serves as a powerful incentive to search for new effective cancer treatments. Development of new oncolytic viruses capable of selectively destroying cancer cells is one of the modern approaches to cancer treatment. The advantage of this method – the selective lysis of tumor cells with the help of viruses – leads to an increase in the antitumor immune response of the body, that in turn promotes the destruction of the primary tumor and its metastases. Significant progress in development of this method has been achieved in the last decade. In this review we analyze the literature data on families of oncolytic viruses that have demonstrated a positive therapeutic effect against malignant neoplasms in various localizations. We discuss the main mechanisms of the oncolytic action of viruses and assess their advantages over other methods of cancer therapy as well as the prospects for their use in clinical practice.
Collapse
Affiliation(s)
- I. V. Vorobjeva
- N. F. Gamaleya National Research Center for Epidemiology and Microbiology, D. I. Ivanovsky Institute of Virology
| | - O. P. Zhirnov
- N. F. Gamaleya National Research Center for Epidemiology and Microbiology, D. I. Ivanovsky Institute of Virology; The Russian-German Academy of Medical and Biotechnological Sciences
| |
Collapse
|
15
|
Patient-derived head and neck tumor slice cultures: a versatile tool to study oncolytic virus action. Sci Rep 2022; 12:15334. [PMID: 36097280 PMCID: PMC9467994 DOI: 10.1038/s41598-022-19555-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Head and neck cancer etiology and architecture is quite diverse and complex, impeding the prediction whether a patient could respond to a particular cancer immunotherapy or combination treatment. A concomitantly arising caveat is obviously the translation from pre-clinical, cell based in vitro systems as well as syngeneic murine tumor models towards the heterogeneous architecture of the human tumor ecosystems. To bridge this gap, we have established and employed a patient-derived HNSCC (head and neck squamous cell carcinoma) slice culturing system to assess immunomodulatory effects as well as permissivity and oncolytic virus (OV) action. The heterogeneous contexture of the human tumor ecosystem including tumor cells, cancer-associated fibroblasts and immune cells was preserved in our HNSCC slice culturing approach. Importantly, the immune cell compartment remained to be functional and cytotoxic T-cells could be activated by immunostimulatory antibodies. In addition, we uncovered that a high proportion of the patient-derived HNSCC slice cultures were susceptible to the OV VSV-GP. More specifically, VSV-GP infects a broad spectrum of tumor-associated lineages including epithelial and stromal cells and can induce apoptosis. In sum, this human tumor ex vivo platform might complement pre-clinical studies to eventually propel cancer immune-related drug discovery and ease the translation to the clinics.
Collapse
|
16
|
Tang C, Li L, Mo T, Na J, Qian Z, Fan D, Sun X, Yao M, Pan L, Huang Y, Zhong L. Oncolytic viral vectors in the era of diversified cancer therapy: from preclinical to clinical. Clin Transl Oncol 2022; 24:1682-1701. [PMID: 35612653 PMCID: PMC9131313 DOI: 10.1007/s12094-022-02830-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022]
Abstract
With the in-depth research and wide application of immunotherapy recently, new therapies based on oncolytic viruses are expected to create new prospects for cancer treatment via eliminating the suppression of the immune system by tumors. Currently, an increasing number of viruses are developed and engineered, and various virus vectors based on effectively stimulating human immune system to kill tumor cells have been approved for clinical treatment. Although the virus can retard the proliferation of tumor cells, the choice of oncolytic viruses in biological cancer therapy is equally critical given their therapeutic efficacy, safety and adverse effects. Moreover, previously known oncolytic viruses have not been systematically classified. Therefore, in this review, we summarized and distinguished the characteristics of several common types of oncolytic viruses: herpes simplex virus, adenovirus, measles virus, Newcastle disease virus, reovirus and respiratory syncytial virus. Subsequently, we outlined that these oncolytic viral vectors have been transformed from preclinical studies in combination with immunotherapy, radiotherapy, chemotherapy, and nanoparticles into clinical therapeutic strategies for various advanced solid malignancies or circulatory system cancers.
Collapse
Affiliation(s)
- Chao Tang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lan Li
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tong Mo
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jintong Na
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhangbo Qian
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dianfa Fan
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xinjun Sun
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Min Yao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lina Pan
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yong Huang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Liping Zhong
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
17
|
Li Q, Tan F, Wang Y, Liu X, Kong X, Meng J, Yang L, Cen S. The gamble between oncolytic virus therapy and IFN. Front Immunol 2022; 13:971674. [PMID: 36090998 PMCID: PMC9453641 DOI: 10.3389/fimmu.2022.971674] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Various studies are being conducted on oncolytic virotherapy which one of the mechanisms is mediating interferon (IFN) production by it exerts antitumor effects. The antiviral effect of IFN itself has a negative impact on the inhibition of oncolytic virus or tumor eradication. Therefore, it is very critical to understand the mechanism of IFN regulation by oncolytic viruses, and to define its mechanism is of great significance for improving the antitumor effect of oncolytic viruses. This review focuses on the regulatory mechanisms of IFNs by various oncolytic viruses and their combination therapies. In addition, the exerting and the producing pathways of IFNs are briefly summarized, and some current issues are put forward.
