1
|
Qu Y, Feng X, Chen H, Tan F, Shao A, Pang J, Xue Q, Zheng B, Zheng W, Ou Q, Gao S, Shao K. Multi-omics analyses reveal distinct molecular characteristics and transformation mechanisms of stage I-III micropapillary lung adenocarcinoma. J Pathol 2025; 266:204-216. [PMID: 40151900 DOI: 10.1002/path.6416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/03/2025] [Accepted: 02/12/2025] [Indexed: 03/29/2025]
Abstract
The micropapillary (MIP) pattern is a high-grade histological subtype of lung adenocarcinoma (LUAD) with poor prognosis. In this study, surgically resected tumor samples from 101 patients with stage I-III MIP-LUAD (MIP ≥30%) were microdissected to separate MIP components from non-MIP components, all of which underwent RNA and DNA whole-exome sequencing (WES). The genomic and transcriptomic landscapes of MIP and non-MIP components within MIP-enriched tumor tissues demonstrated remarkable similarities, notably marked by high epidermal growth factor receptor (EGFR) alteration frequencies. However, when compared to MIP-naïve LUAD tissues, MIP components showed higher chromosomal instability and revealed 18 enriched alterations, encompassing EGFR mutations, EGFR amplifications, and CDKN2A/CDKN2B deletions, which all linked to upregulation of cell proliferation pathways and downregulation of immune pathways. Shared mutations were observed in 97.8% (91/93) of patients with paired DNA WES data for MIP and non-MIP components within the same tissues, suggesting a common origin. The recurrence-free survival analysis identified MACF1, PCLO, ADGRV1, and Fanconi Anemia pathway mutations as negative indicators. In all, we conducted an in-depth analysis of the molecular characteristics and transformation mechanisms of MIP-LUAD, employing microdissection techniques to investigate the genomic and transcriptomic levels within a substantial cohort, providing insights for precision medicine of this aggressive cancer subtype. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Yang Qu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Hanlin Chen
- Nanjing Geneseeq Technology Inc, Nanjing, PR China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Anqi Shao
- Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jiaohui Pang
- Nanjing Geneseeq Technology Inc, Nanjing, PR China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Wei Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Qiuxiang Ou
- Nanjing Geneseeq Technology Inc, Nanjing, PR China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Kang Shao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
2
|
Liu B, Tao W, Zhou X, Xu LD, Luo Y, Yang X, Min Q, Huang M, Zhu Y, Cui X, Wang Y, Gong T, Zhang E, Huang YS, Chen W, Yan S, Wu N. Multi‑omics analysis identifies different molecular subtypes with unique outcomes in early-stage poorly differentiated lung adenocarcinoma. Mol Cancer 2025; 24:129. [PMID: 40312720 PMCID: PMC12044723 DOI: 10.1186/s12943-025-02333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/12/2025] [Indexed: 05/03/2025] Open
Abstract
INTRODUCTION Early-stage poorly differentiated lung adenocarcinoma (LUAD) is plagued by a high risk of postoperative recurrence, and its prognostic heterogeneity complicates treatment and surveillance planning. We conducted this integrative multi-omics study to identify those patients with a truly high risk of adverse outcomes. METHODS Whole-exome, RNA and whole methylome sequencing were carried out on 101 treatment-naïve early-stage poorly differentiated LUADs. Integrated analyses were conducted to disclose molecular characteristics and explore molecular subtyping. Functional validation of key molecules was carried out through in vitro and in vivo experiments. RESULTS Recurrent tumors exhibited significantly higher ploidy (p = 0.024), the fraction of the genome altered (FGA, p = 0.042), and aneuploidy (p < 0.05) compared to non-recurrent tumors, as well as a higher frequency of CNVs. Additionally, recurrent tumors showed hypomethylation at both the global level and in CpG island regions. Integrative transcriptomic and methylation analyses identified three molecular subtypes (C1, C2, and C3), with the C1 subtype presenting the worst prognosis (p = 0.024). Although frequently mutated genes showed similar mutation frequencies across the three subtypes, the C1 subtype exhibited the highest tumor mutation burden (TMB), mutant-allele tumor heterogeneity (MATH), aneuploidy, and HLA loss of heterozygosity (HLA-LOH), along with relatively lower immune cell infiltration. Furthermore, GINS1 and CPT1C were found to promote LUAD progression, and their high expression correlated with a poor prognosis. CONCLUSIONS This multi-omics study identified three integrative subtypes with distinct prognostic implications, paving the way for more precise management and postoperative monitoring of early-stage poorly differentiated LUAD.
Collapse
Affiliation(s)
- Bing Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Wei Tao
- Genecast Biotechnology Co, Ltd, Wuxi, Jiangsu, China
| | - Xuantong Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Li-Di Xu
- Genecast Biotechnology Co, Ltd, Wuxi, Jiangsu, China
| | - Yanrui Luo
- Genecast Biotechnology Co, Ltd, Wuxi, Jiangsu, China
| | - Xin Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qingjie Min
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Miao Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yuge Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xinrun Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yaqi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Tongyang Gong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Enli Zhang
- Genecast Biotechnology Co, Ltd, Wuxi, Jiangsu, China
| | - Yu S Huang
- Genecast Biotechnology Co, Ltd, Wuxi, Jiangsu, China
| | - Weizhi Chen
- Genecast Biotechnology Co, Ltd, Wuxi, Jiangsu, China
| | - Shi Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Nan Wu
- State Key Laboratory of Molecular Oncology, Frontiers Science Center for Cancer Integrative Omics, Department of Thoracic Surgery II, Beijing Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan, China.
| |
Collapse
|
3
|
Al-Rubaian A, Gunesli GN, Althakfi WA, Azam A, Snead D, Rajpoot NM, Raza SEA. CellOMaps: A compact representation for robust classification of lung adenocarcinoma growth patterns. Comput Biol Med 2025; 192:110127. [PMID: 40311463 DOI: 10.1016/j.compbiomed.2025.110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/24/2025] [Accepted: 04/01/2025] [Indexed: 05/03/2025]
Abstract
Lung adenocarcinoma (LUAD) is a morphologically heterogeneous disease, characterized by five primary histological growth patterns. The classification of such patterns is crucial due to their direct relation to prognosis but the high subjectivity and observer variability pose a major challenge. Related studies in the literature focus on machine learning methods for growth pattern classification, often formulating the problem as a slide-level predominant pattern classification problem. We propose a generalizable machine learning pipeline capable of classifying lung tissue into one of the five patterns or as non-tumor. The proposed pipeline's strength lies in a novel compact Cell Organization Maps (cellOMaps) representation that captures the cellular spatial patterns from Hematoxylin and Eosin (H&E) whole slide images (WSIs). The proposed pipeline provides state-of-the-art performance on LUAD growth pattern classification when evaluated on both internal unseen slides and external datasets, comparing favorably with the current approaches. In addition, our preliminary results show that the model's outputs can be used to predict patients Tumor Mutational Burden (TMB) levels.
Collapse
Affiliation(s)
- Arwa Al-Rubaian
- Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, UK.
| | - Gozde N Gunesli
- Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, UK
| | - Wajd A Althakfi
- Histopathology Unit, Department of Pathology, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ayesha Azam
- Department of Histopathology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - David Snead
- Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, UK; Department of Histopathology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK; Histofy Ltd, Coventry, UK
| | - Nasir M Rajpoot
- Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, UK; Histofy Ltd, Coventry, UK
| | - Shan E Ahmed Raza
- Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, UK.
| |
Collapse
|
4
|
Lin YD, Li HJ, Hong HZ, Qi YF, Li YY, Yang XN, Wu YL, Zhong WZ. Genomic profiling of aggressive pathologic features in lung adenocarcinoma. Lung Cancer 2025; 203:108460. [PMID: 40179539 DOI: 10.1016/j.lungcan.2025.108460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 02/02/2025] [Accepted: 02/26/2025] [Indexed: 04/05/2025]
Abstract
INTRODUCTION Pathologic features involving LVI (lympho-vascular invasion), PNI (perineural invasion), STAS (spread through air spaces), and Grade 3 pattern (from the International Association for the Study of Lung Cancer grading system) are related to having an aggressive phenotype and linked to poor prognosis. However, few studies have conducted in-depth analyses of these features simultaneously with genomic profiling. METHODS A total of 1559 sequencing of adenocarcinoma samples were included in the common driver mutations analysis, 1306 samples were brought into genomic mapping analysis. OncoSG's East Asian ancestry dataset was implemented for Tumor-Node-Metastasis-Biomarker (TNMB) classification and prognostic assessment. RESULTS EGFR was more significantly prevalent in LVI negativity (P = 0.021), STAS negativity (P = 0.002), and moderate grade (P < 0.001). ALK was significantly interrelated with LVI (P = 0.028), STAS (P < 0.001), and poor grade (P < 0.001); ROS1 and STAS positivity (P = 0.031), poor grade (P = 0.016) were significantly related. KRAS (P = 0.003) and BRAF-V600E (P = 0.002) were only significantly intertwined with poor grade. Apart from common driver mutations, TP53, CHEK2, KEAP1, PTEN, RB1, NF1 were significantly enriched in LVI samples (P < 0.05). TP53, PTEN, CTNNB1, HGF, NF1 were more prominent in STAS (P < 0.01). TP53, LRP1B, NF1 were significantly more prevalent in Grade 3 pattern (P < 0.001). The mixture of STK11, PTEN, and TOP2A generated by exclusive mutations may be a potential predictor of TNMB categorization towards survival. The HR of stage II compared I of TNMB was 2.28 (95 % CI 1.36-3.86, P < 0.001), while stage III compared II was 1.95 (95 % CI 1.04-3.21, P = 0.031). CONCLUSIONS This analysis demonstrated the correlation of pathologic features with common driver mutations, key mutations and canonical oncogenic signaling pathways. The data highlighted the similarities and differences among these features horizontally, and provide new insights in TNMB classification and prognostic assessment.
Collapse
Affiliation(s)
- Yi-Duo Lin
- School of Medicine, South China University of Technology, Guangzhou, China; Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hong-Ji Li
- School of Medicine, South China University of Technology, Guangzhou, China; Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hui-Zhao Hong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yi-Fan Qi
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yun-Yi Li
- School of Software Engineering, South China University of Technology, Guangzhou, China
| | - Xue-Ning Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wen-Zhao Zhong
- School of Medicine, South China University of Technology, Guangzhou, China; Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Li J, Li X, Guo H, Zhou S, Ding H, Li B, Li W, Zhang B, Zou Y. Multi-gene panel sequencing reveals the relationship between driver gene mutation and clinical characteristics in lung adenocarcinoma. Discov Oncol 2025; 16:274. [PMID: 40053265 DOI: 10.1007/s12672-025-02008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/21/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Testing of multiple cancer related genes using next-generation sequencing (NGS) has been widely used for personalized precision medicine of cancer. Integrated analysis of those NGS data and clinical data has offered new opportunities for investigating the relationship between driver genes' mutations and clinical characteristics in large cohorts. This study aims to explore the mutational landscape and its association with clinical features in a lung adenocarcinoma (LUAD) cohort. METHODS Tumor tissues from 132 LUAD patients were subjected to customized 30 genes targeted next-generation sequencing. Somatic mutations of the 30 genes were identified and annotated. Statistical analysis was performed to determine the cooccurrence of mutations of different driver genes and the association relationships between gene mutation and clinical features including gender and age. RESULTS A total of 96.97% (128/132) of LUAD patients experienced genetic mutations. EGFR had the highest mutation rate (81, 61.36%) among the 30 genes, followed by TP53 (80, 60.61%), BRAF (30, 22.73%), KRAS (21, 15.91%) and ROS1 (21, 15.91%). The L858R substitution and exon19 deletion were the predominant mutations of EGFR, accounting for 82.71% of EGFR-mutated patients. The 27 mutation sites of EGFR were mainly located in the tyrosine kinase catalytic domain (22/27, 81.48%). Mutations of SDHA (p < 0.01), ERBB2 (p < 0.01), and ESR1 (p < 0.05) were negatively correlated with age, and mutations of NF1 (p < 0.01), KRAS (p < 0.01), and TP53 (p < 0.001) were significantly associated with gender. CONCLUSIONS This work revealed the mutational landscape and characteristics of 30 core driver genes in a LUAD cohort. Co-mutated genes and genes associated with gender and age indicate their different roles in the corresponding subgroup of the LUAD.
Collapse
Affiliation(s)
- Jinmao Li
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Xianyun Li
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Hao Guo
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Shuni Zhou
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Hua Ding
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Bo Li
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Wei Li
- Wuhan Frasergen Bioinformatics Co., Ltd, Wuhan, China
| | - Bo Zhang
- Wuhan Frasergen Bioinformatics Co., Ltd, Wuhan, China
| | - Yi Zou
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China.
| |
Collapse
|
6
|
Trelford CB, Shepherd TG. Insights into targeting LKB1 in tumorigenesis. Genes Dis 2025; 12:101402. [PMID: 39735555 PMCID: PMC11681833 DOI: 10.1016/j.gendis.2024.101402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 12/31/2024] Open
Abstract
Genetic alterations to serine-threonine kinase 11 (STK11) have been implicated in Peutz-Jeghers syndrome and tumorigenesis. Further exploration of the context-specific roles of liver kinase B1 (LKB1; encoded by STK11) observed that it regulates AMP-activated protein kinase (AMPK) and AMPK-related kinases. Given that both migration and proliferation are enhanced with the loss of LKB1 activity combined with the prevalence of STK11 genetic alterations in cancer biopsies, LKB1 was marked as a tumor suppressor. However, the role of LKB1 in tumorigenesis is paradoxical as LKB1 activates autophagy and reactive oxygen species scavenging while dampening anoikis, which contribute to cancer cell survival. Due to the pro-tumorigenic properties of LKB1, targeting LKB1 pathways is now relevant for cancer treatment. With the recent successes of targeting LKB1 signaling in research and clinical settings, and enhanced cytotoxicity of chemical compounds in LKB1-deficient tumors, there is now a need for LKB1 inhibitors. However, validating LKB1 inhibitors is challenging as LKB1 adaptor proteins, nucleocytoplasmic shuttling, and splice variants all manipulate LKB1 activity. Furthermore, STE-20-related kinase adaptor protein (STRAD) and mouse protein 25 dictate LKB1 cellular localization and kinase activity. For these reasons, prior to assessing the efficacy and potency of pharmacological candidates, the functional status of LKB1 needs to be defined. Therefore, to improve the understanding of LKB1 in physiology and oncology, this review highlights the role of LKB1 in tumorigenesis and addresses the therapeutic relevancy of LKB1 inhibitors.
