1
|
Zhao Y, Xie L, Liu B, Deng Y, Li P, Dai Y, Liu J, Yi C. Novel insight into the role of Src family kinases in hepatocellular carcinoma and therapeutic potential. Biochem Biophys Res Commun 2025; 772:151970. [PMID: 40414003 DOI: 10.1016/j.bbrc.2025.151970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/17/2025] [Accepted: 05/07/2025] [Indexed: 05/27/2025]
Abstract
Hepatocellular carcinoma remains a highly aggressive malignancy, with the 5-year survival rate for advanced-stage patients persisting below 20 % despite progress in targeted therapies and immunotherapy. This clinical reality underscores the critical need for identifying novel therapeutic targets. Src family kinases (SFKs), critical regulators of cellular metabolism, coordinate regenerative repair through STAT3/ERK signaling in normal hepatic regeneration and preserve cellular polarity via FAK-mediated mechanisms following hepatic injury. Growing evidence suggests that dysregulation of SFKs expression and activity is closely associated with oxidative stress, inflammation-cancer transition, metabolic reprogramming disorders and microenvironmental remodeling in hepatocellular carcinoma. However, the underlying mechanisms remain inadequately understood. This review provides a comprehensive overview of the composition and structure of SFKs. We explored in depth the molecular and cellular mechanisms of SFKs in the pathological progression and risk factors of hepatocellular carcinoma, including viral hepatitis, metabolic dysfunction-associated steatohepatitis, and other established risk factors. Herein, we highlight the potential of SFKs as a pharmacological target against hepatocellular in the hope of inspiring translational research and innovative clinical approaches.
Collapse
Affiliation(s)
- Yunlong Zhao
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Letian Xie
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Binwei Liu
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yulin Deng
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Pengfei Li
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yuqing Dai
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Jiao Liu
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Chun Yi
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
2
|
Cuellar-Vite L, Donaubauer EM, Weber-Bonk KL, Bobbitt JR, Ingles NN, Brzozowski TL, Abdul-Karim FW, Booth CN, Keri RA. Exploiting YES1-Driven EGFR Expression Improves the Efficacy of EGFR Inhibitors. Mol Cancer Res 2025; 23:391-404. [PMID: 39847459 PMCID: PMC12048259 DOI: 10.1158/1541-7786.mcr-24-0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 12/06/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
EGFR is a highly expressed driver of many cancers, yet the utility of EGFR inhibitors (EGFRi) is limited to cancers that harbor sensitizing mutations in the EGFR gene because of dose-limiting toxicities. Rather than conventionally blocking the kinase activity of EGFR, we sought to reduce its transcription as an alternative approach to broaden the therapeutic window for EGFR inhibitors targeting wild-type (WT) or mutant EGFR. We found that YES1 is highly expressed in triple-negative breast cancer (TNBC) and drives cell growth by elevating EGFR levels. Mechanistically, YES1 stimulates EGFR expression by signaling to JNK and stabilizing the AP-1 transcription factor c-Jun. This effect extends beyond TNBC as YES1 also sustains EGFR expression in non-small cell lung cancer cells, including those that harbor the EGFR gatekeeper mutation T790M. The novel ability of YES1 to regulate the expression of WT and mutant EGFR mRNA and protein provides a potential therapeutic opportunity of utilizing YES1 blockade to broadly increase the efficacy of EGFR inhibitors. Indeed, we observed synergy within in vitro and in vivo models of TNBC and non-small cell lung cancer, even in the absence of EGFR-activating mutations. Together, these data provide a rationale for blocking YES1 activity as an approach for improving the efficacy of EGFR-targeting drugs in cancers that have generally been refractory to such inhibitors. Implications: YES1 sustains EGFR expression, revealing a therapeutic vulnerability for increasing the efficacy of EGFR inhibitors by lowering the threshold for efficacy in tumors driven by the WT or mutant receptor.