Collapse
Affiliation(s)
- Qingbo Li
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fengxian Tan
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanyuan Wang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohui Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xianbin Kong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xianbin Kong, ; Jingyan Meng, ; Long Yang, ; Shan Cen,
| | - Jingyan Meng
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xianbin Kong, ; Jingyan Meng, ; Long Yang, ; Shan Cen,
| | - Long Yang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xianbin Kong, ; Jingyan Meng, ; Long Yang, ; Shan Cen,
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
- *Correspondence: Xianbin Kong, ; Jingyan Meng, ; Long Yang, ; Shan Cen,
| |
Collapse
|
18
|
Mesenchymal stromal cells equipped by IFNα empower T cells with potent anti-tumor immunity. Oncogene 2022; 41:1866-1881. [PMID: 35145233 PMCID: PMC8956510 DOI: 10.1038/s41388-022-02201-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/22/2021] [Accepted: 01/19/2022] [Indexed: 11/08/2022]
Abstract
Cancer treatments have been revolutionized by the emergence of immune checkpoint blockade therapies. However, only a minority of patients with various tumor types have benefited from such treatments. New strategies focusing on the immune contexture of the tumor tissue microenvironment hold great promises. Here, we created IFNα-overexpressing mesenchymal stromal cells (IFNα-MSCs). Upon direct injection into tumors, we found that these cells are powerful in eliminating several types of tumors. Interestingly, the intra-tumoral injection of IFNα-MSCs could also induce specific anti-tumor effects on distant tumors. These IFNα-MSCs promoted tumor cells to produce CXCL10, which in turn potentiates the infiltration of CD8+ T cells in the tumor site. Furthermore, IFNα-MSCs enhanced the expression of granzyme B (GZMB) in CD8+ T cells and invigorated their cytotoxicity in a Stat3-dependent manner. Genetic ablation of Stat3 in CD8+ T cells impaired the effect of IFNα-MSCs on GZMB expression. Importantly, the combination of IFNα-MSCs and PD-L1 blockade induced an even stronger anti-tumor immunity. Therefore, IFNα-MSCs represent a novel tumor immunotherapy strategy, especially when combined with PD-L1 blockade.
Collapse
|
19
|
Marazioti A, Krontira AC, Behrend SJ, Giotopoulou GA, Ntaliarda G, Blanquart C, Bayram H, Iliopoulou M, Vreka M, Trassl L, Pepe MAA, Hackl CM, Klotz LV, Weiss SAI, Koch I, Lindner M, Hatz RA, Behr J, Wagner DE, Papadaki H, Antimisiaris SG, Jean D, Deshayes S, Grégoire M, Kayalar Ö, Mortazavi D, Dilege Ş, Tanju S, Erus S, Yavuz Ö, Bulutay P, Fırat P, Psallidas I, Spella M, Giopanou I, Lilis I, Lamort A, Stathopoulos GT. KRAS signaling in malignant pleural mesothelioma. EMBO Mol Med 2022; 14:e13631. [PMID: 34898002 PMCID: PMC8819314 DOI: 10.15252/emmm.202013631] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/28/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) arises from mesothelial cells lining the pleural cavity of asbestos-exposed individuals and rapidly leads to death. MPM harbors loss-of-function mutations in BAP1, NF2, CDKN2A, and TP53, but isolated deletion of these genes alone in mice does not cause MPM and mouse models of the disease are sparse. Here, we show that a proportion of human MPM harbor point mutations, copy number alterations, and overexpression of KRAS with or without TP53 changes. These are likely pathogenic, since ectopic expression of mutant KRASG12D in the pleural mesothelium of conditional mice causes epithelioid MPM and cooperates with TP53 deletion to drive a more aggressive disease form with biphasic features and pleural effusions. Murine MPM cell lines derived from these tumors carry the initiating KRASG12D lesions, secondary Bap1 alterations, and human MPM-like gene expression profiles. Moreover, they are transplantable and actionable by KRAS inhibition. Our results indicate that KRAS alterations alone or in accomplice with TP53 alterations likely play an important and underestimated role in a proportion of patients with MPM, which warrants further exploration.
Collapse
|
20
|
Apoptosis during ZIKA Virus Infection: Too Soon or Too Late? Int J Mol Sci 2022; 23:ijms23031287. [PMID: 35163212 PMCID: PMC8835863 DOI: 10.3390/ijms23031287] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Cell death by apoptosis is a major cellular response in the control of tissue homeostasis and as a defense mechanism in the case of cellular aggression such as an infection. Cell self-destruction is part of antiviral responses, aimed at limiting the spread of a virus. Although it may contribute to the deleterious effects in infectious pathology, apoptosis remains a key mechanism for viral clearance and the resolution of infection. The control mechanisms of cell death processes by viruses have been extensively studied. Apoptosis can be triggered by different viral determinants through different pathways as a result of virally induced cell stresses and innate immune responses. Zika virus (ZIKV) induces Zika disease in humans, which has caused severe neurological forms, birth defects, and microcephaly in newborns during the last epidemics. ZIKV also surprised by revealing an ability to persist in the genital tract and in semen, thus being sexually transmitted. Mechanisms of diverting antiviral responses such as the interferon response, the role of cytopathic effects and apoptosis in the etiology of the disease have been widely studied and debated. In this review, we examined the interplay between ZIKV infection of different cell types and apoptosis and how the virus deals with this cellular response. We illustrate a duality in the effects of ZIKV-controlled apoptosis, depending on whether it occurs too early or too late, respectively, in neuropathogenesis, or in long-term viral persistence. We further discuss a prospective role for apoptosis in ZIKV-related therapies, and the use of ZIKV as an oncolytic agent.