Collapse
Affiliation(s)
- Charles B. Trelford
- The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON N6A 4L6, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Trevor G. Shepherd
- The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON N6A 4L6, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
7
|
Song X, Pan Z, Zhang Y, Yang W, Zhang T, Wang H, Chen Y, Yu X, Ding H, Li R, Ge P, Xu L, Dong G, Jiang F. Excessive MYC Orchestrates Macrophages induced Chromatin Remodeling to Sustain Micropapillary-Patterned Malignancy in Lung Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2403851. [PMID: 39899538 PMCID: PMC11948069 DOI: 10.1002/advs.202403851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 01/15/2025] [Indexed: 02/05/2025]
Abstract
Current understanding of micropapillary (MP)-subtype lung adenocarcinoma (LUAD) remains confined to biological activities and genomic landscapes. Unraveling the major regulatory programs underlying MP patterned malignancy offers opportunities to identify more feasible therapeutic targets for patients with MP LUAD. This study shows that patients with MP subtype LUAD have aberrant activation of the MYC pathway compared to patients with other subtypes. In vitro and xenograft mouse model studies reveal that MP pattern in malignancy cannot be solely due to aberrant MYC expression but requires the involvement of M2-like macrophages. Excessively expressed MYC leads to the accumulation of M2-like macrophages from the bone marrow, which secretes TGFβ, to induce the expression of FOSL2 in tumor cells, thereby remodeling chromatin accessibility at promoter regions of MP-pattern genes to promote the MYC-mediated de novo transcriptional regulation of these genes. Additionally, the MP-pattern in malignancy can be effectively alleviated by disrupting the TGFβ-FOSL2 axis. These findings reveal new functions for the M2-like macrophage-TGFβ-FOSL2 axis in MYC-overexpressing MP-subtype LUAD, identifying targetable vulnerabilities in this pathway.
Collapse
Affiliation(s)
- Xuming Song
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- The Fourth Clinical College of Nanjing Medical UniversityNanjing210000P. R. China
| | - Zehao Pan
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- The Fourth Clinical College of Nanjing Medical UniversityNanjing210000P. R. China
| | - Yi Zhang
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- Department of PathologyNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
| | - Wenmin Yang
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- Department of PathologyNanjing Drum Tower hospitalNanjing210008P.R. China
| | - Te Zhang
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- Department of Biochemistry and Molecular GeneticsFeinberg School of MedicineNorthwestern UniversityChicagoIllinois60201USA
| | - Hui Wang
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- The Fourth Clinical College of Nanjing Medical UniversityNanjing210000P. R. China
| | - Yuzhong Chen
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- The Fourth Clinical College of Nanjing Medical UniversityNanjing210000P. R. China
| | - Xinnian Yu
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- The Fourth Clinical College of Nanjing Medical UniversityNanjing210000P. R. China
| | - Hanlin Ding
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- The Fourth Clinical College of Nanjing Medical UniversityNanjing210000P. R. China
| | - Rutao Li
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- Department of Thoracic SurgeryThe Fourth Affiliated Hospital of Soochow UniversityNanjing215000P. R. China
| | - Pengfei Ge
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- The Fourth Clinical College of Nanjing Medical UniversityNanjing210000P. R. China
| | - Lin Xu
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211116P. R. China
| | - Gaochao Dong
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
| | - Feng Jiang
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
| |
Collapse
|
8
|
Xin S, Wen M, Tian Y, Dong H, Wan Z, Jiang S, Meng F, Xiong Y, Han Y. Impact of histopathological subtypes on invasive lung adenocarcinoma: from epidemiology to tumour microenvironment to therapeutic strategies. World J Surg Oncol 2025; 23:66. [PMID: 40016762 PMCID: PMC11866629 DOI: 10.1186/s12957-025-03701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/02/2025] [Indexed: 03/01/2025] Open
Abstract
Lung adenocarcinoma is the most prevalent type of lung cancer, with invasive lung adenocarcinoma being the most common subtype. Screening and early treatment of high-risk individuals have improved survival; however, significant differences in prognosis still exist among patients at the same stage, especially in the early stages. Invasive lung adenocarcinoma has different histological morphologies and biological characteristics that can distinguish its prognosis. Notably, several studies have found that the pathological subtypes of invasive lung adenocarcinoma are closely associated with clinical treatment. This review summarised the distribution of various pathological subtypes of invasive lung adenocarcinoma in the population and their relationship with sex, smoking, imaging features, and other histological characteristics. We comprehensively analysed the genetic characteristics and biomarkers of the different pathological subtypes of invasive lung adenocarcinoma. Understanding the interaction between the pathological subtypes of invasive lung adenocarcinoma and the tumour microenvironment helps to reveal new therapeutic targets for lung adenocarcinoma. We also extensively reviewed the prognosis of various pathological subtypes and their effects on selecting surgical methods and adjuvant therapy and explored future treatment strategies.
Collapse
Affiliation(s)
- Shaowei Xin
- Department of Thoracic Surgery, Air Force Medical Center, Fourth Military Medical University, Beijing, China
- Department of Thoracic Surgery, 962 Hospital of the Joint Logistics Support Force, Harbin, China
| | - Miaomiao Wen
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yahui Tian
- Department of Thoracic Surgery, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Honghong Dong
- Department of Thoracic Surgery, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Zitong Wan
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- College of Life Sciences, Northwestern University, Xi'an, 710069, China
| | - Suxin Jiang
- Department of Thoracic Surgery, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Fancheng Meng
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanlu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
- Innovation Center for Advanced Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
- Department of Thoracic Surgery, First Medical Center, Chinese PLA General Hospital and PLA Medical School, Beijing, China.
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Shaanxi, , Xi'an, 710038, China.
| | - Yong Han
- Department of Thoracic Surgery, Air Force Medical Center, Fourth Military Medical University, Beijing, China.
- Department of Thoracic Surgery, Air Force Medical Center, Fourth Military Medical University, 30 Fucheng Road, Haidian District, Shaanxi, , Beijing, 100142, China.
| |
Collapse
|
9
|
Wang Y, Guo E, Zou M, Lv C, Cui Y, Zhai S, Sang S, Xiong K, Yang X, Zhuang S, Gu Y, Liang H. Unraveling immune heterogeneity across pan-cancer and deep insights in lung adenocarcinoma based on alternative splicing. J Leukoc Biol 2025; 117:qiae104. [PMID: 38758950 DOI: 10.1093/jleuko/qiae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Alternative splicing (AS) participates in tumor development and tumor microenvironment formation. However, the landscape of immune-infiltrating AS events in pan-cancer and mechanisms of AS in lung adenocarcinoma (LUAD) have not been comprehensively characterized. We systematically profiled the immune-infiltrating AS event landscape of pan-cancer using data from The Cancer Genome Atlas, analyzing both commonalities and specific characteristics among different cancer types. We found that AS events tend to occur specifically in one cancer type rather than in multiple cancer types. AS events were used to classify 512 LUAD samples into 2 subtypes by unsupervised clustering: the aberrant splicing subtype and the immune-infiltrating subtype. The 2 subtypes showed significant differences in clinicopathology, prognosis, transcriptomics, genomics, and immune microenvironment. We constructed a classification signature comprising 10 genes involved in 14 AS events using logistic regression. The robustness of the signature was validated in 3 independent datasets using survival analysis. To explore AS mechanisms in LUAD, we constructed subtype-specific coexpression networks using Pearson correlation analysis. AS event of AKT3 regulated by splicing factor ENOX1 was associated with poor prognosis in LUAD. Overall, we outline AS events associated with immune infiltration in pan-cancer, and this study provides insights into AS mechanisms in LUAD patient classification.
Collapse
Affiliation(s)
- Yuquan Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratorary-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Erliang Guo
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Min Zou
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, 150081, China
| | - Chen Lv
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, 150081, China
| | - Yanrui Cui
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, 150081, China
| | - Songmei Zhai
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, 150081, China
| | - Shaocong Sang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, 150081, China
| | - Kai Xiong
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, 150081, China
| | - Xiuqi Yang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, 150081, China
| | - Shuping Zhuang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratorary-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, 150081, China
| | - Haihai Liang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratorary-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| |
Collapse
|
10
|
Fick CN, Dunne EG, Vanstraelen S, Toumbacaris N, Tan KS, Rocco G, Molena D, Huang J, Park BJ, Rekhtman N, Travis WD, Chaft JE, Bott MJ, Rusch VW, Adusumilli PS, Sihag S, Isbell JM, Jones DR. High-risk features associated with recurrence in stage I lung adenocarcinoma. J Thorac Cardiovasc Surg 2025; 169:436-444.e6. [PMID: 38788834 PMCID: PMC11582076 DOI: 10.1016/j.jtcvs.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE There is a lack of knowledge regarding the use of prognostic features in stage I lung adenocarcinoma (LUAD). Thus, we investigated clinicopathologic features associated with recurrence after complete resection for stage I LUAD. METHODS We performed a retrospective analysis of patients with pathologic stage I LUAD who underwent R0 resection from 2010 to 2020. Exclusion criteria included history of lung cancer, induction or adjuvant therapy, noninvasive or mucinous LUAD, and death within 90 days of surgery. Fine and Gray competing-risk regression assessed associations between clinicopathologic features and disease recurrence. RESULTS In total, 1912 patients met inclusion criteria. Most patients (1565 [82%]) had stage IA LUAD, and 250 developed recurrence: 141 (56%) distant and 109 (44%) locoregional only. The 5-year cumulative incidence of recurrence was 12% (95% CI, 11%-14%). Higher maximum standardized uptake value of the primary tumor (hazard ratio [HR], 1.04), sublobar resection (HR, 2.04), higher International Association for the Study of Lung Cancer grade (HR, 5.32 [grade 2]; HR, 7.93 [grade 3]), lymphovascular invasion (HR, 1.70), visceral pleural invasion (HR, 1.54), and tumor size (HR, 1.30) were independently associated with a hazard of recurrence. Tumors with 3 to 4 high-risk features had a higher cumulative incidence of recurrence at 5 years than tumors without these features (30% vs 4%; P < .001). CONCLUSIONS Recurrence after resection for stage I LUAD remains an issue for select patients. Commonly reported clinicopathologic features can be used to define patients at high risk of recurrence and should be considered when assessing the prognosis of patients with stage I disease.
Collapse
Affiliation(s)
- Cameron N Fick
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elizabeth G Dunne
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Stijn Vanstraelen
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nicolas Toumbacaris
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kay See Tan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gaetano Rocco
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniela Molena
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - James Huang
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Bernard J Park
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Natasha Rekhtman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - William D Travis
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jamie E Chaft
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY
| | - Matthew J Bott
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Valerie W Rusch
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Smita Sihag
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - James M Isbell
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David R Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
11
|
Luo Y, Li X, Sun J, Liu S, Zhong P, Liu H, Chen X, Fang J. Predicting higher-risk growth patterns in invasive lung adenocarcinoma with multiphase multidetector computed tomography and 18 F-fluorodeoxyglucose PET radiomics. Nucl Med Commun 2025; 46:171-179. [PMID: 39575614 DOI: 10.1097/mnm.0000000000001931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
PURPOSE To develop a predictive model for identifying the higher-risk growth pattern of invasive lung adenocarcinoma using multiphase multidetector computed tomography (MDCT) and 18 F-fluorodeoxyglucose (FDG) PET radiomics. METHODS A total of 203 patients with confirmed invasive lung adenocarcinoma between January 2018 and December 2021 were enrolled and randomly divided into training ( n = 143) and testing sets ( n = 60). Patients were classified into two groups according to the predominant growth pattern (lower-risk group: lepidic/acinar; higher-risk group: papillary/solid/micropapillary). Preoperative multiphase MDCT and 18 F-FDG PET images were evaluated. The Artificial Intelligence Kit software was used to extract radiomic features. Five predictive models [arterial phase, venous phase, and plain scan (AVP), PET, AVP-PET, clinical, and radiomic-clinical (Rad-Clin) combined model] were developed. The models' performance was assessed using receiver-operating characteristic (ROC) curves and compared using the DeLong test. RESULTS Among the radiomics models (AVP, PET, and AVP-PET), the AVP-PET model [area under ROC curve (AUC) = 0.888] outperformed the PET model (AUC = 0.814; P = 0.015) in predicting the higher-risk growth patterns. The combined Rad-Clin model (AUC = 0.923), which integrates AVP-PET radiomics and five independent clinical predictors (gender, spiculation, long-axis diameter, maximum standardized uptake value, and average standardized uptake value), exhibited superior performance in predicting the higher-risk growth pattern compared with radiomic models ( P = 0.043, vs. AVP-PET; P = 0.016, vs. AVP; P = 0.002, vs. PET) or the clinical model alone (constructing based on five clinical predictors; AUC = 0.793; P < 0.001). CONCLUSION The combined Rad-Clin model can predict the higher-risk growth patterns of invasive adenocarcinoma (IAC). This approach could help determine individual therapeutic strategies for IAC patients by distinguishing predominant growth patterns with high risk.
Collapse
Affiliation(s)
- Yi Luo
- Department of Radiology
- Department of Nuclear Medicine, Daping Hospital, Army Medical University
| | - Xiaoguang Li
- Department of Radiology
- Chongqing Clinical Research Center for Imaging and Nuclear Medicine
| | - Jinju Sun
- Department of Nuclear Medicine, Daping Hospital, Army Medical University
| | | | - Peng Zhong
- Department of Pathology, Daping Hospital, Army Medical University, Chongqing
| | - Huan Liu
- Advanced Application Team, GE Healthcare, Shanghai, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Army Medical University
| | - Jingqin Fang
- Department of Radiology
- Chongqing Clinical Research Center for Imaging and Nuclear Medicine
| |
Collapse
|
12
|
Durfee C, Bergstrom EN, Díaz-Gay M, Zhou Y, Temiz NA, Ibrahim MA, Nandi SP, Wang Y, Liu X, Steele CD, Proehl J, Vogel RI, Argyris PP, Alexandrov LB, Harris RS. Tobacco smoke carcinogens exacerbate APOBEC mutagenesis and carcinogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.18.633716. [PMID: 39896515 PMCID: PMC11785121 DOI: 10.1101/2025.01.18.633716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Mutations in somatic cells are inflicted by both extrinsic and intrinsic sources and contribute over time to cancer. Tobacco smoke contains chemical carcinogens that have been causatively implicated with cancers of the lung and head & neck1,2. APOBEC family DNA cytosine deaminases have emerged as endogenous sources of mutation in cancer, with hallmark mutational signatures (SBS2/SBS13) that often co-occur in tumors of tobacco smokers with an equally diagnostic mutational signature (SBS4)3,4. Here we challenge the dogma that mutational processes are thought to occur independently and with additive impact by showing that 4-nitroquinoline 1-oxide (NQO), a model carcinogen for tobacco exposure, sensitizes cells to APOBEC3B (A3B) mutagenesis and leads to synergistic increases in both SBS2 mutation loads and oral carcinomas in vivo. NQO-exposed/A3B-expressing animals exhibit twice as many head & neck lesions as carcinogen-exposed wildtype animals. This increase in carcinogenesis is accompanied by a synergistic increase in mutations from APOBEC signature SBS2, but not from NQO signature SBS4. Interestingly, a large proportion of A3B-catalyzed SBS2 mutations occurs as strand-coordinated pairs within 32 nucleotides of each other in transcribed regions, suggesting a mechanism in which removal of NQO-DNA adducts by nucleotide excision repair exposes short single-stranded DNA tracts to enzymatic deamination. These highly enriched pairs of APOBEC signature mutations are termed didyma (Greek for twins) and are mechanistically distinct from other types of clustered mutation (omikli and kataegis). Computational analyses of lung and head & neck tumor genomes show that both APOBEC mutagenesis and didyma are elevated in cancers from smokers compared to non-smokers. APOBEC signature mutations and didyma are also elevated in normal lung tissues in smokers prior to cancer initiation. Collectively, these results indicate that DNA adducting mutagens in tobacco smoke can amplify DNA damage and mutagenesis by endogenous APOBEC enzymes and, more broadly, suggest that mutational mechanisms can interact synergistically in both cancer initiation and promotion.