Collapse
Affiliation(s)
- Leslie Cuellar-Vite
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Elyse M. Donaubauer
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kristen L. Weber-Bonk
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jessica R. Bobbitt
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Natasha N. Ingles
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Taylor L. Brzozowski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fadi W. Abdul-Karim
- Anatomic Pathology, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christine N. Booth
- Anatomic Pathology, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ruth A. Keri
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of General Medical Sciences-Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio USA
| |
Collapse
|
3
|
Qin T, Wang J, Wang J, Du Q, Wang L, Liu H, Liu W, Li X, Jiang Y, Xu Q, Yu J, Liu H, Wang T, Li M, Huang D. Nuclear to Cytoplasmic Transport Is a Druggable Dependency in HDAC7-driven Small Cell Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413445. [PMID: 39887933 PMCID: PMC11984897 DOI: 10.1002/advs.202413445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/14/2025] [Indexed: 02/01/2025]
Abstract
Immunotherapy has gained approval for use in small cell lung cancer (SCLC), yet only a subset of patients (10-20%) experience meaningful benefits, underscoring the urgent need for more effective therapeutic approaches. This work discovers a distinct HDAC7-high SCLC phenotype characterized by enhanced proliferative potential, which recurs across various subtypes and serves as a predictor of poorer survival outcomes. By analyzing public datasets, this work finds a strong correlation between c-Myc and HDAC7. RNA sequencing and cellular experiments show that XPO1 is a key regulator in the HDAC7/c-Myc axis. HDAC7 promotes β-catenin deacetylation, phosphorylation modulation, nuclear translocation, and formation of the β-catenin/TCF/LEF1 complex, which binds to c-Myc and XPO1 promoters. Activation of the HDAC7/β-catenin pathway upregulates c-Myc and XPO1 expression, while c-Myc also boosts XPO1 expression. Given the difficulty in targeting c-Myc directly, this work tests selinexor and vorinostat in SCLC xenograft models, with selinexor showing superior results. High HDAC7 expression is linked to increased SCLC proliferation, poorer prognosis, and enhanced sensitivity to selinexor in SCLC cell lines and organoid models. Collectively, this work uncovers a novel HDAC7/c-Myc/XPO1 signaling axis that promotes SCLC progression, suggesting that HDAC7 may warrant further investigation as a potential biomarker for assessing selinexor sensitivity in SCLC patients.
Collapse
Affiliation(s)
- Tingting Qin
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060
- Tianjin's Clinical Research Center for CancerDepartment of Thoracic OncologyTianjin Lung Cancer CenterTianjin Cancer Institute & HospitalTianjin Medical UniversityTianjin300060P. R. China
| | - Jingya Wang
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060
- Tianjin's Clinical Research Center for CancerDepartment of Thoracic OncologyTianjin Lung Cancer CenterTianjin Cancer Institute & HospitalTianjin Medical UniversityTianjin300060P. R. China
| | - Jian Wang
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060
- Tianjin's Clinical Research Center for CancerDepartment of Thoracic OncologyTianjin Lung Cancer CenterTianjin Cancer Institute & HospitalTianjin Medical UniversityTianjin300060P. R. China
| | - Qingwu Du
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060
- Tianjin's Clinical Research Center for CancerDepartment of Thoracic OncologyTianjin Lung Cancer CenterTianjin Cancer Institute & HospitalTianjin Medical UniversityTianjin300060P. R. China
| | - Liuchun Wang
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060
- Tianjin's Clinical Research Center for CancerDepartment of Thoracic OncologyTianjin Lung Cancer CenterTianjin Cancer Institute & HospitalTianjin Medical UniversityTianjin300060P. R. China
| | - Hailin Liu
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060
- Tianjin's Clinical Research Center for CancerDepartment of Thoracic OncologyTianjin Lung Cancer CenterTianjin Cancer Institute & HospitalTianjin Medical UniversityTianjin300060P. R. China
| | - Wenting Liu
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060
- Tianjin's Clinical Research Center for CancerDepartment of Thoracic OncologyTianjin Lung Cancer CenterTianjin Cancer Institute & HospitalTianjin Medical UniversityTianjin300060P. R. China
| | - Xueyang Li
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060
- Tianjin's Clinical Research Center for CancerDepartment of Thoracic OncologyTianjin Lung Cancer CenterTianjin Cancer Institute & HospitalTianjin Medical UniversityTianjin300060P. R. China
| | - Yantao Jiang
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060
- Tianjin's Clinical Research Center for CancerDepartment of Thoracic OncologyTianjin Lung Cancer CenterTianjin Cancer Institute & HospitalTianjin Medical UniversityTianjin300060P. R. China
| | - Qi Xu
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060
- Tianjin's Clinical Research Center for CancerDepartment of Thoracic OncologyTianjin Lung Cancer CenterTianjin Cancer Institute & HospitalTianjin Medical UniversityTianjin300060P. R. China
| | - Junjie Yu
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060