Collapse
|
21
|
Yang L, Gu X, Yu J, Ge S, Fan X. Oncolytic Virotherapy: From Bench to Bedside. Front Cell Dev Biol 2021; 9:790150. [PMID: 34901031 PMCID: PMC8662562 DOI: 10.3389/fcell.2021.790150] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/12/2021] [Indexed: 01/23/2023] Open
Abstract
Oncolytic viruses are naturally occurring or genetically engineered viruses that can replicate preferentially in tumor cells and inhibit tumor growth. These viruses have been considered an effective anticancer strategy in recent years. They mainly function by direct oncolysis, inducing an anticancer immune response and expressing exogenous effector genes. Their multifunctional characteristics indicate good application prospects as cancer therapeutics, especially in combination with other therapies, such as radiotherapy, chemotherapy and immunotherapy. Therefore, it is necessary to comprehensively understand the utility of oncolytic viruses in cancer therapeutics. Here, we review the characteristics, antitumor mechanisms, clinical applications, deficiencies and associated solutions, and future prospects of oncolytic viruses.
Collapse
Affiliation(s)
- Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
22
|
Cersosimo F, Barbarino M, Lonardi S, Vermi W, Giordano A, Bellan C, Giurisato E. Mesothelioma Malignancy and the Microenvironment: Molecular Mechanisms. Cancers (Basel) 2021; 13:cancers13225664. [PMID: 34830817 PMCID: PMC8616064 DOI: 10.3390/cancers13225664] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Several studies have reported that cellular and soluble components of the tumor microenvironment (TME) play a key role in cancer-initiation and progression. Considering the relevance and the complexity of TME in cancer biology, recent research has focused on the investigation of the TME content, in terms of players and informational exchange. Understanding the crosstalk between tumor and non-tumor cells is crucial to design more beneficial anti-cancer therapeutic strategies. Malignant pleural mesothelioma (MPM) is a complex and heterogenous tumor mainly caused by asbestos exposure with few treatment options and low life expectancy after standard therapy. MPM leukocyte infiltration is rich in macrophages. Given the failure of macrophages to eliminate asbestos fibers, these immune cells accumulate in pleural cavity leading to the establishment of a unique inflammatory environment and to the malignant transformation of mesothelial cells. In this inflammatory landscape, stromal and immune cells play a driven role to support tumor development and progression via a bidirectional communication with tumor cells. Characterization of the MPM microenvironment (MPM-ME) may be useful to understand the complexity of mesothelioma biology, such as to identify new molecular druggable targets, with the aim to improve the outcome of the disease. In this review, we summarize the known evidence about the MPM-ME network, including its prognostic and therapeutic relevance.
Collapse
Affiliation(s)
- Francesca Cersosimo
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Marcella Barbarino
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (A.G.); (C.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (W.V.)
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (W.V.)
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (A.G.); (C.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Cristiana Bellan
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (A.G.); (C.B.)
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
- Correspondence: ; Tel.: +39-057-723-2125
| |
Collapse
|
23
|
The Evolution and Future of Targeted Cancer Therapy: From Nanoparticles, Oncolytic Viruses, and Oncolytic Bacteria to the Treatment of Solid Tumors. NANOMATERIALS 2021; 11:nano11113018. [PMID: 34835785 PMCID: PMC8623458 DOI: 10.3390/nano11113018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
While many classes of chemotherapeutic agents exist to treat solid tumors, few can generate a lasting response without substantial off-target toxicity despite significant scientific advancements and investments. In this review, the paths of development for nanoparticles, oncolytic viruses, and oncolytic bacteria over the last 20 years of research towards clinical translation and acceptance as novel cancer therapeutics are compared. Novel nanoparticle, oncolytic virus, and oncolytic bacteria therapies all start with a common goal of accomplishing therapeutic drug activity or delivery to a specific site while avoiding off-target effects, with overlapping methodology between all three modalities. Indeed, the degree of overlap is substantial enough that breakthroughs in one therapeutic could have considerable implications on the progression of the other two. Each oncotherapeutic modality has accomplished clinical translation, successfully overcoming the potential pitfalls promising therapeutics face. However, once studies enter clinical trials, the data all but disappears, leaving pre-clinical researchers largely in the dark. Overall, the creativity, flexibility, and innovation of these modalities for solid tumor treatments are greatly encouraging, and usher in a new age of pharmaceutical development.
Collapse
|
24
|
Nastase A, Mandal A, Lu SK, Anbunathan H, Morris-Rosendahl D, Zhang YZ, Sun XM, Gennatas S, Rintoul RC, Edwards M, Bowman A, Chernova T, Benepal T, Lim E, Taylor AN, Nicholson AG, Popat S, Willis AE, MacFarlane M, Lathrop M, Bowcock AM, Moffatt MF, Cookson WOCM. Integrated genomics point to immune vulnerabilities in pleural mesothelioma. Sci Rep 2021; 11:19138. [PMID: 34580349 PMCID: PMC8476593 DOI: 10.1038/s41598-021-98414-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/02/2021] [Indexed: 12/21/2022] Open
Abstract
Pleural mesothelioma is an aggressive malignancy with limited effective therapies. In order to identify therapeutic targets, we integrated SNP genotyping, sequencing and transcriptomics from tumours and low-passage patient-derived cells. Previously unrecognised deletions of SUFU locus (10q24.32), observed in 21% of 118 tumours, resulted in disordered expression of transcripts from Hedgehog pathways and the T-cell synapse including VISTA. Co-deletion of Interferon Type I genes and CDKN2A was present in half of tumours and was a predictor of poor survival. We also found previously unrecognised deletions in RB1 in 26% of cases and show sub-micromolar responses to downstream PLK1, CHEK1 and Aurora Kinase inhibitors in primary mesothelioma cells. Defects in Hippo pathways that included RASSF7 amplification and NF2 or LATS1/2 mutations were present in 50% of tumours and were accompanied by micromolar responses to the YAP1 inhibitor Verteporfin. Our results suggest new therapeutic avenues in mesothelioma and indicate targets and biomarkers for immunotherapy.