Collapse
Affiliation(s)
- Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Erik N. Bergstrom
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA, 92093
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA, 92093
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA, 92093
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA, 92093
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA, 92093
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA, 92093
- Digital Genomics Group, Structural Biology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain, 28029
| | - Yufan Zhou
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Nuri Alpay Temiz
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - Mahmoud A. Ibrahim
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Shuvro P. Nandi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA, 92093
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA, 92093
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA, 92093
| | - Yaxi Wang
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Xingyu Liu
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Christopher D. Steele
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA, 92093
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA, 92093
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA, 92093
| | - Joshua Proehl
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Rachel I. Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Department of Obstetrics, Gynecology, and Women’s Health, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - Prokopios P. Argyris
- Division of Oral and Maxillofacial Pathology, College of Dentistry, Ohio State University, Columbus, Ohio, USA, 43210
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA, 92093
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA, 92093
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA, 92093
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| |
Collapse
|
13
|
Wang Z, Yuan X, Sun K, Wu F, Liu K, Jin Y, Chervova O, Nie Y, Yang A, Jin Y, Li J, Li Y, Yang F, Wang J, Beck S, Carbone D, Jiang G, Chen K. Optimizing the NGS-based discrimination of multiple lung cancers from the perspective of evolution. NPJ Precis Oncol 2025; 9:14. [PMID: 39809905 PMCID: PMC11733135 DOI: 10.1038/s41698-024-00786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
Next-generation sequencing (NGS) offers a promising approach for differentiating multiple primary lung cancers (MPLC) from intrapulmonary metastasis (IPM), though panel selection and clonal interpretation remain challenging. Whole-exome sequencing (WES) data from 80 lung cancer samples were utilized to simulate MPLC and IPM, with various sequenced panels constructed through gene subsampling. Two clonal interpretation approaches primarily applied in clinical practice, MoleA (based on shared mutation comparison) and MoleB (based on probability calculation), were subsequently evaluated. ROC analysis highlighted MoleB's superior performance, especially with the NCCNplus panel (AUC = 0.950 ± 0.002) and pancancer MoleA (AUC = 0.792 ± 0.004). In two independent cohorts (WES cohort, N = 42 and non-WES cohort, N = 94), NGS-based methodologies effectively stratified disease-free survival, with NCCNplus MoleB further predicting prognosis. Phylogenetic analysis further revealed evolutionary distinctions between MPLC and IPM, establishing an optimized NGS-based framework for differentiating multiple lung cancers.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
- Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Chinese Academy of Medical Sciences, 2021RU002, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaoqiu Yuan
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
- Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Chinese Academy of Medical Sciences, 2021RU002, Peking University People's Hospital, Beijing, 100044, China
- Peking University Health Science Center, Beijing, China
| | - Kunkun Sun
- Department of Pathology, Peking University People's Hospital, Beijing, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Changsha, Hunan, 410011, China
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, Hunan, China
- Changsha Thoracic Cancer Prevention and Treatment Technology Innovation Center, Changsha, Hunan, China
| | - Ke Liu
- Berry Oncology Corporation, Beijing, China
| | - Yiruo Jin
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
- Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Chinese Academy of Medical Sciences, 2021RU002, Peking University People's Hospital, Beijing, 100044, China
- Peking University Health Science Center, Beijing, China
| | - Olga Chervova
- University College London Cancer Institute, University College London, London, UK
| | - Yuntao Nie
- China-Japan Friendship Hospital, Beijing, China
| | | | - Yichen Jin
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
- Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Chinese Academy of Medical Sciences, 2021RU002, Peking University People's Hospital, Beijing, 100044, China
| | - Jing Li
- Berry Oncology Corporation, Beijing, China
| | - Yun Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
- Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Chinese Academy of Medical Sciences, 2021RU002, Peking University People's Hospital, Beijing, 100044, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
- Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Chinese Academy of Medical Sciences, 2021RU002, Peking University People's Hospital, Beijing, 100044, China
| | - Jun Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
- Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Chinese Academy of Medical Sciences, 2021RU002, Peking University People's Hospital, Beijing, 100044, China
| | - Stephan Beck
- University College London Cancer Institute, University College London, London, UK
| | - David Carbone
- James Thoracic Oncology Center, Ohio State University, Columbus, USA
| | - Guanchao Jiang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
- Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Chinese Academy of Medical Sciences, 2021RU002, Peking University People's Hospital, Beijing, 100044, China
| | - Kezhong Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China.
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China.
- Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Chinese Academy of Medical Sciences, 2021RU002, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
14
|
Qian S, Liu H, Zhang M, Zhang L, Dai Y, Ye X, Wen W, Cheng R. Pan-cancer landscape analysis of NOP58 and its oncogenic driving role in lung adenocarcinoma. Sci Rep 2024; 14:27583. [PMID: 39528555 PMCID: PMC11555223 DOI: 10.1038/s41598-024-77500-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Despite improvements in treatment in recent years, patients with lung adenocarcinoma (LUAD) still face poor prognoses. In this study, we elucidated the potential role of NOP58 ribonucleoprotein in pan-cancer and validated its oncogenic significance in LUAD using bioinformatics and in vitro and in vivo functional assays. NOP58 was found to be overexpressed in various types of tumors. It had great precision for predicting 20 distinct cancer types using receiver operating characteristic curve (ROC) as well as significant connections with the prognoses in particular cancers. In LUAD, NOP58 expression was correlated substantially with the TNM stage, pathologic stage, smoking status, and effectiveness endpoints, when we analyzed its association with clinical characteristics in LUAD. Elevated NOP58 expression was shown as connected with Th2 cell infiltration while also negatively linked with infiltrating other immune cells, such as CD8 T, cytotoxic, and Th1. By inhibiting NOP58 within the LUAD cells, we found a decrease in cells' capability to proliferate, migrate, and invade. Knockdown of NOP58 inhibited tumor growth in mouse xenograft models. Furthermore, the tissue microarray study indicated that there was a greater expression of NOP58 in the tumor tissues compared to adjacent normal tissues in LUAD. Our findings revealed that NOP58 could be an outstanding bio-index for pan-cancer diagnosis and prognosis and an independent prognostic risk factor in LUAD.
Collapse
Affiliation(s)
- Shushu Qian
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Huafeng Liu
- Hangzhou TCM Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Min Zhang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Li Zhang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yunlan Dai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiangming Ye
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wanshun Wen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Ruidong Cheng
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Krishnamurthy K, Chai J, Liu X, Elsayad M, Goldstein DY. Intratumoral heterogeneity of oncogenic drivers in mixed histology lung adenocarcinomas: How tissue selection impacts molecular testing? Pathol Res Pract 2024; 263:155577. [PMID: 39265501 DOI: 10.1016/j.prp.2024.155577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024]
Abstract
Majority of the lung adenocarcinomas show a mixture of different histological patterns. The possibility of histologically heterogeneous areas of the adenocarcinoma showing genetic heterogeneity and harboring different driver mutations, with potentially significant clinical impact, has not been adequately addressed. Currently, there are no guidelines to suggest how to submit tumor tissue in adenocarcinomas with mixed histological features for molecular testing. The objective of this study is to assess intra-tumoral heterogeneity in prominent driver mutations among different morphological patterns of lung adenocarcinoma, its implications on the future of molecular testing as well as its potential impact on patient management. Twenty-three cases of mixed histology lung adenocarcinoma resected between 2018 and 2023 were retrieved from the archives. H&E slides were reviewed to identify the predominant and second most predominant histological patterns. The morphologically different tumor areas were manually macro-dissected for DNA extraction. Next-Generation Sequencing with Ion AmpliSeq™ Cancer Hotspot Panel v2 (Thermo Fisher Scientific, USA). Thirteen cases showed the same pathological variant in both histological components tested. Three cases (13 %) exhibited disparities in the variants detected across the different histological patterns tested (p=0.025). The discrepant findings had a direct therapeutic impact in 4.3 % cases. Seven cases showed no pathogenic variants detected on either of the histological components tested. This study elucidates the presence of infrequent yet significant intra-tumoral heterogeneity in the molecular profiles of mixed histology adenocarcinomas, highlighting the need for guidelines directing tissue selection for molecular testing to avoid missed therapeutic opportunities and mitigate disease relapse.
Collapse
Affiliation(s)
| | - Jiani Chai
- Montefiore medical Center, Bronx, NY, USA
| | | | | | - Doctor Y Goldstein
- Montefiore medical Center, Bronx, NY, USA; Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
16
|
Liu Y, Lankadasari M, Rosiene J, Johnson KE, Zhou J, Bapat S, Chow-Tsang LFL, Tian H, Mastrogiacomo B, He D, Connolly JG, Lengel HB, Caso R, Dunne EG, Fick CN, Rocco G, Sihag S, Isbell JM, Bott MJ, Li BT, Lito P, Brennan CW, Bilsky MH, Rekhtman N, Adusumilli PS, Mayo MW, Imielinski M, Jones DR. Modeling lung adenocarcinoma metastases using patient-derived organoids. Cell Rep Med 2024; 5:101777. [PMID: 39413736 PMCID: PMC11513837 DOI: 10.1016/j.xcrm.2024.101777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/03/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
Approximately 50% of patients with surgically resected early-stage lung cancer develop distant metastasis. At present, there is no in vivo metastasis model to investigate the biology of human lung cancer metastases. Using well-characterized lung adenocarcinoma (LUAD) patient-derived organoids (PDOs), we establish an in vivo metastasis model that preserves the biologic features of human metastases. Results of whole-genome and RNA sequencing establish that our in vivo PDO metastasis model can be used to study clonality and tumor evolution and to identify biomarkers related to organotropism. Investigation of the response of KRASG12C PDOs to sotorasib demonstrates that the model can examine the efficacy of treatments to suppress metastasis and identify mechanisms of drug resistance. Finally, our PDO model cocultured with autologous peripheral blood mononuclear cells can potentially be used to determine the optimal immune-priming strategy for individual patients with LUAD.
Collapse
Affiliation(s)
- Yuan Liu
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Manendra Lankadasari
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joel Rosiene
- Department of Pathology, New York University, New York, NY, USA
| | - Kofi E Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Tri-Institutional PhD Program in Computational Biology and Medicine, New York, NY, USA
| | - Juan Zhou
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samhita Bapat
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lai-Fong L Chow-Tsang
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Huasong Tian
- Department of Pathology, New York University, New York, NY, USA
| | - Brooke Mastrogiacomo
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Di He
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James G Connolly
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Harry B Lengel
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Raul Caso
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth G Dunne
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cameron N Fick
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gaetano Rocco
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Smita Sihag
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James M Isbell
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mathew J Bott
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bob T Li
- Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Piro Lito
- Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cameron W Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark H Bilsky
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natasha Rekhtman
- Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marty W Mayo
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | | | - David R Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
17
|
Wong LY, Elliott IA, Liou DZ, Backhus LM, Lui NS, Shrager JB, Berry MF. Lepidic-Type Lung Adenocarcinomas: Is It Safe to Observe for Growth Before Treating? Ann Thorac Surg 2024; 118:817-823. [PMID: 38490310 DOI: 10.1016/j.athoracsur.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Lepidic-type adenocarcinomas (LPAs) can be multifocal, and treatment is often deferred until growth is observed. This study investigated the potential downside of that strategy by evaluating the relationship of nodal involvement with tumor size and survival. METHODS The impact of tumor size on lymph node involvement and survival was evaluated for National Cancer Database patients who underwent surgery without induction therapy as primary treatment for cT1-3 N0 M0 histologically confirmed LPA from 2006 to 2019 by using logistic regression, Kaplan-Meier, and Cox analyses. RESULTS Positive nodes occurred in 442 of 8286 patients (5.3%). The incidence of having positive nodes approximately doubled with each 1-cm increment increase in size. Patients with positive nodes were more likely to have larger tumors (27 mm vs 20 mm, P < .001) and clinical ≥T2 disease (40.7% vs 26.8%, P < .001) compared with node-negative patients. However, tumor size was the only significant independent predictor of having positive nodal disease in logistic regression analysis, and this association grew stronger with each incremental centimeter increase in size. Patients with positive nodes were more likely to undergo adjuvant radiotherapy (23.5% vs 1.1%, P < .001) and chemotherapy (72.9% vs 7.9%, P < .001), and expectedly, had worse survival compared with the node-negative group in univariate (5-year overall survival, 50.9% vs 81.1%, P < .001) and multivariable (hazard ratio, 2.56; 95% CI, 2.14-3.05; P < .001) analyses. CONCLUSIONS Nodal involvement is relatively uncommon in early-stage LPAs but steadily increases with tumor size and is associated with dramatically worse survival. These data can be used to inform treatment decisions when evaluating LPA patients.
Collapse
Affiliation(s)
- Lye-Yeng Wong
- Department of Cardiothoracic Surgery, Stanford University Medical Center, Palo Alto, California.
| | - Irmina A Elliott
- Department of Cardiothoracic Surgery, Stanford University Medical Center, Palo Alto, California; Department of Cardiothoracic Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Douglas Z Liou
- Department of Cardiothoracic Surgery, Stanford University Medical Center, Palo Alto, California
| | - Leah M Backhus
- Department of Cardiothoracic Surgery, Stanford University Medical Center, Palo Alto, California; Department of Cardiothoracic Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Natalie S Lui
- Department of Cardiothoracic Surgery, Stanford University Medical Center, Palo Alto, California
| | - Joseph B Shrager
- Department of Cardiothoracic Surgery, Stanford University Medical Center, Palo Alto, California; Department of Cardiothoracic Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Mark F Berry
- Department of Cardiothoracic Surgery, Stanford University Medical Center, Palo Alto, California
| |
Collapse
|
18
|
Chen G, Yu Y, Qi Y, Li G, Li N, Meng F, Wang W, Shen R. Comparative analysis of PD-L1 expression and molecular alterations in primary versus metastatic lung adenocarcinoma: a real-world study in China. Front Oncol 2024; 14:1393686. [PMID: 39323996 PMCID: PMC11422015 DOI: 10.3389/fonc.2024.1393686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Objectives Programmed death-ligand 1 (PD-L1) is the only Food and Drug Administration-approved biomarker for monitoring response to immune checkpoint inhibitor (ICI) therapy in patients with lung adenocarcinoma. Understanding the nuances of molecular phenotypes, clinical attributes, and PD-L1 expression levels in primary and metastatic lung adenocarcinoma may help predict response to therapy and assist in the clinical management of lung adenocarcinoma. Methods A total of 235 primary and metastatic lesion specimens from patients with non-small cell lung cancer (NSCLC) an institution in Shandong, China were analyzed. PD-L1 expression was assessed by immunohistochemistry using the 22C3 antibody, and the molecular phenotype was determined by next-generation sequencing of 450 genes. The molecular phenotypes of the primary and metastatic lesions were compared. Results Elevated PD-L1 expression was significantly associated with advanced and metastatic disease (P = 0.001). The distribution of PD-L1 expression varied based on the anatomical location, showing a higher frequency of elevated PD-L1 expression in distal metastases than in the primary tumor. Metastatic lesions exhibited a higher proportion of carcinogenic pathway gene alterations and a greater number of DNA damage-repair pathway gene alterations than the primary lesions. Notably, CDKN2A copy number deletions were more prevalent in metastatic lesions than in primary lesions. Clinical data stemming from research conducted at the Memorial Sloan Kettering Cancer Center revealed an association between the absence of CDKN2A expression and a poorer prognosis in stage I lung adenocarcinoma. Conclusion Samples of metastatic tumors exhibited a higher proportion of elevated PD-L1 expression, a greater number of pathway alterations, and a higher occurrence of CDKN2A copy number deletions than primary samples. This highlights the importance of reinforcing the clinical management and follow-up of patients with CDKN2A deficiency, particularly within the subset of stage I lung adenocarcinoma.