- Tianjin's Clinical Research Center for CancerDepartment of Thoracic OncologyTianjin Lung Cancer CenterTianjin Cancer Institute & HospitalTianjin Medical UniversityTianjin300060P. R. China
| | - Huiyan Liu
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060
- Tianjin's Clinical Research Center for CancerDepartment of Thoracic OncologyTianjin Lung Cancer CenterTianjin Cancer Institute & HospitalTianjin Medical UniversityTianjin300060P. R. China
| | - Ting Wang
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060
- Tianjin's Clinical Research Center for CancerDepartment of Thoracic OncologyTianjin Lung Cancer CenterTianjin Cancer Institute & HospitalTianjin Medical UniversityTianjin300060P. R. China
| | - Mengjie Li
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060
- Tianjin's Clinical Research Center for CancerDepartment of Thoracic OncologyTianjin Lung Cancer CenterTianjin Cancer Institute & HospitalTianjin Medical UniversityTianjin300060P. R. China
| | - Dingzhi Huang
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060
- Tianjin's Clinical Research Center for CancerDepartment of Thoracic OncologyTianjin Lung Cancer CenterTianjin Cancer Institute & HospitalTianjin Medical UniversityTianjin300060P. R. China
| |
Collapse
|
4
|
Gu A, Li J, Li M, Liu Y. Patient-derived xenograft model in cancer: establishment and applications. MedComm (Beijing) 2025; 6:e70059. [PMID: 39830019 PMCID: PMC11742426 DOI: 10.1002/mco2.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/24/2024] [Accepted: 12/15/2024] [Indexed: 01/22/2025] Open
Abstract
The patient-derived xenograft (PDX) model is a crucial in vivo model extensively employed in cancer research that has been shown to maintain the genomic characteristics and pathological structure of patients across various subtypes, metastatic, and diverse treatment histories. Various treatment strategies utilized in PDX models can offer valuable insights into the mechanisms of tumor progression, drug resistance, and the development of novel therapies. This review provides a comprehensive overview of the establishment and applications of PDX models. We present an overview of the history and current status of PDX models, elucidate the diverse construction methodologies employed for different tumors, and conduct a comparative analysis to highlight the distinct advantages and limitations of this model in relation to other in vivo models. The applications are elucidated in the domain of comprehending the mechanisms underlying tumor development and cancer therapy, which highlights broad applications in the fields of chemotherapy, targeted therapy, delivery systems, combination therapy, antibody-drug conjugates and radiotherapy. Furthermore, the combination of the PDX model with multiomics and single-cell analyses for cancer research has also been emphasized. The application of the PDX model in clinical treatment and personalized medicine is additionally emphasized.
Collapse
Affiliation(s)
- Ao Gu
- Department of Biliary‐Pancreatic SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiatong Li
- Department of Biliary‐Pancreatic SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Meng‐Yao Li
- Department of Biliary‐Pancreatic SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yingbin Liu
- Department of Biliary‐Pancreatic SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Shen XJ, Wei HL, Mo XC, Mo XX, Li L, He JC, Wei XY, Qin XJ, Xing SP, Luo Z, Chen ZQ, Yang J. Adaptor protein CEMIP reduces the chemosensitivity of small cell lung cancer via activation of an SRC-YAP oncogenic module. Acta Pharmacol Sin 2024; 45:2657-2671. [PMID: 39043968 PMCID: PMC11579373 DOI: 10.1038/s41401-024-01342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 07/25/2024]
Abstract
Small cell lung cancer (SCLC) is a recalcitrant malignancy with dismal prognosis due to rapid relapse after an initial treatment response. More effective treatments for SCLC are desperately needed. Our previous studies showed that cell migration-inducing hyaluronan binding protein (CEMIP) functionally promotes SCLC cell proliferation and metastasis. In this study, we investigated whether and how CEMIP regulates the chemosensitivity of SCLC. Through the GDSC database, we found that CEMIP expression levels were positively correlated with the IC50 values of several commonly used chemotherapeutic drugs in SCLC cells (cisplatin, gemcitabine, 5-fluorouracil and cyclophosphamide). We demonstrated that overexpression or knockdown of CEMIP in SCLC cells resulted in a notable increase or reduction in the IC50 value of cisplatin or etoposide, respectively. We further revealed that CEMIP functions as an adaptor protein in SCLC cells to interact with SRC and YAP through the 1-177 aa domain and 820-1361 aa domain, respectively, allowing the autophosphorylation of Y416 and activation of SRC, thus facilitating the interaction between YAP and activated SRC, and resulting in increased phosphorylation of Y357, protein stability, nuclear accumulation and transcriptional activation of YAP. Overexpressing SRC or YAP counteracted the CEMIP knockdown-mediated increase in the sensitivity of SCLC cells to cisplatin and etoposide. The combination of the SRC inhibitor dasatinib or the YAP inhibitor verteporfin and cisplatin/etoposide (EP regimen) displayed excellent synergistic antitumor effects on SCLC both in vitro and in vivo. This study demonstrated that targeted therapy against the CEMIP/SRC/YAP complex is a potential strategy for SCLC and provides a rationale for the development of future clinical trials with translational prospects.