Collapse
Affiliation(s)
- Anca Nastase
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW36LY, UK
| | - Amit Mandal
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW36LY, UK
| | - Shir Kiong Lu
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW36LY, UK
| | - Hima Anbunathan
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW36LY, UK
| | - Deborah Morris-Rosendahl
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW36LY, UK
- Clinical Genetics and Genomics, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Yu Zhi Zhang
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW36LY, UK
- Department of Histopathology, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Xiao-Ming Sun
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Spyridon Gennatas
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW36LY, UK
| | - Robert C Rintoul
- Department of Thoracic Oncology, Papworth Hospital, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Matthew Edwards
- Clinical Genetics and Genomics, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Alex Bowman
- Department of Histopathology, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Tatyana Chernova
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Tim Benepal
- Department of Oncology, St George's Healthcare NHS Foundation Trust, London, UK
| | - Eric Lim
- Department of Thoracic Surgery, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Anthony Newman Taylor
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW36LY, UK
| | - Andrew G Nicholson
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW36LY, UK
- Department of Histopathology, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Sanjay Popat
- Department of Medicine, Royal Marsden Hospital, London, UK
- The Institute of Cancer Research, London, UK
| | - Anne E Willis
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Marion MacFarlane
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Mark Lathrop
- Department of Human Genetics, McGill Genome Centre, Montreal, QC, Canada
| | - Anne M Bowcock
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW36LY, UK
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW36LY, UK.
| | - William O C M Cookson
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW36LY, UK.
| |
Collapse
|
25
|
Joalland N, Ducoin K, Cadiou G, Rabu C, Guillonneau C. 24th "Nantes Actualités en Transplantation" and 4th "LabEx Immunotherapy-Graft-Oncology" NAT and IGO Joint Meeting "New Horizons in Immunotherapy". Front Immunol 2021; 12:738312. [PMID: 34539674 PMCID: PMC8446638 DOI: 10.3389/fimmu.2021.738312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 11/21/2022] Open
Abstract
The 24th edition of the annual NAT conference (Nantes Actualités Transplantation) and the 4th edition of the biennial LabEx IGO meeting (Immunotherapy Graft Oncology) were held jointly around a common theme: "New horizons in immunotherapy", on May 31st and June 1st 2021 to highlight new findings in the fields of transplantation, autoimmunity and cancer.
Collapse
Affiliation(s)
- Noémie Joalland
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | | | | | | | - Carole Guillonneau
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| |
Collapse
|
26
|
Grard M, Chatelain C, Delaunay T, Pons-Tostivint E, Bennouna J, Fonteneau JF. Homozygous Co-Deletion of Type I Interferons and CDKN2A Genes in Thoracic Cancers: Potential Consequences for Therapy. Front Oncol 2021; 11:695770. [PMID: 34249754 PMCID: PMC8266377 DOI: 10.3389/fonc.2021.695770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Homozygous deletion (HD) of the tumor suppressor gene CDKN2A is the most frequent genetic alteration in malignant pleural mesothelioma and is also frequent in non-small cell lung cancers. This HD is often accompanied by the HD of the type I interferons (IFN I) genes that are located closed to the CDKN2A gene on the p21.3 region of chromosome 9. IFN I genes encode sixteen cytokines (IFN-α, IFN-β…) that are implicated in cellular antiviral and antitumor defense and in the induction of the immune response. In this review, we discuss the potential influence of IFN I genes HD on thoracic cancers therapy and speak in favor of better taking these HD into account in patients monitoring.
Collapse
Affiliation(s)
- Marion Grard
- Université de Nantes, Inserm, CRCINA, Nantes, France.,Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Camille Chatelain
- Université de Nantes, Inserm, CRCINA, Nantes, France.,Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Tiphaine Delaunay
- Université de Nantes, Inserm, CRCINA, Nantes, France.,Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Elvire Pons-Tostivint
- Université de Nantes, Inserm, CRCINA, Nantes, France.,Labex IGO, Immunology Graft Oncology, Nantes, France.,CHU de Nantes, oncologie thoracique et digestive, Université de Nantes, Nantes, France
| | - Jaafar Bennouna
- Université de Nantes, Inserm, CRCINA, Nantes, France.,Labex IGO, Immunology Graft Oncology, Nantes, France.,CHU de Nantes, oncologie thoracique et digestive, Université de Nantes, Nantes, France
| | - Jean-François Fonteneau
- Université de Nantes, Inserm, CRCINA, Nantes, France.,Labex IGO, Immunology Graft Oncology, Nantes, France
| |
Collapse
|
27
|
Wadowski B, Bueno R, De Rienzo A. Immune Microenvironment and Genetics in Malignant Pleural Mesothelioma. Front Oncol 2021; 11:684025. [PMID: 34178677 PMCID: PMC8226027 DOI: 10.3389/fonc.2021.684025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/28/2021] [Indexed: 01/29/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive malignancy with limited therapeutic options beyond surgery and cytotoxic chemotherapy. The success of immune checkpoint inhibition has been found to correlate with expression of immune-related genes such as CD274 (PD-L1) in lung and other solid cancers. However, only a small subset of MPM patients respond to checkpoint inhibition, and this response has been varied and unpredictable across several clinical trials. Recent advances in next-generation sequencing (NGS) technology have improved our understanding of the molecular features of MPM, also with respect to its genetic signature and how this impacts the immune microenvironment. This article will review current evidence surrounding the interplay between MPM genetics, including epigenetics and transcriptomics, and the immune response.