Collapse
Affiliation(s)
- Gang Chen
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yang Yu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Youchao Qi
- Department of Thoracic Surgery, The Second People's Hospital of Dezhou City, Dezhou, Shandong, China
| | - Guangxu Li
- Department of Thoracic Surgery, The Second People's Hospital of Dezhou City, Dezhou, Shandong, China
| | - Ning Li
- Department of Radiotherapy, The Second People's Hospital of Dezhou City, Dezhou, Shandong, China
| | - Fande Meng
- Department of Internal Medicine, Changle County Traditional Chinese Medicine (TMC) Hospital, Weifang, Shandong, China
| | - Wujie Wang
- Department of Interventional Medicine, The Second Hospital, Cheeloo College of Medicine, Institute of Tumor Intervention, Shandong University, Jinan, Shandong, China
| | - Rong Shen
- Department of Minimally Invasive Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
19
|
Budczies J, Romanovsky E, Kirchner M, Neumann O, Blasi M, Schnorbach J, Shah R, Bozorgmehr F, Savai R, Stiewe T, Peters S, Schirmacher P, Thomas M, Kazdal D, Christopoulos P, Stenzinger A. KRAS and TP53 co-mutation predicts benefit of immune checkpoint blockade in lung adenocarcinoma. Br J Cancer 2024; 131:524-533. [PMID: 38866964 PMCID: PMC11300455 DOI: 10.1038/s41416-024-02746-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Predictive biomarkers in use for immunotherapy in advanced non-small cell lung cancer are of limited sensitivity and specificity. We analysed the potential of activating KRAS and pathogenic TP53 mutations to provide additional predictive information. METHODS The study cohort included 713 consecutive immunotherapy patients with advanced lung adenocarcinomas, negative for actionable genetic alterations. Additionally, two previously published immunotherapy and two surgical patient cohorts were analyzed. Therapy benefit was stratified by KRAS and TP53 mutations. Molecular characteristics underlying KRASmut/TP53mut tumours were revealed by the analysis of TCGA data. RESULTS An interaction between KRAS and TP53 mutations was observed in univariate and multivariate analyses of overall survival (Hazard ratio [HR] = 0.56, p = 0.0044 and HR = 0.53, p = 0.0021) resulting in a stronger benefit for KRASmut/TP53mut tumours (HR = 0.71, CI 0.55-0.92). This observation was confirmed in immunotherapy cohorts but not observed in surgical cohorts. Tumour mutational burden, proliferation, and PD-L1 mRNA were significantly higher in TP53-mutated tumours, regardless of KRAS status. Genome-wide expression analysis revealed 64 genes, including CX3CL1 (fractalkine), as specific transcriptomic characteristic of KRASmut/TP53mut tumours. CONCLUSIONS KRAS/TP53 co-mutation predicts ICI benefit in univariate and multivariate survival analyses and is associated with unique molecular tumour features. Mutation testing of the two genes can be easily implemented using small NGS panels.
Collapse
Affiliation(s)
- Jan Budczies
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Center for Personalized Medicine (ZPM), Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany.
| | - Eva Romanovsky
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martina Kirchner
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Olaf Neumann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Miriam Blasi
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Johannes Schnorbach
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Rajiv Shah
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Farastuk Bozorgmehr
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Rajkumar Savai
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University, Lausanne, Switzerland
| | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Michael Thomas
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Kazdal
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Petros Christopoulos
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
20
|
Li J, Xiong S, He P, Liang P, Li C, Zhong R, Cai X, Xie Z, Liu J, Cheng B, Chen Z, Liang H, Lao S, Chen Z, Shi J, Li F, Feng Y, Huo Z, Deng H, Yu Z, Wang H, Zhan S, Xiang Y, Wang H, Zheng Y, Lin X, He J, Liang W. Spatial whole exome sequencing reveals the genetic features of highly-aggressive components in lung adenocarcinoma. Neoplasia 2024; 54:101013. [PMID: 38850835 PMCID: PMC11208950 DOI: 10.1016/j.neo.2024.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
In invasive lung adenocarcinoma (LUAD), patients with micropapillary (MIP) or solid (SOL) components had a significantly poorer prognosis than those with only lepidic (LEP), acinar (ACI) or papillary (PAP) components. It is interesting to explore the genetic features of different histologic subtypes, especially the highly aggressive components. Based on a cohort of 5,933 patients, this study observed that in different tumor size groups, LUAD with MIP/SOL components showed a different prevalence, and patients with ALK alteration or TP53 mutations had a higher probability of developing MIP/SOL components. To control individual differences, this research used spatial whole-exome sequencing (WES) via laser-capture microdissection of five patients harboring these five coexistent components and identified genetic features among different histologic components of the same tumor. In tracing the evolution of components, we found that titin (TTN) mutation might serve as a crucial intratumor potential driver for MIP/SOL components, which was validated by a cohort of 146 LUAD patients undergoing bulk WES. Functional analysis revealed that TTN mutations enriched the complement and coagulation cascades, which correlated with the pathway of cell adhesion, migration, and proliferation. Collectively, the histologic subtypes of invasive LUAD were genetically different, and certain trunk genotypes might synergize with branching TTN mutation to develop highly aggressive components.
Collapse
Affiliation(s)
- Jianfu Li
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Shan Xiong
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Ping He
- Department of pathology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Peng Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Caichen Li
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Ran Zhong
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Xiuyu Cai
- Department of General Internal Medicine, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Zhanhong Xie
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou 510120, China
| | - Jun Liu
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Bo Cheng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Zhuxing Chen
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Hengrui Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Shen Lao
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Zisheng Chen
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Jiang Shi
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Feng Li
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Yi Feng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Zhenyu Huo
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Hongsheng Deng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Ziwen Yu
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Haixuan Wang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Shuting Zhan
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Yang Xiang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Huiting Wang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Yongmin Zheng
- Department of pathology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Xiaodong Lin
- Department of pathology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China; Southern Medical University, Guangzhou 510120, China.
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China.
| |
Collapse
|
21
|
Moorthi S, Paguirigan A, Itagi P, Ko M, Pettinger M, Hoge AC, Nag A, Patel NA, Wu F, Sather C, Levine KM, Fitzgibbon MP, Thorner AR, Anderson GL, Ha G, Berger AH. The genomic landscape of lung cancer in never-smokers from the Women's Health Initiative. JCI Insight 2024; 9:e174643. [PMID: 39052387 PMCID: PMC11385083 DOI: 10.1172/jci.insight.174643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
Over 200,000 individuals are diagnosed with lung cancer in the United States every year, with a growing proportion of cases, especially lung adenocarcinoma, occurring in individuals who have never smoked. Women over the age of 50 comprise the largest affected demographic. To understand the genomic drivers of lung adenocarcinoma and therapeutic response in this population, we performed whole genome and/or whole exome sequencing on 73 matched lung tumor/normal pairs from postmenopausal women who participated in the Women's Health Initiative. Somatic copy number alterations showed little variation by smoking status, suggesting that aneuploidy may be a general characteristic of lung cancer regardless of smoke exposure. Similarly, clock-like and APOBEC mutation signatures were prevalent but did not differ in tumors from smokers and never-smokers. However, mutations in both EGFR and KRAS showed unique allelic differences determined by smoking status that are known to alter tumor response to targeted therapy. Mutations in the MYC-network member MGA were more prevalent in tumors from smokers. Fusion events in ALK, RET, and ROS1 were absent, likely due to age-related differences in fusion prevalence. Our work underscores the profound effect of smoking status, age, and sex on the tumor mutational landscape and identifies areas of unmet medical need.
Collapse
Affiliation(s)
| | | | - Pushpa Itagi
- Human Biology Division
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Minjeong Ko
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Mary Pettinger
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Anna Ch Hoge
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Anwesha Nag
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Neil A Patel
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Feinan Wu
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Cassie Sather
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Kevin M Levine
- Human Biology Division
- Division of Hematology and Oncology, Department of Medicine and
| | - Matthew P Fitzgibbon
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Aaron R Thorner
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Garnet L Anderson
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Gavin Ha
- Human Biology Division
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Alice H Berger
- Human Biology Division
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
22
|
Xia W, Zhang S, Ye Y, Xiao H, Zhang Y, Ning G, Zhang Y, Wang W, Fei GH. Clinicopathological and molecular characterization of resected lung adenocarcinoma: Correlations with histopathological grading systems in Chinese patients. Pathol Res Pract 2024; 259:155359. [PMID: 38810376 DOI: 10.1016/j.prp.2024.155359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/04/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE Driver mutations inform lung adenocarcinoma (LUAD) targeted therapy. Association of histopathological attributes and molecular profiles facilitates clinically viable testing platforms. We assessed correlations between LUAD clinicopathological features, mutational landscapes, and two grading systems among Chinese cases. METHODS 79 Chinese LUAD patients undergoing resection were subjected to targeted sequencing. 68 were invasive nonmucinous adenocarcinoma (INMA), graded via: predominant histologic pattern-based grading system (P-GS) or novel IASLC grading system (I-GS). Driver mutation distributions were appraised and correlated with clinical and pathological data. RESULTS Compared to INMA, non-INMA exhibited smaller, well-differentiated tumors with higher mucin content. INMA grade correlated with size, lymph invasion (P-GS), and driver/EGFR mutations. Mutational spectra varied markedly between grades, with EGFR p.L858R and exon 19 deletion mutations predominating in lower grades; while high-grade P-GS tumors often harbored EGFR copy number variants and complex alterations alongside wild-type cases. I-GS upgrade of P-GS grade 2 to grade 3 was underpinned by ≥20 % high-grade regions bearing p.L858R or ALK fusions. Both systems defined tumors of distinctive phenotypic attributes and molecular genotypes. CONCLUSIONS INMA represent larger, mucin-poor, molecularly heterogeneous LUAD with divergent grade-specific mutation profiles. Stronger predictor of clinicopathological attributes and driver mutations, P-GS stratification offers greater accuracy for molecular testing. A small panel encompassing EGFR and ALK captures the majority of P-GS grade 1/2 mutations whereas expanded panels are optimal for grade 3.
Collapse
Affiliation(s)
- Wanli Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Siyuan Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Yuanzi Ye
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China.
| | - Han Xiao
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Ying Zhang
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Guangyao Ning
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Yanbei Zhang
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Wei Wang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China.
| | - Guang-He Fei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, PR China.
| |
Collapse
|
23
|
Thomas PA, Seguin-Givelet A, Pages PB, Alifano M, Brouchet L, Falcoz PE, Baste JM, Glorion M, Belaroussi Y, Filaire M, Heyndrickx M, Loundou A, Fourdrain A, Dahan M, Boyer L. Real-world outcomes of lobectomy, segmentectomy and wedge resection for the treatment of stage c-IA lung carcinoma. Eur J Cardiothorac Surg 2024; 66:ezae251. [PMID: 38917411 DOI: 10.1093/ejcts/ezae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/01/2024] [Accepted: 06/23/2024] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVES To determine safety and survival outcomes associated with lobectomy, segmentectomy and wedge resection for early-stage lung cancer by quiring the French population-based registry EPIdemiology in THORacic surgery (EPITHOR). METHODS Retrospective analysis of 19 452 patients with stage c IA lung carcinoma who underwent lobectomy, segmentectomy or wedge resection between 2016 and 2022 with curative-intent. Main outcome measures were 90-day mortality and 5-year overall survival estimates. Proportional hazards regression and propensity score matching were used to adjust outcomes for key patient, tumour and practice environment factors. RESULTS The treatment distribution was 72.2% for lobectomy, 21.5% for segmentectomy and 6.3% for wedge. Unadjusted 90-day mortality rates were 1.6%, 1.2% and 1.1%, respectively (P = 0.10). Unadjusted 5-year overall survival estimates were 80%, 78% and 70%, with significant inter-group survival curves differences (P < 0.0001). Multivariable proportional hazards regression showed that wedge was associated with worse overall survival [adjusted hazard ratio (AHR), 1.23 (95% confidence interval 1.03-1.47); P = 0.021] compared with lobectomy, while no significant difference was disclosed when comparing segmentectomy to lobectomy (1.08 [0.97-1.20]; P = 0.162). The three-way propensity score analyses confirmed similar 90-day mortality rate for wedge resection and segmentectomy compared with lobectomy (hazard ratio: 0.43; 95% confidence interval 0.16-1.11; P = 0.081 and 0.99; 0.48-2.10; P = 0.998, respectively), but poorer overall survival (1.45; 1.13-1.86; P = 0.003 and 1.31; 1-1.71; P = 0.048, respectively). CONCLUSIONS Wedge resection was associated with comparable 90-day mortality but lower overall survival when compared to lobectomy. Overall, all types of sublobar resections may not offer equivalent oncologic effectiveness in real-world settings.