Collapse
Affiliation(s)
- Xiao-Ju Shen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Hui-Lan Wei
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Cheng Mo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Xiang Mo
- Department of Pharmacology, Maternity and Child Health Care of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Li Li
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001, China
| | - Jing-Chuan He
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Xin-Yu Wei
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Jun Qin
- Department of Pharmaceutical Analysis, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Shang-Ping Xing
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Zhuo Luo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China.
| | - Zhi-Quan Chen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China.
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Drug Basic Research for Prevention and Treatment of Geriatric Diseases, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China.
- The Laboratory of Toxicology of Traditional Chinese Medicine, Leve III Laboratory of National Administration of Traditional Chinese Medicine, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
6
|
Zhang Q, Zhang M. Recent advances in lung cancer organoid (tumoroid) research (Review). Exp Ther Med 2024; 28:383. [PMID: 39161616 PMCID: PMC11332118 DOI: 10.3892/etm.2024.12672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/01/2024] [Indexed: 08/21/2024] Open
Abstract
Lung cancer is the most critical type of malignant tumor that threatens human health. Traditional preclinical models have certain defects; for example, they cannot accurately reflect the characteristics of lung cancer and their development is costly and time-consuming. Through self-organization, cancer stem cells (CSCs) generate cancer organoids that have a structure similar to that of lung cancer tissues, overcoming to some extent the aforementioned challenges, thus enabling them to have broader application prospects. Lung cancer organoid (LCO) development methods can be divided into three broad categories based on the source of cells, which include cell lines, patient-derived xenografts and patient tumor tissue/pleural effusion. There are 17 different methods that have been described for the development of LCOs. These methods can be further merged into six categories based on the source of cells, the pre-treatment method used, the composition of the medium and the culture scaffold. These categories are: i) CSCs induced by defined transcription factors; ii) suspension culture; iii) relative optimal culture medium; iv) suboptimal culture medium; v) mechanical digestion and suboptimal culture medium; and vi) hydrogel scaffold. In the current review, the advantages and disadvantages of each of the aforementioned methods are summarized, and references for supporting studies are cited.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Clinical Laboratory, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Mingyang Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
7
|
Kong R, Ma Y, Li W, Xu Z, Gong S, Liu A, Cheng C, Zhang X, Qin J, Li S, Feng J, Jiang J. Zinc finger protein 367 exerts a cancer-promoting role in small cell lung cancer by influencing the CIT/LATS2/YAP signaling cascade. Toxicol Appl Pharmacol 2024; 489:117005. [PMID: 38880190 DOI: 10.1016/j.taap.2024.117005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
A remarkable cancer-related role of zinc finger protein 367 (ZNF367) has been demonstrated in multiple malignancies. However, whether ZNF367 has a role in small-cell lung cancer (SCLC) remains unexplored. The purpose of this work was to explore the potential role and mechanism of ZNF367 in SCLC. In silico analysis using the Gene Expression Omnibus (GEO) dataset revealed high levels of the ZNF367 transcript in SCLC. Examination of clinical tissues confirmed the significant abundance of ZNF367 in SCLC tissues compared with adjacent non-malignant tissues. The genetic depletion of ZNF367 in SCLC cells led to remarkable alterations in cell proliferation, the cell cycle, colony formation and chemosensitivity. Mechanistically, ZNF367 was shown to regulate the activation of yes-associated protein (YAP) associated with the up-regulation of phosphorylated large tumour suppressor kinase 2 (LATS2). Further investigation revealed that ZNF367 affected the LATS2-YAP cascade by regulating the expression of citron kinase (CIT). Re-expression of constitutively active YAP diminished the tumour-inhibiting function of ZNF367 depletion. Xenograft experiments confirmed the tumour-inhibiting effect of ZNF367 depletion in vivo. In summary, our results demonstrate that the inhibition of ZNF367 displays anticancer effects in SCLC by inhibiting YAP activation, suggesting it as a potential druggable oncogenic target.