Collapse
Affiliation(s)
- Benjamin Wadowski
- Thoracic Surgery Oncology Laboratory and the International Mesothelioma Program, Division of Thoracic and Cardiovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Raphael Bueno
- Thoracic Surgery Oncology Laboratory and the International Mesothelioma Program, Division of Thoracic and Cardiovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Assunta De Rienzo
- Thoracic Surgery Oncology Laboratory and the International Mesothelioma Program, Division of Thoracic and Cardiovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
28
|
Terenziani R, Zoppi S, Fumarola C, Alfieri R, Bonelli M. Immunotherapeutic Approaches in Malignant Pleural Mesothelioma. Cancers (Basel) 2021; 13:2793. [PMID: 34199722 PMCID: PMC8200040 DOI: 10.3390/cancers13112793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive malignant disease affecting the mesothelium, commonly associated to asbestos exposure. The current therapeutic actions, based on cisplatin/pemetrexed treatment, are limited due to the late stage at which most patients are diagnosed and to the intrinsic chemo-resistance of the tumor. Another relevant point is the absence of approved therapies in the second line setting following progression of MPM after chemotherapy. Considering the poor prognosis of the disease and the fact that the incidence of this tumor is expected to increase in the next decade, novel therapeutic approaches are urgently needed. In the last few years, several studies have investigated the efficacy and safety of immune-checkpoint inhibitors (ICIs) in the treatment of unresectable advanced MPM, and a number of trials with immunotherapeutic agents are ongoing in both first line and second line settings. In this review, we describe the most promising emerging immunotherapy treatments for MPM (ICIs, engineered T cells to express chimeric antigen receptors (CARs), dendritic cells (DCs) vaccines), focusing on the biological and immunological features of this tumor as well as on the issues surrounding clinical trial design.
Collapse
Affiliation(s)
| | | | | | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (R.T.); (S.Z.); (C.F.)
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (R.T.); (S.Z.); (C.F.)
| |
Collapse
|
29
|
Gray SG. Emerging avenues in immunotherapy for the management of malignant pleural mesothelioma. BMC Pulm Med 2021; 21:148. [PMID: 33952230 PMCID: PMC8097826 DOI: 10.1186/s12890-021-01513-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/25/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The role of immunotherapy in cancer is now well-established, and therapeutic options such as checkpoint inhibitors are increasingly being approved in many cancers such as non-small cell lung cancer (NSCLC). Malignant pleural mesothelioma (MPM) is a rare orphan disease associated with prior exposure to asbestos, with a dismal prognosis. Evidence from clinical trials of checkpoint inhibitors in this rare disease, suggest that such therapies may play a role as a treatment option for a proportion of patients with this cancer. MAIN TEXT While the majority of studies currently focus on the established checkpoint inhibitors (CTLA4 and PD1/PDL1), there are many other potential checkpoints that could also be targeted. In this review I provide a synopsis of current clinical trials of immunotherapies in MPM, explore potential candidate new avenues that may become future targets for immunotherapy and discuss aspects of immunotherapy that may affect the clinical outcomes of such therapies in this cancer. CONCLUSIONS The current situation regarding checkpoint inhibitors in the management of MPM whilst encouraging, despite impressive durable responses, immune checkpoint inhibitors do not provide a long-term benefit to the majority of patients with cancer. Additional studies are therefore required to further delineate and improve our understanding of both checkpoint inhibitors and the immune system in MPM. Moreover, many new potential checkpoints have yet to be studied for their therapeutic potential in MPM. All these plus the existing checkpoint inhibitors will require the development of new biomarkers for patient stratification, response and also for predicting or monitoring the emergence of resistance to these agents in MPM patients. Other potential therapeutic avenues such CAR-T therapy or treatments like oncolytic viruses or agents that target the interferon pathway designed to recruit more immune cells to the tumor also hold great promise in this hard to treat cancer.
Collapse
Affiliation(s)
- Steven G Gray
- Thoracic Oncology Research Group, Central Pathology Laboratory, CPL 30, TCDSJ Cancer Institute, St James's Hospital, Dublin, D08 RX0X, Ireland.
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland.
- School of Biology, Technical University of Dublin, Dublin, Ireland.
| |
Collapse
|
30
|
Briolay T, Petithomme T, Fouet M, Nguyen-Pham N, Blanquart C, Boisgerault N. Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Mol Cancer 2021; 20:55. [PMID: 33761944 PMCID: PMC7987750 DOI: 10.1186/s12943-021-01346-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND As a complement to the clinical development of new anticancer molecules, innovations in therapeutic vectorization aim at solving issues related to tumor specificity and associated toxicities. Nanomedicine is a rapidly evolving field that offers various solutions to increase clinical efficacy and safety. MAIN: Here are presented the recent advances for different types of nanovectors of chemical and biological nature, to identify the best suited for translational research projects. These nanovectors include different types of chemically engineered nanoparticles that now come in many different flavors of 'smart' drug delivery systems. Alternatives with enhanced biocompatibility and a better adaptability to new types of therapeutic molecules are the cell-derived extracellular vesicles and micro-organism-derived oncolytic viruses, virus-like particles and bacterial minicells. In the first part of the review, we describe their main physical, chemical and biological properties and their potential for personalized modifications. The second part focuses on presenting the recent literature on the use of the different families of nanovectors to deliver anticancer molecules for chemotherapy, radiotherapy, nucleic acid-based therapy, modulation of the tumor microenvironment and immunotherapy. CONCLUSION This review will help the readers to better appreciate the complexity of available nanovectors and to identify the most fitting "type" for efficient and specific delivery of diverse anticancer therapies.