Collapse
Affiliation(s)
- Pascal Alexandre Thomas
- Department of Thoracic Surgery, Diseases of the Esophagus & Lung Transplantation, Hôpital Nord & CRCM, Inserm UMR 1068, CNRS, UMR 7258, Assistance Publique-Hôpitaux de Marseille & Aix-Marseille University, Marseille, France
| | - Agathe Seguin-Givelet
- Department of Thoracic Surgery, Institut Mutualiste Montsouris, Thorax Institute-Curie-Montsouris, Paris, France
| | - Pierre-Benoît Pages
- Department of Thoracic and Cardiovascular Surgery, Hôpital François Mitterrand, CHU Dijon Bourgogne, Dijon, France
| | - Marco Alifano
- Thoracic Surgery Department, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris & University of Paris Cité, Paris, France
| | - Laurent Brouchet
- Department of Thoracic Surgery, Hôpital Larrey, Toulouse University Hospitals, Toulouse, France
| | - Pierre-Emmanuel Falcoz
- Department of Thoracic Surgery, Nouvel Hôpital Civil, Strasbourg University Hospitals, Strasbourg, France
| | - Jean-Marc Baste
- Department of Thoracic and Cardiovascular Surgery, Hôpital Charles-Nicolle & U1096, Rouen University Hospitals, Rouen, France
| | - Matthieu Glorion
- Department of Thoracic Surgery and Lung Transplantation, Hôpital Foch & Paris-Saclay University, Suresnes, France
| | - Yaniss Belaroussi
- Department of Thoracic Surgery, Hôpital Haut Lévêque, Bordeaux University Hospitals, Bordeaux, France
| | - Marc Filaire
- Department of Thoracic and Endocrine Surgery, Centre Jean Perrin Unicancer Clermont Auvergne Métropole, Clermont-Ferrand, France
| | - Maxime Heyndrickx
- Department of Thoracic Surgery, Hôpital Universitaire de la Côte de Nacre, University Hospitals of Caen Normandie, Caen, France
| | - Anderson Loundou
- Public Health Department Research, Unit EA3279, Aix-Marseille University, Marseille, France
| | - Alex Fourdrain
- Department of Thoracic Surgery, Diseases of the Esophagus & Lung Transplantation, Hôpital Nord & CRCM, Inserm UMR 1068, CNRS, UMR 7258, Assistance Publique-Hôpitaux de Marseille & Aix-Marseille University, Marseille, France
| | - Marcel Dahan
- Department of Thoracic Surgery, Hôpital Larrey, Toulouse University Hospitals, Toulouse, France
| | - Laurent Boyer
- Public Health Department Research, Unit EA3279, Aix-Marseille University, Marseille, France
| |
Collapse
|
24
|
Han T, Bai Y, Liu Y, Dong Y, Liang C, Gao L, Zhou J, Guo J, Wu J, Hu D. Integrated multi-omics analysis and machine learning to refine molecular subtypes, prognosis, and immunotherapy in lung adenocarcinoma. Funct Integr Genomics 2024; 24:118. [PMID: 38935217 DOI: 10.1007/s10142-024-01388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/01/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Lung adenocarcinoma (LUAD) has a malignant characteristic that is highly aggressive and prone to metastasis. There is still a lack of suitable biomarkers to facilitate the refinement of precision-based therapeutic regimens. We used a combination of 10 known clustering algorithms and the omics data from 4 dimensions to identify high-resolution molecular subtypes of LUAD. Subsequently, consensus machine learning-related prognostic signature (CMRS) was developed based on subtypes related genes and an integrated program framework containing 10 machine learning algorithms. The efficiency of CMRS was analyzed from the perspectives of tumor microenvironment, genomic landscape, immunotherapy, drug sensitivity, and single-cell analysis. In terms of results, through multi-omics clustering, we identified 2 comprehensive omics subtypes (CSs) in which CS1 patients had worse survival outcomes, higher aggressiveness, mRNAsi and mutation frequency. Subsequently, we developed CMRS based on 13 key genes up-regulated in CS1. The prognostic predictive efficiency of CMRS was superior to most established LUAD prognostic signatures. CMRS demonstrated a strong correlation with tumor microenvironmental feature variants and genomic instability generation. Regarding clinical performance, patients in the high CMRS group were more likely to benefit from immunotherapy, whereas low CMRS were more likely to benefit from chemotherapy and targeted drug therapy. In addition, we evaluated that drugs such as neratinib, oligomycin A, and others may be candidates for patients in the high CMRS group. Single-cell analysis revealed that CMRS-related genes were mainly expressed in epithelial cells. The novel molecular subtypes identified in this study based on multi-omics data could provide new insights into the stratified treatment of LUAD, while the development of CMRS could serve as a candidate indicator of the degree of benefit of precision therapy and immunotherapy for LUAD.
Collapse
Affiliation(s)
- Tao Han
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China.
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China.
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Yunjia Dong
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Chao Liang
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Lu Gao
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China.
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China.
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan, Anhui, China.
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China.
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China.
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan, Anhui, China.
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China.
| |
Collapse
|
25
|
Lee Y, Lee B, Choi YL, Kang DW, Han J. Clinicopathologic and Molecular Characteristics of HER2 (ERBB2)-Altered Non-Small Cell Lung Cancer: Implications for Precision Medicine. Mod Pathol 2024; 37:100490. [PMID: 38588887 DOI: 10.1016/j.modpat.2024.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/10/2024]
Abstract
The heterogeneous relationship between protein expression, amplification, and mutations in human epidermal growth factor receptor 2 (HER2) in non-small cell lung cancer (NSCLC) and the optimal methods for detecting these alterations remain unclear. We aimed to elucidate the clinicopathological and molecular characteristics of HER2-altered NSCLC and investigate practical approaches for identifying patients who might benefit from HER2-targeted therapies. Using next-generation sequencing data from 1680 individuals, we searched for patients with HER2-altered NSCLCs, including amplifications and mutations. Clinicopathological data and tissue slides were reviewed. Immunohistochemistry (IHC) and silver in situ hybridization were performed according to the American Society of Clinical Oncology/College of American Pathologists guidelines. Our analysis identified 89 (5.3%) patients with HER2-altered NSCLCs, comprising 30 (1.8%) with amplification and 59 (3.6%) mutations, and they were compared with 165 control patients. Of the 59 HER2-mutated cases, 52 harbored tyrosine kinase domain (TKD) mutations, primarily HER2 exon 20 insertions. HER2 TKD alterations were associated with younger age, female sex, nonsmoking status, adenocarcinoma with a micropapillary pattern, lung-to-lung metastasis, and poor overall survival. The 33 patients with TKD mutations and 3 with non-TKD point mutations showed incomplete or complete membranous HER2 immunoreactivity (1+ and 2+, 61.07%). Six patients exhibiting amplifications had an IHC score of ≤2+ despite their high copy numbers and concomitantly displayed other actionable EGFR, KRAS, SMARCA4, and other HER2 mutations. These HER2-altered NSCLCs with molecular coalterations showed heterogeneous patterns through HER2 IHC and silver in situ hybridization. Therefore, next-generation sequencing should be used to identify HER2 mutations in patients with NSCLC who present with concomitant alterations. In addition, the above clinicopathological characteristics and HER2 IHC results can be valuable determinants for identifying patients with HER2-altered NSCLC. These insights hold promise for the development of more effective diagnostic and therapeutic strategies for this complex subset of NSCLC patients.
Collapse
Affiliation(s)
- Yurimi Lee
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Pathology, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Boram Lee
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Yoon-La Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| | - Dong-Wook Kang
- Department of Pathology, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Joungho Han
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
26
|
Zhou J, Wu D, Zheng Q, Wang T, Mei J. Development of a predictive model to predict postoperative bone metastasis in pathological I-II non-small cell lung cancer. Transl Lung Cancer Res 2024; 13:998-1009. [PMID: 38854951 PMCID: PMC11157370 DOI: 10.21037/tlcr-23-866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/14/2024] [Indexed: 06/11/2024]
Abstract
Background Bone is a common metastatic site in postoperative metastasis, but related risk factors for early-stage non-small cell lung cancer (NSCLC) remain insufficiently investigated. Thus, the study aimed to identify risk factors for postoperative bone metastasis in early-stage NSCLC and construct a nomogram to identify high-risk individuals. Methods Between January 2015 and January 2021, we included patients with resected stage I-II NSCLC at the Department of Thoracic Surgery, West China Hospital. Univariable and multivariable Cox regression analyses were used to identify related risk factors. Additionally, we developed a visual nomogram to forecast the likelihood of bone metastasis. Evaluation of the model involved metrics such as the area under the curve (AUC), C-index, and calibration curves. To ensure reliability, internal validation was performed through bootstrap resampling. Results Our analyses included 2,106 eligible patients, with 54 (2.56%) developing bone metastasis. Multivariable Cox analyses showed that tumor nodules with solid component, higher pT stage, higher pN stage, and histologic subtypes especially solid/micropapillary predominant types were considered as independent risk factors of bone metastasis. In the training set, the developed model demonstrated AUCs of 0.807, 0.769, and 0.761 for 1-, 3-, and 5-year follow-ups, respectively. The C-index, derived from 1,000 bootstrap resampling, showed values of 0.820, 0.793, and 0.777 for 1-, 3-, and 5-year follow-ups. The calibration curve showed that the model was well calibrated. Conclusions The predictive model is proven to be valuable in estimating the probability of bone metastasis in early-stage NSCLC following surgery. Leveraging four easy-to-acquire clinical parameters, this model effectively identifies high-risk patients and enables individualized surveillance strategies for better patient care.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Dongsheng Wu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Quan Zheng
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tengyong Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jiandong Mei
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Lin Y, Li D, Hui H, Miao H, Luo M, Roy B, Chen B, Zhang W, Shao D, Ma D, Jie Y, Qiu F, Li H, Jiang B. Genomic landscape and tumor mutational features of resected preinvasive to invasive lung adenocarcinoma. Front Oncol 2024; 14:1389618. [PMID: 38803537 PMCID: PMC11128541 DOI: 10.3389/fonc.2024.1389618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) are considered pre-invasive forms of lung adenocarcinoma (LUAD) with a 5-year recurrence-free survival of 100%. We investigated genomic profiles in early tumorigenesis and distinguished mutational features of preinvasive to invasive adenocarcinoma (IAC) for early diagnosis. Methods Molecular information was obtained from a 689-gene panel in the 90 early-stage LUAD Chinese patients using next-generation sequencing. Gene signatures were identified between pathology subtypes, including AIS/MIA (n=31) and IAC (n=59) in this cohort. Mutational and clinicopathological information was also obtained from the Cancer Genome Atlas (TCGA) as a comparison cohort. Results A higher mutation frequency of TP53, RBM10, MUC1, CSMD, MED1, LRP1B, GLI1, MAP3K, and RYR2 was observed in the IAC than in the AIS/MIA group. The AIS/MIA group showed higher mutation frequencies of ERBB2, BRAF, GRIN2A, and RB1. Comparable mutation rates for mutually exclusive genes (EGFR and KRAS) across cohorts highlight the critical transition to invasive LUAD. Compared with the TCGA cohort, EGFR, KRAS, TP53, and RBM10 were frequently mutated in both cohorts. Despite limited gene mutation overlap between cohorts, we observed variant mutation types in invasive LUAD. Additionally, the tumor mutation burden (TMB) values were significantly lower in the AIS/MIA group than in the IAC group in both the Chinese cohort (P=0.0053) and TCGA cohort (P<0.01). Conclusion These findings highlight the importance of distinguishing preinvasive from invasive LUAD in the early stages of LUAD and both pathology and molecular features in clinical practice, revealing genomic tumor heterogeneity and population differences.
Collapse
Affiliation(s)
- Yangui Lin
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat−sen University, Shenzhen, Guangdong, China
| | - Dan Li
- Community Health Center, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hongliang Hui
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat−sen University, Shenzhen, Guangdong, China
| | - Haoran Miao
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat−sen University, Shenzhen, Guangdong, China
| | - Min Luo
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat−sen University, Shenzhen, Guangdong, China
| | - Bhaskar Roy
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | | | - Wei Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Di Shao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Di Ma
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Fan Qiu
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat−sen University, Shenzhen, Guangdong, China
| | - Huaming Li
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat−sen University, Shenzhen, Guangdong, China
| | - Bo Jiang
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat−sen University, Shenzhen, Guangdong, China
| |
Collapse
|
28
|
Liu X, Mei W, Zhang P, Zeng C. PIK3CA mutation as an acquired resistance driver to EGFR-TKIs in non-small cell lung cancer: Clinical challenges and opportunities. Pharmacol Res 2024; 202:107123. [PMID: 38432445 DOI: 10.1016/j.phrs.2024.107123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Epithelial growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have significantly enhanced the treatment outcomes in non-small cell lung cancer (NSCLC) patients harboring EGFR mutations. However, the occurrence of acquired resistance to EGFR-TKIs is an unavoidable outcome observed in these patients. Disruption of the PI3K/AKT/mTOR signaling pathway can contribute to the emergence of resistance to EGFR TKIs in lung cancer. The emergence of PIK3CA mutations following treatment with EGFR-TKIs can lead to resistance against EGFR-TKIs. This review provides an overview of the current perspectives regarding the involvement of PI3K/AKT/mTOR signaling in the development of lung cancer. Furthermore, we outline the state-of-the-art therapeutic strategies targeting the PI3K/AKT/mTOR signaling pathway in lung cancer. We highlight the role of PIK3CA mutation as an acquired resistance mechanism against EGFR-TKIs in EGFR-mutant NSCLC. Crucially, we explore therapeutic strategies targeting PIK3CA-mediated resistance to EGFR TKIs in lung cancer, aiming to optimize the effectiveness of treatment.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of Medical Oncology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Wuxuan Mei
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Pengfei Zhang
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China.
| |
Collapse
|
29
|
Zheng X, Qiu L, Huang Y, Cheng R, Huang S, Xu K, Cai W, Deng Y, Wang W, Zhong X, Cui F, Hao Z, Liu J. Exploring the molecular and immune-landscape of lung cancer associated with cystic airspaces. Mol Immunol 2024; 168:75-88. [PMID: 38430689 DOI: 10.1016/j.molimm.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 03/05/2024]
Abstract
To explore the molecular biological characteristics of lung cancer associated with cystic airspaces (LCCA) and its potential roles on prognosis. A total of 165 LCCAs and 201 non-LCCAs were enrolled in this study. Bulk RNA sequencing was implemented in eight LCCAs and nine non-LCCAs to explore the differentially expressed genes. TCGA data were used to analyze LCCA-specific genes that associated with overall survival (OS). The median age was 60 (IQR 53 to 65) years in LCCA cohort. We found LCCA were predominant in men and had less visceral pleura invasion (VPI) or lympho-vascular invasion (LVI). Moreover, LCCA presented with higher histological heterogeneity. Kaplan-Meier analysis showed that patients of age more than 60 and positive VPI had significantly less PFS in LCCA. Cox regression suggested that LCCA, micropapillary subtype proportion and VPI were the independent risk factors for PFS. LCCA had up-regulated pathways associated with EMT, angiogenesis and cell migration. In addition, LCCA displayed higher levels of immunosuppressor infiltration (M2 macrophages, CAFs and MDSCs) and distinct cell death and metabolic patterns. BCR/TCR repertoire analysis revealed less BCR richness, clonality and high-abundance shared clonotypes in LCCA. Finally, Cox regression analysis identified that four cystic-specific genes, KCNK3, NRN1, PARVB and TRHDE-AS1, were associated with OS of lung adenocarcinoma (LUAD). And cystic-specific risk scores (CSRSs) were calculated to construct a nomogram, which performance well. Our study for the first time indicated significantly distinct molecular biological and immune characteristics between LCCA and non-LCCA, which provide complementary prognostic values in early-stage non-small cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Xiang Zheng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China; Department of Oncology, The First Clinical Medical College of Henan University, Kaifeng, China
| | - Li Qiu
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Ying Huang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Ran Cheng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Sihe Huang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Ke Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weipeng Cai
- Department of Thoracic Surgery, Shantou Central Hospital, Shantou, China
| | - Yu Deng
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Wang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Xi Zhong
- Department of Medical Imaging, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Fei Cui
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Zhexue Hao
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Jun Liu
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China.