Collapse
Affiliation(s)
- Ranran Kong
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Department of Thoracic Surgery, Luoyang Hospital, the Second Affiliated Hospital of Xi'an Jiaotong University, Luoyang, Henan 471003, China
| | - Yuefeng Ma
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Wendeng Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Zhengshui Xu
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Songyu Gong
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Aoran Liu
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Chuantao Cheng
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Xinwu Zhang
- Department of General Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jie Qin
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Shaomin Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jie Feng
- Department of Nephrology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Jiantao Jiang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
8
|
Solta A, Ernhofer B, Boettiger K, Megyesfalvi Z, Heeke S, Hoda MA, Lang C, Aigner C, Hirsch FR, Schelch K, Döme B. Small cells - big issues: biological implications and preclinical advancements in small cell lung cancer. Mol Cancer 2024; 23:41. [PMID: 38395864 PMCID: PMC10893629 DOI: 10.1186/s12943-024-01953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Current treatment guidelines refer to small cell lung cancer (SCLC), one of the deadliest human malignancies, as a homogeneous disease. Accordingly, SCLC therapy comprises chemoradiation with or without immunotherapy. Meanwhile, recent studies have made significant advances in subclassifying SCLC based on the elevated expression of the transcription factors ASCL1, NEUROD1, and POU2F3, as well as on certain inflammatory characteristics. The role of the transcription regulator YAP1 in defining a unique SCLC subset remains to be established. Although preclinical analyses have described numerous subtype-specific characteristics and vulnerabilities, the so far non-existing clinical subtype distinction may be a contributor to negative clinical trial outcomes. This comprehensive review aims to provide a framework for the development of novel personalized therapeutic approaches by compiling the most recent discoveries achieved by preclinical SCLC research. We highlight the challenges faced due to limited access to patient material as well as the advances accomplished by implementing state-of-the-art models and methodologies.
Collapse
Affiliation(s)
- Anna Solta
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Büsra Ernhofer
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Kristiina Boettiger
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Simon Heeke
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Division of Pulmonology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - Clemens Aigner
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Fred R Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Center for Thoracic Oncology, Mount Sinai Health System, Tisch Cancer Institute, New York, NY, USA.
| | - Karin Schelch
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Balazs Döme
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.
- National Koranyi Institute of Pulmonology, Budapest, Hungary.
- Department of Translational Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
9
|
Kook E, Chun KS, Kim DH. Emerging Roles of YES1 in Cancer: The Putative Target in Drug Resistance. Int J Mol Sci 2024; 25:1450. [PMID: 38338729 PMCID: PMC10855972 DOI: 10.3390/ijms25031450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Src family kinases (SFKs) are non-receptor tyrosine kinases that are recognized as proto-oncogenic products. Among SFKs, YES1 is frequently amplified and overexpressed in a variety of human tumors, including lung, breast, ovarian, and skin cancers. YES1 plays a pivotal role in promoting cell proliferation, survival, and invasiveness during tumor development. Recent findings indicate that YES1 expression and activation are associated with resistance to chemotherapeutic drugs and tyrosine kinase inhibitors in human malignancies. YES1 undergoes post-translational modifications, such as lipidation and nitrosylation, which can modulate its catalytic activity, subcellular localization, and binding affinity for substrate proteins. Therefore, we investigated the diverse mechanisms governing YES1 activation and its impact on critical intracellular signal transduction pathways. We emphasized the function of YES1 as a potential mechanism contributing to the anticancer drug resistance emergence.