Collapse
Affiliation(s)
- Tina Briolay
- Université de Nantes, Inserm, CRCINA, F-44000, Nantes, France
| | | | - Morgane Fouet
- Université de Nantes, Inserm, CRCINA, F-44000, Nantes, France
| | | | | | | |
Collapse
|
31
|
Sun S, Frontini F, Qi W, Hariharan A, Ronner M, Wipplinger M, Blanquart C, Rehrauer H, Fonteneau JF, Felley-Bosco E. Endogenous retrovirus expression activates type-I interferon signaling in an experimental mouse model of mesothelioma development. Cancer Lett 2021; 507:26-38. [PMID: 33713739 DOI: 10.1016/j.canlet.2021.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Early events in an experimental model of mesothelioma development include increased levels of editing in double-stranded RNA (dsRNA). We hypothesised that expression of endogenous retroviruses (ERV) contributes to dsRNA formation and type-I interferon signaling. ERV and interferon stimulated genes (ISGs) expression were significantly higher in tumor compared to non-tumor samples. 12 tumor specific ERV ("MesoERV1-12") were identified and verified by qPCR in mouse tissues. "MesoERV1-12" expression was lower in mouse embryonic fibroblasts (MEF) compared to mesothelioma cells. "MesoERV1-12" levels were significantly increased by demethylating agent 5-Aza-2'-deoxycytidine treatment and were accompanied by increased levels of dsRNA and ISGs. Basal ISGs expression was higher in mesothelioma cells compared to MEF and was significantly decreased by JAK inhibitor Ruxolitinib, by blocking Ifnar1 and by silencing Mavs. "MesoERV7" promoter was demethylated in asbestos-exposed compared to sham mice tissue as well as in mesothelioma cells and MEF upon 5-Aza-CdR treatment. These observations uncover novel aspects of asbestos-induced mesothelioma whereby ERV expression increases due to promoter demethylation and is paralleled by increased levels of dsRNA and activation of type-I IFN signaling. These features are important for early diagnosis and therapy.
Collapse
Affiliation(s)
- Suna Sun
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | - Francesca Frontini
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zürich, ETH Zürich/University of Zürich, Zürich, Switzerland
| | - Ananya Hariharan
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | - Manuel Ronner
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | - Martin Wipplinger
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | | | - Hubert Rehrauer
- Functional Genomics Center Zürich, ETH Zürich/University of Zürich, Zürich, Switzerland
| | | | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland.
| |
Collapse
|
32
|
Jin KT, Du WL, Liu YY, Lan HR, Si JX, Mou XZ. Oncolytic Virotherapy in Solid Tumors: The Challenges and Achievements. Cancers (Basel) 2021; 13:cancers13040588. [PMID: 33546172 PMCID: PMC7913179 DOI: 10.3390/cancers13040588] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022] Open
Abstract
Oncolytic virotherapy (OVT) is a promising approach in cancer immunotherapy. Oncolytic viruses (OVs) could be applied in cancer immunotherapy without in-depth knowledge of tumor antigens. The capability of genetic modification makes OVs exciting therapeutic tools with a high potential for manipulation. Improving efficacy, employing immunostimulatory elements, changing the immunosuppressive tumor microenvironment (TME) to inflammatory TME, optimizing their delivery system, and increasing the safety are the main areas of OVs manipulations. Recently, the reciprocal interaction of OVs and TME has become a hot topic for investigators to enhance the efficacy of OVT with less off-target adverse events. Current investigations suggest that the main application of OVT is to provoke the antitumor immune response in the TME, which synergize the effects of other immunotherapies such as immune-checkpoint blockers and adoptive cell therapy. In this review, we focused on the effects of OVs on the TME and antitumor immune responses. Furthermore, OVT challenges, including its moderate efficiency, safety concerns, and delivery strategies, along with recent achievements to overcome challenges, are thoroughly discussed.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China; (K.-T.J.); (Y.-Y.L.)
| | - Wen-Lin Du
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China;
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yu-Yao Liu
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China; (K.-T.J.); (Y.-Y.L.)
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China;
| | - Jing-Xing Si
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (J.-X.S.); (X.-Z.M.); Tel./Fax: +86-571-85893781 (J.-X.S.); +86-571-85893985 (X.-Z.M.)