| |
Collapse
|
30
|
Li X, Gao Z, Diao H, Guo C, Yu Y, Liu S, Feng Z, Peng Z. Lung adenocarcinoma: selection of surgical approaches in solid adenocarcinoma from the viewpoint of clinicopathologic features and tumor microenvironmental heterogeneity. Front Oncol 2024; 14:1326626. [PMID: 38505588 PMCID: PMC10949368 DOI: 10.3389/fonc.2024.1326626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction Solid adenocarcinoma represents a notably aggressive subtype of lung adenocarcinoma. Amidst the prevailing inclination towards conservative surgical interventions for diminutive lung cancer lesions, the critical evaluation of this subtype's malignancy and heterogeneity stands as imperative for the formulation of surgical approaches and the prognostication of long-term patient survival. Methods A retrospective dataset, encompassing 2406 instances of non-solid adenocarcinoma (comprising lepidic, acinar, and papillary adenocarcinoma) and 326 instances of solid adenocarcinoma, was analyzed to ascertain the risk factors concomitant with diverse histological variants of lung adenocarcinoma. Concurrently, RNA-sequencing data delineating explicit pathological subtypes were extracted from 261 cases in the TCGA database and 188 cases in the OncoSG database. This data served to illuminate the heterogeneity across lung adenocarcinoma (LUAD) specimens characterized by differential histological features. Results Solid adenocarcinoma is associated with an elevated incidence of pleural invasion, microscopic vessel invasion, and lymph node metastasis, relative to other subtypes of lung adenocarcinoma. Furthermore, the tumor microenvironment (TME) in solid pattern adenocarcinoma displayed suboptimal oxygenation and acidic conditions, concomitant with augmented tumor cell proliferation and invasion capacities. Energy and metabolic activities were significantly upregulated in tumor cells of the solid pattern subtype. This subtype manifested robust immune tolerance and capabilities for immune evasion. Conclusion This present investigation identifies multiple potential metrics for evaluating the invasive propensity, metastatic likelihood, and immune resistance of solid pattern adenocarcinoma. These insights may prove instrumental in devising surgical interventions that are tailored to patients diagnosed with disparate histological subtypes of LUAD, thereby offering valuable directional guidance.
Collapse
Affiliation(s)
- Xiao Li
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Zhen Gao
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, China
| | - Haixiao Diao
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Chenran Guo
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yue Yu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, China
| | - Shang Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, China
| | - Zhen Feng
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Zhongmin Peng
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
31
|
Ma S, Wang R, Peng Q, Liu Y, Qian J, Li M, Li K, Huang Z, Wu L, Xie D. Is there a prognostic difference among stage I lung adenocarcinoma patients with different BRAF-mutation status? Thorac Cancer 2024; 15:715-721. [PMID: 38362771 PMCID: PMC10961218 DOI: 10.1111/1759-7714.15248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND The data of the prognostic role of V-Raf murine sarcoma viral oncogene homolog B1 (BRAF) mutations in early-stage lung adenocarcinoma (LUAD) patients is scarce. This study aimed to investigate the proportion, clinicopathological features, and prognostic significance of patients with stage I LUAD carrying BRAF mutations. METHODS We collected 431 patients with pathological stage I LUAD from cBioPortal for Cancer Genomics and 1604 LUAD patients tested for BRAF V600E and epidermal growth factor receptor (EGFR) mutations from Shanghai Pulmonary Hospital. Survival curves were drawn by the Kaplan-Meier method and compared by log-rank test. Cox proportional hazard models, propensity-score matching (PSM), and overlap weighting (OW) were performed in this study. The primary endpoint was recurrence-free survival (RFS). RESULTS The proportion of BRAF mutations was estimated at 5.6% in a Caucasian cohort. BRAF V600E mutations were detected in six (1.4%) patients in Caucasian populations and 16 (1.0%) patients in Chinese populations. Two BRAF V600E-mutant patients were detected to have concurrent EGFR mutations, one for 19-del and one for L858R. For pathological stage I LUAD patients, BRAF mutations were not significantly associated with worse RFS than wild-type BRAF patients (HR = 1.111; p = 0.885). After PSM and OW, similar results were presented (HR = 1.352; p = 0.742 and HR = 1.246; p = 0.764, respectively). BRAF V600E mutation status also lacked predictive significance for RFS (HR, 1.844; p = 0.226; HR = 1.144; p = 0.831 and HR = 1.466; p = 0.450, respectively). CONCLUSIONS In this study, we demonstrated that BRAF status may not be capable of predicting prognosis in stage I LUAD patients. There is a need for more data to validate our findings.
Collapse
Affiliation(s)
- Shang‐Shang Ma
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiP. R. China
| | - Rang‐Rang Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiP. R. China
| | - Qiao Peng
- School of MedicineTongji UniversityShanghaiP. R. China
| | - Yu'e Liu
- School of MedicineTongji UniversityShanghaiP. R. China
| | - Jia‐Yi Qian
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiP. R. China
| | - Ming‐Jun Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiP. R. China
| | - Kun Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiP. R. China
| | - Zhi‐Ye Huang
- School of MedicineTongji UniversityShanghaiP. R. China
| | - Lei‐Lei Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiP. R. China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiP. R. China
| |
Collapse
|
32
|
Nishimura T, Végvári Á, Nakamura H, Fujii K, Sakai H, Naruki S, Furuya N, Saji H. Cancer cell immunity-related protein co-expression networks are associated with early-stage solid-predominant lung adenocarcinoma. Front Oncol 2024; 14:1273780. [PMID: 38450191 PMCID: PMC10915646 DOI: 10.3389/fonc.2024.1273780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024] Open
Abstract
Background Solid-predominant lung adenocarcinoma (SPA), which is one of the high-risk subtypes with poor prognosis and unsatisfactory response to chemotherapy and targeted therapy in lung adenocarcinoma, remains molecular profile unclarified. Weighted correlation network analysis (WGCNA) was used for data mining, especially for studying biological networks based on pairwise correlations between variables. This study aimed to identify disease-related protein co-expression networks associated with early-stage SPA. Methods We assessed cancerous cells laser-microdissected from formalin-fixed paraffin-embedded (FFPE) tissues of a SPA group (n = 5), referencing a low-risk subtype, a lepidic predominant subtype group (LPA) (n = 4), and another high-risk subtype, micropapillary predominant subtype (MPA) group (n = 3) and performed mass spectrometry-based proteomic analysis. Disease-related co-expression networks associated with the SPA subtype were identified by WGCNA and their upstream regulators and causal networks were predicted by Ingenuity Pathway Analysis. Results Among the forty WGCNA network modules identified, two network modules were found to be associated significantly with the SPA subtype. Canonical enriched pathways were highly associated with cellular growth, proliferation, and immune response. Upregulated HLA class I molecules HLA-G and HLA-B implicated high mutation burden and T cell activation in the SPA subtype. Upstream analysis implicated the involvement of highly activated oncogenic regulators, MYC, MLXIPL, MYCN, the redox master regulator NFE2L2, and the highly inhibited LARP1, leading to oncogenic IRES-dependent translation, and also regulators of the adaptive immune response, including highly activated IFNG, TCRD, CD3-TCR, CD8A, CD8B, CD3, CD80/CD86, and highly inhibited LILRB2. Interestingly, the immune checkpoint molecule HLA-G, which is the counterpart of LILRB2, was highly expressed characteristically in the SPA subtype and might be associated with antitumor immunity. Conclusion Our findings provide a disease molecular profile based on protein co-expression networks identified for the high-risk solid predominant adenocarcinoma, which will help develop future therapeutic strategies.
Collapse
Affiliation(s)
- Toshihide Nishimura
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Haruhiko Nakamura
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kiyonaga Fujii
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
- Laboratory of Analytical Chemistry, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Hiroki Sakai
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Saeko Naruki
- Department of Pathology, St. Marianna University Hospital, Kawasaki, Japan
| | - Naoki Furuya
- Division of Respiratory Medicine, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hisashi Saji
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
33
|
Xie L, Kong H, Yu J, Sun M, Lu S, Zhang Y, Hu J, Du F, Lian Q, Xin H, Zhou J, Wang X, Powell CA, Hirsch FR, Bai C, Song Y, Yin J, Yang D. Spatial transcriptomics reveals heterogeneity of histological subtypes between lepidic and acinar lung adenocarcinoma. Clin Transl Med 2024; 14:e1573. [PMID: 38318637 PMCID: PMC10844893 DOI: 10.1002/ctm2.1573] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Patients who possess various histological subtypes of early-stage lung adenocarcinoma (LUAD) have considerably diverse prognoses. The simultaneous existence of several histological subtypes reduces the clinical accuracy of the diagnosis and prognosis of early-stage LUAD due to intratumour intricacy. METHODS We included 11 postoperative LUAD patients pathologically confirmed to be stage IA. Single-cell RNA sequencing (scRNA-seq) was carried out on matched tumour and normal tissue. Three formalin-fixed and paraffin-embedded cases were randomly selected for 10× Genomics Visium analysis, one of which was analysed by digital spatial profiler (DSP). RESULTS Using DSP and 10× Genomics Visium analysis, signature gene profiles for lepidic and acinar histological subtypes were acquired. The percentage of histological subtypes predicted for the patients from samples of 11 LUAD fresh tissues by scRNA-seq showed a degree of concordance with the clinicopathologic findings assessed by visual examination. DSP proteomics and 10× Genomics Visium transcriptomics analyses revealed that a negative correlation (Spearman correlation analysis: r = -.886; p = .033) between the expression levels of CD8 and the expression trend of programmed cell death 1(PD-L1) on tumour endothelial cells. The percentage of CD8+ T cells in the acinar region was lower than in the lepidic region. CONCLUSIONS These findings illustrate that assessing patient histological subtypes at the single-cell level is feasible. Additionally, tumour endothelial cells that express PD-L1 in stage IA LUAD suppress immune-responsive CD8+ T cells.
Collapse
Affiliation(s)
- Linshan Xie
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| | - Hui Kong
- Department of PathologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Jinjie Yu
- Department of Thoracic SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Department of Thoracic SurgeryShanghai Geriatric Medical CenterShanghaiChina
| | - Mengting Sun
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| | - Shaohua Lu
- Department of PathologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Yong Zhang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| | - Jie Hu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| | - Fang Du
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Qiuyu Lian
- Gurdon InstituteUniversity of CambridgeCambridgeUK
| | - Hongyi Xin
- Global Institute of Future TechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Jian Zhou
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Engineer and Technology Research Center of Internet of Things for Respiratory MedicineShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
- Shanghai Respiratory Research InstitutionShanghaiChina
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesFudan University Shanghai Medical CollegeShanghaiChina
| | - Charles A. Powell
- Pulmonary, Critical Care and Sleep MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Fred R. Hirsch
- Tisch Cancer Institute, Center for Thoracic Oncology, Mount Sinai Health SystemNew YorkNew YorkUSA
| | - Chunxue Bai
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Engineer and Technology Research Center of Internet of Things for Respiratory MedicineShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
- Shanghai Respiratory Research InstitutionShanghaiChina
| | - Yuanlin Song
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Engineer and Technology Research Center of Internet of Things for Respiratory MedicineShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
- Shanghai Respiratory Research InstitutionShanghaiChina
| | - Jun Yin
- Department of Thoracic SurgeryZhongshan HospitalFudan UniversityShanghaiChina
| | - Dawei Yang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Engineer and Technology Research Center of Internet of Things for Respiratory MedicineShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
- Shanghai Respiratory Research InstitutionShanghaiChina
- Department of Pulmonary and Critical Care MedicineZhongshan Hospital (Xiamen)Fudan UniversityXiamenChina
| |
Collapse
|
34
|
Han T, Liu Y, Zhou J, Guo J, Xing Y, Xie J, Bai Y, Wu J, Hu D. Development of an invasion score based on metastasis-related pathway activity profiles for identifying invasive molecular subtypes of lung adenocarcinoma. Sci Rep 2024; 14:1692. [PMID: 38243040 PMCID: PMC10799059 DOI: 10.1038/s41598-024-51681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
The invasive capacity of lung adenocarcinoma (LUAD) is an important factor influencing patients' metastatic status and survival outcomes. However, there is still a lack of suitable biomarkers to evaluate tumor invasiveness. LUAD molecular subtypes were identified by unsupervised consistent clustering of LUAD. The differences in prognosis, tumor microenvironment (TME), and mutation were assessed among different subtypes. After that, the invasion-related gene score (IRGS) was constructed by genetic differential analysis, WGCNA analysis, and LASSO analysis, then we evaluated the relationship between IRGS and invasive characteristics, TME, and prognosis. The predictive ability of the IRGS was verified by in vitro experiments. Next, the "oncoPredict" R package and CMap were used to assess the potential value of IRGS in drug therapy. The results showed that LUAD was clustered into two molecular subtypes. And the C1 subtype exhibited a worse prognosis, higher stemness enrichment activity, less immune infiltration, and higher mutation frequency. Subsequently, IRGS developed based on molecular subtypes demonstrated a strong association with malignant characteristics such as invasive features, higher stemness scores, less immune infiltration, and worse survival. In vitro experiments showed that the higher IRGS LUAD cell had a stronger invasive capacity than the lower IRGS LUAD cell. Predictive analysis based on the "oncoPredict" R package showed that the high IRGS group was more sensitive to docetaxel, erlotinib, paclitaxel, and gefitinib. Among them, in vitro experiments verified the greater killing effect of paclitaxel on high IRGS cell lines. In addition, CMap showed that purvalanol-a, angiogenesis-inhibitor, and masitinib have potential therapeutic effects in the high IRGS group. In summary we identified and analyzed the molecular subtypes associated with the invasiveness of LUAD and developed IRGS that can efficiently predict the prognosis and invasive ability of the tumor. IRGS may be able to facilitate the precision treatment of LUAD to some extent.
Collapse
Affiliation(s)
- Tao Han
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, China
- Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan, 232035, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yingru Xing
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, China
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, China
| | - Jun Xie
- Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan, 232035, China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, China.
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, China.