Collapse
Affiliation(s)
- Eunjin Kook
- Department of Chemistry, Kyonggi University, Suwon 16227, Republic of Korea;
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42691, Republic of Korea;
| | - Do-Hee Kim
- Department of Chemistry, Kyonggi University, Suwon 16227, Republic of Korea;
| |
Collapse
|
10
|
Gutiérrez M, Zamora I, Freeman MR, Encío IJ, Rotinen M. Actionable Driver Events in Small Cell Lung Cancer. Int J Mol Sci 2023; 25:105. [PMID: 38203275 PMCID: PMC10778712 DOI: 10.3390/ijms25010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Small cell lung cancer (SCLC) stands out as the most aggressive form of lung cancer, characterized by an extremely high proliferation rate and a very poor prognosis, with a 5-year survival rate that falls below 7%. Approximately two-thirds of patients receive their diagnosis when the disease has already reached a metastatic or extensive stage, leaving chemotherapy as the remaining first-line treatment option. Other than the recent advances in immunotherapy, which have shown moderate results, SCLC patients cannot yet benefit from any approved targeted therapy, meaning that this cancer remains treated as a uniform entity, disregarding intra- or inter-tumoral heterogeneity. Continuous efforts and technological improvements have enabled the identification of new potential targets that could be used to implement novel therapeutic strategies. In this review, we provide an overview of the most recent approaches for SCLC treatment, providing an extensive compilation of the targeted therapies that are currently under clinical evaluation and inhibitor molecules with promising results in vitro and in vivo.
Collapse
Affiliation(s)
- Mirian Gutiérrez
- Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.G.); (I.Z.)
| | - Irene Zamora
- Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.G.); (I.Z.)
| | - Michael R. Freeman
- Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ignacio J. Encío
- Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.G.); (I.Z.)
- IdiSNA, Navarre Institute for Health Research, 31006 Pamplona, Spain
| | - Mirja Rotinen
- Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.G.); (I.Z.)
- IdiSNA, Navarre Institute for Health Research, 31006 Pamplona, Spain
| |
Collapse
|
11
|
Shen J, Wang Y, Deng X, Sana SRGL. Combining bioinformatics and machine learning algorithms to identify and analyze shared biomarkers and pathways in COVID-19 convalescence and diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1306325. [PMID: 38169604 PMCID: PMC10758397 DOI: 10.3389/fendo.2023.1306325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Background Most patients who had coronavirus disease 2019 (COVID-19) fully recovered, but many others experienced acute sequelae or persistent symptoms. It is possible that acute COVID-19 recovery is just the beginning of a chronic condition. Even after COVID-19 recovery, it may lead to the exacerbation of hyperglycemia process or a new onset of diabetes mellitus (DM). In this study, we used a combination of bioinformatics and machine learning algorithms to investigate shared pathways and biomarkers in DM and COVID-19 convalescence. Methods Gene transcriptome datasets of COVID-19 convalescence and diabetes mellitus from Gene Expression Omnibus (GEO) were integrated using bioinformatics methods and differentially expressed genes (DEGs) were found using the R programme. These genes were also subjected to Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to find potential pathways. The hub DEGs genes were then identified by combining protein-protein interaction (PPI) networks and machine learning algorithms. And transcription factors (TFs) and miRNAs were predicted for DM after COVID-19 convalescence. In addition, the inflammatory and immune status of diabetes after COVID-19 convalescence was assessed by single-sample gene set enrichment analysis (ssGSEA). Results In this study, we developed genetic diagnostic models for 6 core DEGs beteen type 1 DM (T1DM) and COVID-19 convalescence and 2 core DEGs between type 2 DM (T2DM) and COVID-19 convalescence and demonstrated statistically significant differences (p<0.05) and diagnostic validity in the validation set. Analysis of immune cell infiltration suggests that a variety of immune cells may be involved in the development of DM after COVID-19 convalescence. Conclusion We identified a genetic diagnostic model for COVID-19 convalescence and DM containing 8 core DEGs and constructed a nomogram for the diagnosis of COVID-19 convalescence DM.