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (J.-X.S.); (X.-Z.M.); Tel./Fax: +86-571-85893781 (J.-X.S.); +86-571-85893985 (X.-Z.M.)
| |
Collapse
|
33
|
Yang H, Xu D, Gao Y, Schmid RA, Peng RW. Oncolytic Viral Therapy for Malignant Pleural Mesothelioma. J Thorac Oncol 2020; 15:e111-e113. [PMID: 32593447 DOI: 10.1016/j.jtho.2020.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Haitang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China; Department of General Thoracic Surgery, Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Duo Xu
- Department of General Thoracic Surgery, Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yanyun Gao
- Department of General Thoracic Surgery, Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ralph A Schmid
- Department of General Thoracic Surgery, Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
34
|
Jean D, Delaunay T, Meiller C, Boisgerault N, Grard M, Caruso S, Blanquart C, Felley-Bosco E, Bennouna J, Tangy F, Grégoire M, Fonteneau JF. Reply to: Oncolytic Viral Therapy for Malignant Pleural Mesothelioma. J Thorac Oncol 2020; 15:e113-e116. [PMID: 32593448 DOI: 10.1016/j.jtho.2020.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Didier Jean
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France.
| | - Tiphaine Delaunay
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Clément Meiller
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Nicolas Boisgerault
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Marion Grard
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Christophe Blanquart
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology Lungen- und Thoraxonkologie, Zentrum Zurich University Hospital, Zurich, Switzerland
| | - Jaafar Bennouna
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; Labex IGO, Immunology Graft Oncology, Nantes, France; CHU de Nantes, Oncologie Thoracique et Digestive, Université de Nantes, Nantes, France
| | | | - Marc Grégoire
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Jean-François Fonteneau
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; Labex IGO, Immunology Graft Oncology, Nantes, France
| |
Collapse
|
35
|
Yang H, Xu D, Schmid RA, Peng RW. Biomarker-guided targeted and immunotherapies in malignant pleural mesothelioma. Ther Adv Med Oncol 2020; 12:1758835920971421. [PMID: 33240401 PMCID: PMC7672749 DOI: 10.1177/1758835920971421] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a lethal thoracic malignancy whose incidence is still increasing worldwide. MPM is characterized by frequent inactivation of tumor-suppressor genes (TSGs), e.g., the homozygous deletion of CDKN2A/2B and various genetic alterations that inactivate BAP1, NF2, LATS1/2, and TP53. The leading cause for the poor prognosis of patients with MPM is the lack of effective treatment options, with conventional chemotherapy being the standard of care in the clinic, which has remained unchanged for almost 20 years. Precision oncology, a burgeoning effort to provide precise cancer treatment tailored to unique molecular changes in individual patients, has made tremendous progress in the last decade in several cancers, but not in MPM. Recent studies indicate a high degree of tumor heterogeneity in MPM and the importance to optimize histological and molecular classifications for improved treatment. In this review, we provide an up-to-date overview of recent advances in MPM by focusing on new stratifications of tumor subgroups, specific vulnerabilities associated with functional loss of TSGs and other biomarkers, and potential clinical implications. The molecularly based subdivisions not only deepen our understanding of MPM pathobiology, but more importantly, they may raise unprecedented new hopes for personalized treatment of MPM patients with biomarker-guided targeted and immunotherapies.
Collapse
Affiliation(s)
- Haitang Yang
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Duo Xu
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Ralph A. Schmid
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 50, Bern, 3010, Switzerland
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 50, Bern, 3010, Switzerland
| |
Collapse
|
36
|
Xu D, Yang H, Schmid RA, Peng RW. Therapeutic Landscape of Malignant Pleural Mesothelioma: Collateral Vulnerabilities and Evolutionary Dependencies in the Spotlight. Front Oncol 2020; 10:579464. [PMID: 33072611 PMCID: PMC7538645 DOI: 10.3389/fonc.2020.579464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is the epitome of a recalcitrant cancer driven by pharmacologically intractable tumor suppressor proteins. A significant but largely unmet challenge in the field is the translation of genetic information on alterations in tumor suppressor genes (TSGs) into effective cancer-specific therapies. The notion that abnormal tumor genome subverts physiological cellular processes, which creates collateral vulnerabilities contextually related to specific genetic alterations, offers a promising strategy to target TSG-driven MPM. Moreover, emerging evidence has increasingly appreciated the therapeutic potential of genetic and pharmacological dependencies acquired en route to cancer development and drug resistance. Here, we review the most recent progress on vulnerabilities co-selected by functional loss of major TSGs and dependencies evolving out of cancer development and resistance to cisplatin based chemotherapy, the only first-line regimen approved by the US Food and Drug Administration (FDA). Finally, we highlight CRISPR-based functional genomics that has emerged as a powerful platform for cancer drug discovery in MPM. The repertoire of MPM-specific “Achilles heel” rises on the horizon, which holds the promise to elucidate therapeutic landscape and may promote precision oncology for MPM.
Collapse
Affiliation(s)
- Duo Xu
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Haitang Yang
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ralph A Schmid
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
37
|
Cross-Species Proteomics Identifies CAPG and SBP1 as Crucial Invasiveness Biomarkers in Rat and Human Malignant Mesothelioma. Cancers (Basel) 2020; 12:cancers12092430. [PMID: 32867073 PMCID: PMC7564583 DOI: 10.3390/cancers12092430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/25/2022] Open
Abstract
Malignant mesothelioma (MM) still represents a devastating disease that is often detected too late, while the current effect of therapies on patient outcomes remains unsatisfactory. Invasiveness biomarkers may contribute to improving early diagnosis, prognosis, and treatment for patients, a task that could benefit from the development of high-throughput proteomics. To limit potential sources of bias when identifying such biomarkers, we conducted cross-species proteomic analyzes on three different MM sources. Data were collected firstly from two human MM cell lines, secondly from rat MM tumors of increasing invasiveness grown in immunocompetent rats and human MM tumors grown in immunodeficient mice, and thirdly from paraffin-embedded sections of patient MM tumors of the epithelioid and sarcomatoid subtypes. Our investigations identified three major invasiveness biomarkers common to the three tumor sources, CAPG, FABP4, and LAMB2, and an additional set of 25 candidate biomarkers shared by rat and patient tumors. Comparing the data to proteomic analyzes of preneoplastic and neoplastic rat mesothelial cell lines revealed the additional role of SBP1 in the carcinogenic process. These observations could provide new opportunities to identify highly vulnerable MM patients with poor survival outcomes, thereby improving the success of current and future therapeutic strategies.