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, 232001, China.
| |
Collapse
|
35
|
Zhang Y, Fu F, Zhang Q, Li L, Liu H, Deng C, Xue Q, Zhao Y, Sun W, Han H, Gao Z, Guo C, Zheng Q, Hu H, Sun Y, Li Y, Ding C, Chen H. Evolutionary proteogenomic landscape from pre-invasive to invasive lung adenocarcinoma. Cell Rep Med 2024; 5:101358. [PMID: 38183982 PMCID: PMC10829798 DOI: 10.1016/j.xcrm.2023.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/29/2023] [Accepted: 12/11/2023] [Indexed: 01/08/2024]
Abstract
Lung adenocarcinoma follows a stepwise progression from pre-invasive to invasive. However, there remains a knowledge gap regarding molecular events from pre-invasive to invasive. Here, we conduct a comprehensive proteogenomic analysis comprising whole-exon sequencing, RNA sequencing, and proteomic and phosphoproteomic profiling on 98 pre-invasive and 99 invasive lung adenocarcinomas. The deletion of chr4q12 contributes to the progression from pre-invasive to invasive adenocarcinoma by downregulating SPATA18, thus suppressing mitophagy and promoting cell invasion. Proteomics reveals diverse enriched pathways in normal lung tissues and pre-invasive and invasive adenocarcinoma. Proteomic analyses identify three proteomic subtypes, which represent different stages of tumor progression. We also illustrate the molecular characterization of four immune clusters, including endothelial cells, B cells, DCs, and immune depression subtype. In conclusion, this comprehensive proteogenomic study characterizes the molecular architecture and hallmarks from pre-invasive to invasive lung adenocarcinoma, guiding the way to a deeper understanding of the tumorigenesis and progression of this disease.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Fangqiu Fu
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Qiao Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Lingling Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Hui Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, China; State Key Laboratory Cell Differentiation and Regulation, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chaoqiang Deng
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qianqian Xue
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yue Zhao
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wenrui Sun
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Han Han
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhendong Gao
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chunmei Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Qiang Zheng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Hong Hu
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yihua Sun
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuan Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, China.
| | - Haiquan Chen
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
36
|
Yan HJ, Lin SC, Xu SH, Gao YB, Zhou BJ, Zhou R, Chen FM, Li FR. Proteomic analysis reveals LRPAP1 as a key player in the micropapillary pattern metastasis of lung adenocarcinoma. Heliyon 2024; 10:e23913. [PMID: 38226250 PMCID: PMC10788494 DOI: 10.1016/j.heliyon.2023.e23913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Objectives Lung adenocarcinomas have different prognoses depending on their histological growth patterns. Micropapillary growth within lung adenocarcinoma, particularly metastasis, is related to dismal prognostic outcome. Metastasis accounts for a major factor leading to mortality among lung cancer patients. Understanding the mechanisms underlying early stage metastasis can help develop novel treatments for improving patient survival. Methods Here, quantitative mass spectrometry was conducted for comparing protein expression profiles among various histological subtypes, including adenocarcinoma in situ, minimally invasive adenocarcinoma, and invasive adenocarcinoma (including acinar and micropapillary [MIP] types). To determine the mechanism of MIP-associated metastasis, we identified a protein that was highly expressed in MIP. The expression of the selected highly expressed MIP protein was verified via immunohistochemical (IHC) analysis and its function was validated by an in vitro migration assay. Results Proteomic data revealed that low-density lipoprotein receptor-related protein-associated protein 1 (LRPAP1) was highly expressed in MIP group, which was confirmed by IHC. The co-expressed proteins in this study, PSMD1 and HSP90AB1, have been reported to be highly expressed in different cancers and play an essential role in metastasis. We observed that LRPAP1 promoted lung cancer progression, including metastasis, invasion and proliferation in vitro and in vivo. Conclusion LRPAP1 is necessary for MIP-associated metastasis and is the candidate novel anti-metastasis therapeutic target.
Collapse
Affiliation(s)
- Hao-jie Yan
- Translational Medicine Collaborative Innovation Center, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
- Post-doctoral Scientific Research Station of Basic Medicine, Jinan University, 510632, Guangzhou, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, 518020, Shenzhen, China
| | - Sheng-cheng Lin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 518172, Shenzhen, China
| | | | - Yu-biao Gao
- Translational Medicine Collaborative Innovation Center, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, 518020, Shenzhen, China
| | - Bao-jin Zhou
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Ruo Zhou
- Deepxomics Co., Ltd, 518112, Shenzhen, China
| | - Fu-ming Chen
- Translational Medicine Collaborative Innovation Center, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, 518020, Shenzhen, China
| | - Fu-rong Li
- Translational Medicine Collaborative Innovation Center, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, 518020, Shenzhen, China
- Institute of Health Medicine, Southern University of Science and Technology, 518055, Shenzhen, China
| |
Collapse
|
37
|
Huang Y, Ma S, Xu JY, Qian K, Wang Y, Zhang Y, Tan M, Xiao T. Prognostic biomarker discovery based on proteome landscape of Chinese lung adenocarcinoma. Clin Proteomics 2024; 21:2. [PMID: 38182978 PMCID: PMC10768252 DOI: 10.1186/s12014-023-09449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
Despite recent innovations in imaging and genomic screening promotes advance in diagnosis and treatment of lung adenocarcinoma (LUAD), there remains high mortality of LUAD and insufficient understanding of LUAD biology. Our previous study performed an integrative multi-omic analysis of LUAD, filling the gap between genomic alterations and their biological proteome effects. However, more detailed molecular characterization and biomarker resources at proteome level still need to be uncovered. In this study, a quantitative proteomic experiment of patient-derived benign lung disease samples was carried out. After that, we integrated the proteomic data with previous dataset of 103 paired LUAD samples. We depicted the proteomic differences between non-cancerous and tumor samples and among diverse pathological subtypes. We also found that up-regulated mitophagy was a significant characteristic of early-stage LUAD. Additionally, our integrative analysis filtered out 75 potential prognostic biomarkers and validated two of them in an independent LUAD serum cohort. This study provided insights for improved understanding proteome abnormalities of LUAD and the novel prognostic biomarker discovery offered an opportunity for LUAD precise management.
Collapse
Affiliation(s)
- Yuqi Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sheng Ma
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jun-Yu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China.
| | - Kun Qian
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yaru Wang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi Zhang
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China.
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
38
|
Willner J, Narula N, Moreira AL. Updates on lung adenocarcinoma: invasive size, grading and STAS. Histopathology 2024; 84:6-17. [PMID: 37872108 DOI: 10.1111/his.15077] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
Advancements in the classification of lung adenocarcinoma have resulted in significant changes in pathological reporting. The eighth edition of the tumour-node-metastasis (TNM) staging guidelines calls for the use of invasive size in staging in place of total tumour size. This shift improves prognostic stratification and requires a more nuanced approach to tumour measurements in challenging situations. Similarly, the adoption of new grading criteria based on the predominant and highest-grade pattern proposed by the International Association for the Study of Lung Cancer (IASLC) shows improved prognostication, and therefore clinical utility, relative to previous grading systems. Spread through airspaces (STAS) is a form of tumour invasion involving tumour cells spreading through the airspaces, which has been highly researched in recent years. This review discusses updates in pathological T staging, adenocarcinoma grading and STAS and illustrates the utility and limitations of current concepts in lung adenocarcinoma.
Collapse
Affiliation(s)
- Jonathan Willner
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Navneet Narula
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Andre L Moreira
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
39
|
Rusch VW. Commentary: Lobectomy, segmentectomy, or wedge resection for stage IA lung cancer: Several choices, many questions. J Thorac Cardiovasc Surg 2024; 167:348-349. [PMID: 37527725 DOI: 10.1016/j.jtcvs.2023.07.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Affiliation(s)
- Valerie W Rusch
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
40
|
Kang H, Lv H, Tung TH, Ma D, Wang Z, Du J, Zhou K, Pan J, Zhang Y, Peng S, Yu Z, Shen B, Ye M. EGFR co-mutation is associated with the risk of recurrence in invasive lung adenocarcinoma with the micropapillary component. Asian J Surg 2024; 47:201-207. [PMID: 37574361 DOI: 10.1016/j.asjsur.2023.07.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/06/2023] [Accepted: 07/09/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Invasive lung adenocarcinoma (LUAD) patients with the micropapillary (MPP) component tend to have extremely poor prognosis. To optimize clinical outcomes, a better understanding of specific concurrent gene alterations and their impact on the prognosis of patients with the MPP component is necessary. METHOD A total of 621 Chinese patients with surgically resected invasive LUAD who underwent genetic testing for lung cancer were enrolled in this retrospective study. The genomic profiling of major lung cancer-related genes based on next-generation sequencing (NGS) was carried out on formalin-fixed paraffin-embedded tumor samples. RESULT Among 621 patients with invasive LUAD, 154 (24.8%, 154/621) had the MPP component. We found that PIK3CA (4.5% vs 1.3%), KRAS (9.1% vs 4.7%), and ROS1 (2.6% vs 0.4%) were more frequent in patients with the MPP component than those without the MPP component (P < 0.05). The co-mutation occurred in 66 patients (10.6%, 66/621), of which 19 patients with the MPP component. Most of them were EGFR co-mutations (89.5%, 17/19), including EGFR and PIK3CA, EGFR and ERBB2, and other types. Patients with the MPP component who harbored EGFR co-mutations showed significantly worse recurrence-free survival (RFS) than single EGFR mutation (median RFS 20.1 vs 30.5 months; hazard ratio [HR]: 8.008; 95% confidence interval [CI]: 1.322-48.508). CONCLUSIONS Patients with the MPP component harbored the co-mutation of driver genes had a higher risk of recurrence after surgery, especially in patients with EGFR co-mutation. EGFR co-mutation was a significant prognostic factor for RFS in patients with the MPP component.
Collapse
Affiliation(s)
- Haixin Kang
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Haiyan Lv
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Tao-Hsin Tung
- Evidence-based Medicine Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Dehua Ma
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, 317000, China
| | - Zheng Wang
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, 317000, China
| | - Juping Du
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Kai Zhou
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Juan Pan
- Department of Clinical Laboratory, Taizhou Hospital, Zhejiang University, Linhai, Zhejiang, 317000, China
| | - Yanjie Zhang
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Shuotao Peng
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Zhaonan Yu
- Hangzhou D.A. Medical Laboratory, Hangzhou, Zhejiang, 310000, China
| | - Bo Shen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China.
| | - Minhua Ye
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, 317000, China.
| |
Collapse
|
41
|
Sharma R, Kamireddy AP, Hussaini SM, Chatterjee S, Hasan Q, Jain J. The landscape of actionable genomic alterations in lung adenocarcinomas in India. Front Genet 2023; 14:1256756. [PMID: 38155717 PMCID: PMC10754624 DOI: 10.3389/fgene.2023.1256756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/05/2023] [Indexed: 12/30/2023] Open
Abstract
Lung adenocarcinoma (LUAD), the most prevalent form of non-small cell lung cancer (NSCLC), remains a leading cause of cancer-related death globally, including in India, with a 5-year survival rate below 10%. Despite these grim statistics, recent advances in the use of next-generation sequencing (NGS) for identifying genetic alterations and the emergence of targeted therapies have opened new possibilities for personalized treatment based on distinct molecular signatures. To understand the molecular pattern of NSCLC, a retrospective study was conducted with 53 Indian LUAD patient samples, using a targeted NGS panel of 46 cancer-relevant oncogenes to identify clinically relevant variants. Pathogenic or likely pathogenic variants were detected in 94% of the 53 cases. Non-synonymous mutations, rearrangements, copy number alterations, insertions, and deletions of functional relevance were observed in 31 out of 46 genes. The most frequently mutated genes included TP53 (52.8%) and EGFR (50.9%), followed by RET, PIK3CA and ERBB2; some patients had multiple alterations in the same gene. Gender-based enrichment analysis indicated that ALK and IDH2 alterations were more prevalent in females, while TP53 and PTEN were more common in males. No significant correlation was found between mutations and other clinicopathological attributes, such as age, stage, and subtype. A higher prevalence of EGFR, RET, PIK3CA, ERBB2 and ALK mutations were observed compared to previous LUAD genetic studies coupled with a lower frequency of KRAS mutations. Clinically actionable variants were annotated using OncoKB and categorized into the four therapeutic levels based on their clinical evidence. Seventy-nine percent of cases had at least one clinically actionable alteration. Most patients (39.6%) had the highest level of actionability (Level 1) wherein an FDA-approved drug is available specifically for the observed mutation in lung cancer patients. EGFR Exon19 in-frame deletions and EGFR L858R were the most frequent among targetable variants (20.7%). These findings emphasize the importance of a selective NGS panel in enabling personalized medicine approaches by identifying actionable molecular alterations and informing the choice of targeted therapy for more effective treatment options in Indian NSCLC patients.
Collapse
Affiliation(s)
- Rakesh Sharma
- Sapien Biosciences Private Limited, Hyderabad, Telangana, India
| | - Aruna Priya Kamireddy
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, Telangana, India
| | | | - Soma Chatterjee
- Sapien Biosciences Private Limited, Hyderabad, Telangana, India
| | - Qurratulain Hasan
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, Telangana, India
| | - Jugnu Jain
- Sapien Biosciences Private Limited, Hyderabad, Telangana, India
| |
Collapse
|
42
|
Fick CN, Dunne EG, Lankadasari MB, Mastrogiacomo B, Asao T, Vanstraelen S, Liu Y, Sanchez-Vega F, Jones DR. Genomic profiling and metastatic risk in early-stage non-small cell lung cancer. JTCVS OPEN 2023; 16:9-16. [PMID: 38204702 PMCID: PMC10775106 DOI: 10.1016/j.xjon.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 01/12/2024]
Affiliation(s)
- Cameron N. Fick
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elizabeth G. Dunne
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Manendra B. Lankadasari
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Brooke Mastrogiacomo
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tetsuhiko Asao
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Stijn Vanstraelen
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yuan Liu
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Francisco Sanchez-Vega
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David R. Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
43
|
Zhang S, Dong P, Pan Z, Chen Q, Zhu J, Mao Z. Comparison of gene mutation profile in different lung adenocarcinoma subtypes by targeted next-generation sequencing. Med Oncol 2023; 40:349. [PMID: 37935925 DOI: 10.1007/s12032-023-02206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Disease prognosis after resection of lung cancer could be affected by pathological subtypes. In this study, we investigated the difference of gene variation and significantly altered pathways between adenocarcinoma in situ (AIS)/microinvasive adenocarcinoma (MIA) and invasive adenocarcinoma (IAC) subtypes to reveal the molecular mechanism of prognosis differences. METHODS Sixty one tumor tissues were subjected to DNA extraction and customized 136 gene targeted next-generation sequencing. Comparisons between groups were performed with two-sided Fisher's exact test for categorical variables and two-tailed unpaired t test for numerical variables. RESULTS A total of 402 somatic mutations involved in 70 genes were detected in all these samples, and 74.29% of these genes were mutated in at least two samples. PMS2, ARID1A, EGFR, and POLE were the most frequently mutated genes. ALK_EML4 fusion was observed in one IAC patient and RET_ KIF5B fusion in one AIS patient. A significant higher proportion of patients with TP53 gene mutation was observed in the IAC group (P = 0.0057). The average onset age in IAC group is 62.48 years, which is greater than other subtypes (P = 0.0166). It revealed that mutations in genes involved in the mTOR signaling pathway (56.52% vs 26.32%, P = 0.0288) and Hippo signaling pathway (34.78% vs 10.53%, P = 0.0427) were significantly enriched in IAC subtypes, suggesting the key involvement of mTOR and Hippo signaling pathways in lung tumor development and malignant progression. CONCLUSIONS This study revealed the heterogeneity of gene mutations and significantly altered pathways between different lung cancer subtypes, suggesting the potential mechanism of different prognosis.
