1
|
Goswami P, Kumar V, Gupta G. Biomedical prospects and challenges of metal dichalcogenides nanomaterials. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:033001. [PMID: 39655850 DOI: 10.1088/2516-1091/ad6abb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/02/2024] [Indexed: 12/18/2024]
Abstract
The biomedical applications of metal dichalcogenides (MDCs) nanomaterials (NMs) are an emerging discipline because of their unique attributes like high surface-to-volume ratio, defect sites, superb catalytic performance, and excitation-dependent emission, which is helpful in bio-imaging and cancer cell killing. Due to the compatibility of sensing material with cells and tissues, MoS2, WS2, and SnS2NMs have piqued the interest of researchers in various biomedical applications like photothermal therapy used in killing cancer cells, drug delivery, photoacoustic tomography (PAT) used in bio-imaging, nucleic acid or gene delivery, tissue engineering, wound healing, etc. Furthermore, these NMs' functionalization and defect engineering can enhance therapeutic efficacy, biocompatibility, high drug transport efficiency, adjustable drug release, dispersibility, and biodegradability. Among the aforementioned materials, MoS2NMs have extensively been explored via functionalization and defects engineering to improve biosensing properties. However, further enhancement is still available. Aside from MoS2, the distinct chemo-physical and optical features of WS2and SnS2NMs promise considerable potential in biosensing, nanomedicine, and pharmaceuticals. This article mainly focuses on the challenges and future aspects of two-dimensional MDCs NMs in biomedical applications, along with their advancements in various medical diagnosis processes.
Collapse
Affiliation(s)
- Preeti Goswami
- CSIR-National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi 110012, India
- Academy of Scientific & Innovative Research, CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - Videsh Kumar
- CSIR-National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi 110012, India
- Delhi Technological University, New Delhi 110042, India
| | - Govind Gupta
- CSIR-National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi 110012, India
- Academy of Scientific & Innovative Research, CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
2
|
Huang T, Huang S, Liu D, Zhu W, Wu Q, Chen L, Zhang X, Liu M, Wei Y. Recent advances and progress on the design, fabrication and biomedical applications of Gallium liquid metals-based functional materials. Colloids Surf B Biointerfaces 2024; 238:113888. [PMID: 38599077 DOI: 10.1016/j.colsurfb.2024.113888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
Gallium (Ga) is a well-known liquid metals (LMs) that possesses the features, such as fluidity, low viscosity, high electrical and thermal conductivity, and relative low toxicity. Owing to the weak interactions between Ga atoms, Ga LMs can be adopted for fabrication of various Ga LMs-based functional materials via ultrasonic treatment and mechanical grinding. Moreover, many organic compounds/polymers can be coated on the surface of LMs-based materials through coordination between oxidized outlayers of Ga LMs and functional groups of organic components. Over the past decades, different strategies have been reported for synthesizing Ga LMs-based functional materials and their biomedical applications have been intensively investigated. Although some review articles have published over the past few years, a concise review is still needed to advance the latest developments in biomedical fields. The main context can be majorly divided into two parts. In the first section, various strategies for fabrication of Ga LMs-based functional materials via top-down strategies were introduced and discussed. Following that, biomedical applications of Ga LMs-based functional materials were summarized and design Ga LMs-based functional materials with enhanced performance for cancer photothermal therapy (PTT) and PTT combined therapy were highlighted. We trust this review article will be beneficial for scientists to comprehend this promising field and greatly advance future development for fabrication of other Ga LMs-based functional materials with better performance for biomedical applications.