Collapse
|
38
|
Yang H, Xu D, Yang Z, Yao F, Zhao H, Schmid RA, Peng RW. Systematic Analysis of Aberrant Biochemical Networks and Potential Drug Vulnerabilities Induced by Tumor Suppressor Loss in Malignant Pleural Mesothelioma. Cancers (Basel) 2020; 12:E2310. [PMID: 32824422 PMCID: PMC7465812 DOI: 10.3390/cancers12082310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Malignant pleural mesothelioma (MPM) is driven by the inactivation of tumor suppressor genes (TSGs). An unmet need in the field is the translation of the genomic landscape into effective TSG-specific therapies. Methods: We correlated genomes against transcriptomes of patients' MPM tumors, by weighted gene co-expression network analysis (WGCNA). The identified aberrant biochemical networks and potential drug targets induced by tumor suppressor loss were validated by integrative data analysis and functional interrogation. Results: CDKN2A/2B loss activates G2/M checkpoint and PI3K/AKT, prioritizing a co-targeting strategy for CDKN2A/2B-null MPM. CDKN2A deficiency significantly co-occurs with deletions of anti-viral type I interferon (IFN-I) genes and BAP1 mutations, that enriches the IFN-I signature, stratifying a unique subset, with deficient IFN-I, but proficient BAP1 for oncolytic viral immunotherapies. Aberrant p53 attenuates differentiation and SETD2 loss acquires the dependency on EGFRs, highlighting the potential of differentiation therapy and pan-EGFR inhibitors for these subpopulations, respectively. LATS2 deficiency is linked with dysregulated immunoregulation, suggesting a rationale for immune checkpoint blockade. Finally, multiple lines of evidence support Dasatinib as a promising therapeutic for LATS2-mutant MPM. Conclusions: Systematic identification of abnormal cellular processes and potential drug vulnerabilities specified by TSG alterations provide a framework for precision oncology in MPM.
Collapse
Affiliation(s)
- Haitang Yang
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 50, CH3008 Bern, Switzerland; (H.Y.); (D.X.); (Z.Y.)
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China; (F.Y.); (H.Z.)
| | - Duo Xu
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 50, CH3008 Bern, Switzerland; (H.Y.); (D.X.); (Z.Y.)
| | - Zhang Yang
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 50, CH3008 Bern, Switzerland; (H.Y.); (D.X.); (Z.Y.)
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China; (F.Y.); (H.Z.)
| | - Heng Zhao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China; (F.Y.); (H.Z.)
| | - Ralph A. Schmid
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 50, CH3008 Bern, Switzerland; (H.Y.); (D.X.); (Z.Y.)
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 50, CH3008 Bern, Switzerland; (H.Y.); (D.X.); (Z.Y.)
| |
Collapse
|
39
|
Pidelaserra-Martí G, Engeland CE. Mechanisms of measles virus oncolytic immunotherapy. Cytokine Growth Factor Rev 2020; 56:28-38. [PMID: 32660751 DOI: 10.1016/j.cytogfr.2020.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023]
Abstract
The study of measles virus (MeV) as a cancer immunotherapeutic was prompted by clinical observations of leukemia and lymphoma regressions in patients following measles virus infection in the 1970s and 1980s. Since then, numerous preclinical studies have confirmed the oncolytic activity of MeV vaccine strains as well as their potential to promote long-lasting tumor-specific immune responses. Early clinical data indicate that some of these effects may translate to the treatment of cancer patients. In this review, we provide a structured summary of current evidence for the anti-tumor immune activity of oncolytic MeV. We start with an overview of MeV oncolysis and MeV-induced immunogenic cell death. Next, we relate findings on MeV-mediated activation of antigen-presenting cells, T cell priming and effector mechanisms to the cancer immunity cycle. We discuss additional factors in the tumor microenvironment which are modulated by MeV treatment as well as the role of anti-viral immunity. Based on these findings, we highlight avenues for rational enhancement of oncolytic MeV immunotherapy by vector engineering. We further point to advantages and drawbacks of experimental models and propose areas warranting promising research. Lastly, we review the available immunomonitoring data from several Phase I clinical trials. While this review presents data for MeV, the concepts and principles introduced herein apply to other oncolytic viruses, providing a framework to assess novel cancer immunotherapies.
Collapse
Affiliation(s)
- Gemma Pidelaserra-Martí
- Research Group Mechanisms of Oncolytic Immunotherapy, Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; Faculty of Biosciences, Heidelberg University and Helmholtz International Graduate School for Cancer Research, DKFZ, Heidelberg, Germany.
| | - Christine E Engeland
- Research Group Mechanisms of Oncolytic Immunotherapy, Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; University Hospital Heidelberg, Department of Medical Oncology, Heidelberg, Germany; Faculty of Health/School of Medicine, Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Germany.
| |
Collapse
|
40
|
Peikert T. Personalized Oncolytic Therapy: The Next Step Toward the Successful Clinical Application of Vaccine-Strain Measles Viruses for Cancer Therapy? J Thorac Oncol 2020; 15:689-691. [PMID: 32340675 DOI: 10.1016/j.jtho.2020.02.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 11/22/2022]
Affiliation(s)
- Tobias Peikert
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|