Collapse
Affiliation(s)
- Shaowen Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - Ping Dong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - Zongwei Pan
- Department of Medical Equipment, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - Qian Chen
- Thorgene Co., Ltd, Beijing, 100176, China
| | - Junqi Zhu
- Thorgene Co., Ltd, Beijing, 100176, China
| | - Zhangfan Mao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
44
|
Fei W, Yan Y, Liu G, Peng B, Liu Y, Chen Q. High-risk histological subtype-related FAM83A hijacked FOXM1 transcriptional regulation to promote malignant progression in lung adenocarcinoma. PeerJ 2023; 11:e16306. [PMID: 37904848 PMCID: PMC10613442 DOI: 10.7717/peerj.16306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/26/2023] [Indexed: 11/01/2023] Open
Abstract
Background According to the histopathology, lung adenocarcinoma (LUAD) could be divided into five distinct pathological subtypes, categorized as high-risk (micropapillary and solid) group, intermediate-risk (acinar and papillary) group, and low-risk (lepidic) group. Despite this classification, there is limited knowledge regarding the role of transcription factors (TFs) in the molecular regulation of LUAD histology patterns. Methods Publish data was mined to explore the candidate TFs associated with high-risk histopathology in LUAD, which was validated in tissue samples. Colony formation, CCK8, EdU, transwell, and matrigel assays were performed to determine the biological function of FAM83A in vitro. Subcutaneous tumor-bearing in BALB/c nude mice and xenograft perivitelline injection in zebrafish were utilized to unreal the function of FAM83A in vivo. We also performed chromatin immunoprecipitation (ChIP), dual-luciferase reporter, and rescue assays to uncover the underline mechanism of FAM83A. Immunohistochemistry (IHC) was performed to confirm the oncogenic role of FAM83A in clinical LUAD tissues. Results Screening the transcriptional expression data from TCGA-LUAD, we focus on the differentially expressed TFs across the divergent pathological subtypes, and identified that the expression of FAM83A is higher in patients with high-risk groups compared with those with intermediate or low-risk groups. The FAM83A expression is positively correlated with worse overall survival, progression-free survival, and advanced stages. Gain- and loss-of-function assays revealed that FAM83A promoted cell proliferation, invasion, and migration of tumor cell lines both in vivo and in vitro. Pathway enrichment analysis shows that FAM83A expression is significantly enriched in cell cycle-related pathways. The ChIP and luciferase reporter assays revealed that FAM83A hijacks the promoter of FOXM1 to progress the malignant LUAD, and the rescue assay uncovered that the function of FAM83A is partly dependent on FOXM1 regulation. Additionally, patients with high FAM83A expression positively correlated with higher IHC scores of Ki-67 and FOXM1, and patients with active FAM83A/FOXM1 axis had poor prognoses in LUAD. Conclusions Taken together, our study revealed that the high-risk histological subtype-related FAM83A hijacks FOXM1 transcriptional regulation to promote malignant progression in lung adenocarcinoma, which implies targeting FAM83A/FOXM1 is the therapeutic vulnerability.
Collapse
Affiliation(s)
- Wei Fei
- Department of Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Yan
- Department of Cardiovascular Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guangjun Liu
- Department of Thoracic Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Bo Peng
- Department of Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Thoracic Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Yuanyuan Liu
- Department of Respiratory and Critical Care Medicine, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Qiang Chen
- Department of Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Thoracic Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| |
Collapse
|
45
|
Karihtala P, Kilpivaara O, Porvari K. Mutational signatures and their association with survival and gene expression in urological carcinomas. Neoplasia 2023; 44:100933. [PMID: 37678146 PMCID: PMC10495641 DOI: 10.1016/j.neo.2023.100933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Different sources of mutagenesis cause consistently identifiable patterns of mutations and mutational signatures that mirror the various carcinogenetic processes. We used publicly available data from the Cancer Genome Atlas to evaluate the associations between the activity of the mutational signatures and various survival endpoints in six types of urological cancers after adjusting for established prognostic factors. The predictive power of the signatures was evaluated with dynamic area under curve models. In addition, links between mutational signature activities and differences in gene expression patterns were analysed. APOBEC-related signature SBS2 was associated with improved overall survival (OS) and disease-specific survival (DSS) in bladder carcinomas in the multivariate analysis, while clock-like signature SBS1 predicted shortened DSS and progression-free interval (PFI) in clear cell renal cell carcinomas (ccRCC). In papillary renal cell carcinomas (pRCC), SBS45 was a predictor of improved outcomes, and APOBEC-related SBS13 was a predictor of worse outcomes. Gene expression analyses revealed various enriched pathways between the low- and high-signature groups. Interestingly, in both the ccRCC and pRCC cohorts, the genes of several members of the melanoma antigen (MAGE) family were highly upregulated in the signatures, which predicted poor outcomes, and downregulated in signatures, which were associated with improved survival. To summarize, SBS signatures provide substantial prognostic value compared with just the traditional prognostic factors in certain cancer types. APOBEC-related SBS2 and SBS13 seem to provide robust prognostic information for particular urological cancers, maybe driven by the expression of specific groups of genes, including the MAGE gene family.
Collapse
Affiliation(s)
- Peeter Karihtala
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center and University of Helsinki, Helsinki FI-00290, Finland.
| | - Outi Kilpivaara
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland; Department of Medical and Clinical Genetics, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland; HUSLAB Laboratory of Genetics, HUS Diagnostic Center, Helsinki University Hospital, Helsinki FI-00014, Finland
| | - Katja Porvari
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu FI-90220, Finland
| |
Collapse
|
46
|
Durham M, Vadde S, Brooks AN. MET exon 14 skipping is overexpressed in an allele-specific manner in lung adenocarcinoma primary samples. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000957. [PMID: 37829573 PMCID: PMC10565573 DOI: 10.17912/micropub.biology.000957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
MET exon 14 skipping ( METΔ14 ) is a well-characterized oncogene in the Ras-MAPK pathway driving lung adenocarcinoma (LUAD). Previous studies on METΔ14 revealed this aberrantly spliced oncogene is expressed in LUAD primary samples and is associated with heterozygous somatic mutations and deletions near exon 14 splice sites. Upon further examination of DNA and RNA sequencing data from primary samples, we highlight that METΔ14 is overexpressed in an allele-specific manner. These data suggest that dose-dependence of METΔ14 may be critical to oncogenesis.
Collapse
Affiliation(s)
- Megan Durham
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States
| | - Swetha Vadde
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States
| |
Collapse
|
47
|
Ohtani-Kim SJY, Taki T, Tane K, Miyoshi T, Samejima J, Aokage K, Nagasaki Y, Kojima M, Sakashita S, Watanabe R, Sakamoto N, Goto K, Tsuboi M, Ishii G. Efficacy of Preoperative Biopsy in Predicting the Newly Proposed Histologic Grade of Resected Lung Adenocarcinoma. Mod Pathol 2023; 36:100209. [PMID: 37149221 DOI: 10.1016/j.modpat.2023.100209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/05/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
A novel histologic grading system for invasive lung adenocarcinomas (LUAD) has been newly proposed and adopted by the World Health Organization (WHO) classification. We aimed to evaluate the concordance of newly established grades between preoperative biopsy and surgically resected LUAD samples. Additionally, factors affecting the concordance rate and its prognostic impact were also analyzed. In this study, surgically resected specimens of 222 patients with invasive LUAD and their preoperative biopsies collected between January 2013 and December 2020 were used. We determined the histologic subtypes of preoperative biopsy and surgically resected specimens and classified them separately according to the novel WHO grading system. The overall concordance rate of the novel WHO grades between preoperative biopsy and surgically resected samples was 81.5%, which was higher than that of the predominant subtype. When stratified by grades, the concordance rate of grades 1 (well-differentiated, 84.2%) and 3 (poorly differentiated, 89.1%) was found to be superior compared to grade 2 (moderately differentiated, 66.2%). Overall, the concordance rate was not significantly different from biopsy characteristics, including the number of biopsy samples, biopsy sample size, and tumor area size. On the other hand, the concordance rate of grades 1 and 2 was significantly higher in tumors with smaller invasive diameters, and that of grade 3 was significantly higher in tumors with larger invasive diameters. Preoperative biopsy specimens can predict the novel WHO grades, especially grades 1 and 3 of surgically resected specimens, more accurately than the former grading system, regardless of preoperative biopsy or clinicopathologic characteristics.
Collapse
Affiliation(s)
- Seiyu Jeong-Yoo Ohtani-Kim
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan; Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan; Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tetsuro Taki
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.
| | - Kenta Tane
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Tomohiro Miyoshi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Joji Samejima
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Keiju Aokage
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Yusuke Nagasaki
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan; Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan; Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Motohiro Kojima
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Shingo Sakashita
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Reiko Watanabe
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Naoya Sakamoto
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Genichiro Ishii
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan; Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
48
|
Jin F, Yang Z, Shao J, Tao J, Reißfelder C, Loges S, Zhu L, Schölch S. ARID1A mutations in lung cancer: biology, prognostic role, and therapeutic implications. Trends Mol Med 2023; 29:646-658. [PMID: 37179132 DOI: 10.1016/j.molmed.2023.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Mutations in the AT-interacting domain-rich protein 1A (ARID1A) gene, a critical component of the switch/sucrose nonfermentable (SWI/SNF) complex, are frequently found in most human cancers. Approximately 5-10% of lung cancers carry ARID1A mutations. ARID1A loss in lung cancer correlates with clinicopathological features and poor prognosis. Co-mutation of ARID1A and epidermal growth factor receptor (EGFR) results in the limited efficacy of EGFR tyrosine kinase inhibitors (EGFR-TKIs) but increases the clinical benefit of immune checkpoint inhibitors (ICIs). ARID1A gene mutation plays a role in cell cycle regulation, metabolic reprogramming, and epithelial-mesenchymal transition. We present the first comprehensive review of the relationship between ARID1A gene mutations and lung cancer and discuss the potential of ARID1A as a new molecular target.
Collapse
Affiliation(s)
- Fukang Jin
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany; DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Zhiguang Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Jilin, China
| | - Jingbo Shao
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jianxin Tao
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany; DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Reißfelder
- DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sonja Loges
- DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Personalized Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lei Zhu
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany; DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Sebastian Schölch
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany; DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
49
|
Connolly JG, Kalchiem-Dekel O, Tan KS, Dycoco J, Chawla M, Rocco G, Park BJ, Lee RP, Beattie JA, Solomon SB, Ziv E, Adusumilli PS, Buonocore DJ, Husta BC, Jones DR, Baine MK, Bott MJ. Feasibility of shape-sensing robotic-assisted bronchoscopy for biomarker identification in patients with thoracic malignancies. J Thorac Cardiovasc Surg 2023; 166:231-240.e2. [PMID: 36621452 PMCID: PMC10209350 DOI: 10.1016/j.jtcvs.2022.10.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/11/2022] [Accepted: 10/29/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Molecular diagnostic assays require samples with high nucleic acid content to generate reliable data. Similarly, programmed death-ligand 1 (PD-L1) immunohistochemistry (IHC) requires samples with adequate tumor content. We investigated whether shape-sensing robotic-assisted bronchoscopy (ssRAB) provides adequate samples for molecular and predictive testing. METHODS We retrospectively identified diagnostic samples from a prospectively collected database. Pathologic reports were reviewed to assess adequacy of samples for molecular testing and feasibility of PD-L1 IHC. Tumor cellularity was quantified by an independent pathologist using paraffin-embedded sections. Univariable and multivariable linear regression models were constructed to assess associations between lesion- and procedure-related variables and tumor cellularity. RESULTS In total, 128 samples were analyzed: 104 primary lung cancers and 24 metastatic lesions. On initial pathologic assessment, ssRAB samples were deemed to be adequate for molecular testing in 84% of cases; on independent review of cellular blocks, median tumor cellularity was 60% (interquartile range, 25%-80%). Hybrid capture-based next-generation sequencing was successful for 25 of 26 samples (96%), polymerase chain reaction-based molecular testing (Idylla; Biocartis) was successful for 49 of 52 samples (94%), and PD-L1 IHC was successful for 61 of 67 samples (91%). Carcinoid and small cell carcinoma histologic subtype and adequacy on rapid on-site evaluation were associated with higher tumor cellularity. CONCLUSIONS The ssRAB platform provided adequate tissue for next-generation sequencing, polymerase chain reaction-based molecular testing, and PD-L1 IHC in >80% of cases. Tumor histology and adequacy on intraoperative cytologic assessment might be associated with sample quality and suitability for downstream assays.
Collapse
Affiliation(s)
- James G Connolly
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Or Kalchiem-Dekel
- Section of Interventional Pulmonology, Pulmonary Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kay See Tan
- Biostatistics Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Joe Dycoco
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mohit Chawla
- Section of Interventional Pulmonology, Pulmonary Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gaetano Rocco
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Bernard J Park
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Robert P Lee
- Section of Interventional Pulmonology, Pulmonary Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jason A Beattie
- Section of Interventional Pulmonology, Pulmonary Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Stephen B Solomon
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Etay Ziv
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Darren J Buonocore
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Bryan C Husta
- Section of Interventional Pulmonology, Pulmonary Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David R Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marina K Baine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Matthew J Bott
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
50
|
Juul NH, Yoon JK, Martinez MC, Rishi N, Kazadaeva YI, Morri M, Neff NF, Trope WL, Shrager JB, Sinha R, Desai TJ. KRAS(G12D) drives lepidic adenocarcinoma through stem-cell reprogramming. Nature 2023; 619:860-867. [PMID: 37468622 PMCID: PMC10423036 DOI: 10.1038/s41586-023-06324-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 06/14/2023] [Indexed: 07/21/2023]
Abstract
Many cancers originate from stem or progenitor cells hijacked by somatic mutations that drive replication, exemplified by adenomatous transformation of pulmonary alveolar epithelial type II (AT2) cells1. Here we demonstrate a different scenario: expression of KRAS(G12D) in differentiated AT1 cells reprograms them slowly and asynchronously back into AT2 stem cells that go on to generate indolent tumours. Like human lepidic adenocarcinoma, the tumour cells slowly spread along alveolar walls in a non-destructive manner and have low ERK activity. We find that AT1 and AT2 cells act as distinct cells of origin and manifest divergent responses to concomitant WNT activation and KRAS(G12D) induction, which accelerates AT2-derived but inhibits AT1-derived adenoma proliferation. Augmentation of ERK activity in KRAS(G12D)-induced AT1 cells increases transformation efficiency, proliferation and progression from lepidic to mixed tumour histology. Overall, we have identified a new cell of origin for lung adenocarcinoma, the AT1 cell, which recapitulates features of human lepidic cancer. In so doing, we also uncover a capacity for oncogenic KRAS to reprogram a differentiated and quiescent cell back into its parent stem cell en route to adenomatous transformation. Our work further reveals that irrespective of a given cancer's current molecular profile and driver oncogene, the cell of origin exerts a pervasive and perduring influence on its subsequent behaviour.
Collapse
Affiliation(s)
- Nicholas H Juul
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jung-Ki Yoon
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Marina C Martinez
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Neha Rishi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yana I Kazadaeva
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Winston L Trope
- Division of Thoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph B Shrager
- Division of Thoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Tushar J Desai
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|