Collapse
Affiliation(s)
- Jinru Shen
- The First Clinical Medical School, Harbin Medical University, Harbin, China
| | - Yaolou Wang
- The First Clinical Medical School, Harbin Medical University, Harbin, China
| | - Xijin Deng
- Department of Anaesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Si Ri Gu Leng Sana
- Department of Anaesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Lapouge M, Meloche S. A renaissance for YES in cancer. Oncogene 2023; 42:3385-3393. [PMID: 37848624 DOI: 10.1038/s41388-023-02860-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Most of our understanding regarding the involvement of SRC-family tyrosine kinases in cancer has stemmed from studies focused on the prototypical SRC oncogene. However, emerging research has shed light on the important role of YES signaling in oncogenic transformation, tumor growth, metastatic progression, and resistance to various cancer therapies. Clinical evidence indicates that dysregulated expression or activity of YES is a frequent occurrence in human cancers and is associated with unfavorable outcomes. These findings provide a compelling rationale for specifically targeting YES in certain cancer subtypes. Here, we review the crucial role of YES in cancer and discuss the challenges associated with translating preclinical observations into effective YES-targeted therapies.
Collapse
Affiliation(s)
- Marjorie Lapouge
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada.
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
13
|
Alimohammadi M, Gholinezhad Y, Mousavi V, Kahkesh S, Rezaee M, Yaghoobi A, Mafi A, Araghi M. Circular RNAs: novel actors of Wnt signaling pathway in lung cancer progression. EXCLI JOURNAL 2023; 22:645-669. [PMID: 37636026 PMCID: PMC10450211 DOI: 10.17179/excli2023-6209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/20/2023] [Indexed: 08/29/2023]
Abstract
Circular RNAs (CircRNAs) are a class of regulatory RNA transcripts, which are ubiquitously expressed in eukaryotes. CircRNA dysregulation has been shown to disrupt the interaction of the Wnt/β-catenin pathway, which regulates several biological processes involved in tumorigenesis, thereby contributing to the development and progression of cancer. Interactions of tumor-derived circRNAs with the Wnt/β-catenin signaling pathway provide both clinical diagnostic biomarkers and promising therapeutic targets. In this review, we outlined current evidence on the roles of circRNAs associated with the Wnt/β-catenin pathway in regulating lung cancer formation and development. We believe that our findings will assist in the advancement or establishment of circRNA-based lung cancer therapeutic approaches.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahide Mousavi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Yaghoobi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmood Araghi
- Department of Pathology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
14
|
Otegui N, Houry M, Arozarena I, Serrano D, Redin E, Exposito F, Leon S, Valencia K, Montuenga L, Calvo A. Cancer Cell-Intrinsic Alterations Associated with an Immunosuppressive Tumor Microenvironment and Resistance to Immunotherapy in Lung Cancer. Cancers (Basel) 2023; 15:3076. [PMID: 37370686 PMCID: PMC10295869 DOI: 10.3390/cancers15123076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the great clinical success of immunotherapy in lung cancer patients, only a small percentage of them (<40%) will benefit from this therapy alone or combined with other strategies. Cancer cell-intrinsic and cell-extrinsic mechanisms have been associated with a lack of response to immunotherapy. The present study is focused on cancer cell-intrinsic genetic, epigenetic, transcriptomic and metabolic alterations that reshape the tumor microenvironment (TME) and determine response or refractoriness to immune checkpoint inhibitors (ICIs). Mutations in KRAS, SKT11(LKB1), KEAP1 and TP53 and co-mutations of these genes are the main determinants of ICI response in non-small-cell lung cancer (NSCLC) patients. Recent insights into metabolic changes in cancer cells that impose restrictions on cytotoxic T cells and the efficacy of ICIs indicate that targeting such metabolic restrictions may favor therapeutic responses. Other emerging pathways for therapeutic interventions include epigenetic modulators and DNA damage repair (DDR) pathways, especially in small-cell lung cancer (SCLC). Therefore, the many potential pathways for enhancing the effect of ICIs suggest that, in a few years, we will have much more personalized medicine for lung cancer patients treated with immunotherapy. Such strategies could include vaccines and chimeric antigen receptor (CAR) cells.
Collapse
Affiliation(s)
- Nerea Otegui
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Maeva Houry
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Imanol Arozarena
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Cancer Signaling Unit, Navarrabiomed, University Hospital of Navarra (HUN), Public University of Navarra (UPNA), 31008 Pamplona, Spain
| | - Diego Serrano
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Esther Redin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Francisco Exposito
- Yale Cancer Center, New Haven, CT 06519, USA;
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sergio Leon
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Karmele Valencia
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| | - Luis Montuenga
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| | - Alfonso Calvo
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| |
Collapse
|