Collapse
Affiliation(s)
- Tongsheng Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Shiyu Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Dong Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Qinghua Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Lihua Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Meiying Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Ghosh S, Lai JY. An insight into the dual role of MoS2-based nanocarriers in anticancer drug delivery and therapy. Acta Biomater 2024; 179:36-60. [PMID: 38552760 DOI: 10.1016/j.actbio.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
Over the years, nanomaterials have been exploited as drug delivery systems and therapeutic agents in cancer treatment. Special emphasis has been placed on structure and shape-mediated drug loading and release. Functional materials, including molybdenum disulfide (MoS2), have shown promising results because of their tunable structure and unmatched physicochemical properties. Specifically, easy surface functionalization and high drug adsorption ability make them ideal candidates. Although the large surface area of nanosheets/nanoflakes may result in high drug loading, the encapsulation efficiency is better for MoS2 nanoflower structures. Due to its high targeting abilities, the loading of chemotherapeutic drugs onto MoS2 may minimize nonspecific cellular death and undesired side effects. Furthermore, due to their strong light-absorption ability, MoS2 nanostructures have been widely exploited as photothermal and photodynamic therapeutic agents. The unexplored dimensions of cancer therapy, including chemodynamic (Fenton-like reaction) and piezo-catalytic (ultrasound-mediated reactive oxygen generation), have been recently unlocked, in which the catalytic properties of MoS2 are utilized to generate toxic free radicals to eliminate cancer. Intriguingly, combining these therapeutic modalities often results in high therapeutic efficacy at low doses and minimizes side effects. With a plethora of recent studies, a thorough analysis of current findings is crucial. Therefore, this review discusses the major advances in this field of research. A brief commentary on the limitations/future outlook/ethical issues of the clinical translation of MoS2-mediated cancer treatments is also deliberated. Overall, in our observations, the MoS2-based nanoformulations hold great potential for future cancer therapy applications. STATEMENT OF SIGNIFICANCE: Development of nanomedicines based on MoS2 has opened new avenues in cancer treatment. The MoS2 with different morphologies (nanosheet/nanoflower/QDs) has shown promising results in controlled and targeted drug delivery, leading to minimized side effects and increased therapeutic efficacy. While existing reviews have primarily focused on the optical/thermal properties utilized in photodynamic/photothermal therapy, the outstanding catalytic properties of MoS2 utilized in cancer therapies (chemodynamic/piezo-catalytic) are often overlooked. This review critically highlights and praises/criticizes individual articles reporting the MoS2-based nanoplatforms for cancer therapy applications. Additionally, MoS2-based combined therapies for synergistic effects are discussed. Furthermore, a brief commentary on the future prospects for clinical translations is also deliberated, which is appealing to various research communities engaged in cancer theranostics and biomedical sciences research.
Collapse
Affiliation(s)
- Sandip Ghosh
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; Center for Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
4
|
Bharti S, Tripathi SK, Singh K. Recent progress in MoS 2 nanostructures for biomedical applications: Experimental and computational approach. Anal Biochem 2024; 685:115404. [PMID: 37993043 DOI: 10.1016/j.ab.2023.115404] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
In the category of 2D materials, MoS2 a transition metal dichalcogenide, is a novel and intriguing class of materials with interesting physicochemical properties, explored in applications ranging from cutting-edge optoelectronic to the frontiers of biomedical and biotechnology. MoS2 nanostructures an alternative to heavy toxic metals exhibit biocompatibility, low toxicity and high stability, and high binding affinity to biomolecules. MoS2 nanostructures provide a lot of opportunities for the advancement of novel biosensing, nanodrug delivery system, electrochemical detection, bioimaging, and photothermal therapy. Much efforts have been made in recent years to improve their physiochemical properties by developing a better synthesis approach, surface functionalization, and biocompatibility for their safe use in the advancement of biomedical applications. The understanding of parameters involved during the development of nanostructures for their safe utilization in biomedical applications has been discussed. Computational studies are included in this article to understand better the properties of MoS2 and the mechanism involved in their interaction with biomolecules. As a result, we anticipate that this combined experimental and computational studies of MoS2 will inspire the development of nanostructures with smart drug delivery systems, and add value to the understanding of two-dimensional smart nano-carriers.
Collapse
Affiliation(s)
- Shivani Bharti
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - S K Tripathi
- Department of Physics, Panjab University, Chandigarh, 160014, India
| | - Kedar Singh
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
5
|
Omidian H, Wilson RL, Babanejad N. Bioinspired Polymers: Transformative Applications in Biomedicine and Regenerative Medicine. Life (Basel) 2023; 13:1673. [PMID: 37629530 PMCID: PMC10456054 DOI: 10.3390/life13081673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Bioinspired polymers have emerged as a promising field in biomaterials research, offering innovative solutions for various applications in biomedical engineering. This manuscript provides an overview of the advancements and potential of bioinspired polymers in tissue engineering, regenerative medicine, and biomedicine. The manuscript discusses their role in enhancing mechanical properties, mimicking the extracellular matrix, incorporating hydrophobic particles for self-healing abilities, and improving stability. Additionally, it explores their applications in antibacterial properties, optical and sensing applications, cancer therapy, and wound healing. The manuscript emphasizes the significance of bioinspired polymers in expanding biomedical applications, addressing healthcare challenges, and improving outcomes. By highlighting these achievements, this manuscript highlights the transformative impact of bioinspired polymers in biomedical engineering and sets the stage for further research and development in the field.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (R.L.W.); (N.B.)
| | | | | |
Collapse
|
6
|
Ortiz Peña N, Cherukula K, Even B, Ji DK, Razafindrakoto S, Peng S, Silva AKA, Ménard-Moyon C, Hillaireau H, Bianco A, Fattal E, Alloyeau D, Gazeau F. Resolution of MoS 2 Nanosheets-Induced Pulmonary Inflammation Driven by Nanoscale Intracellular Transformation and Extracellular-Vesicle Shuttles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209615. [PMID: 36649533 DOI: 10.1002/adma.202209615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Pulmonary exposure to some engineered nanomaterials can cause chronic lesions as a result of unresolved inflammation. Among 2D nanomaterials and graphene, MoS2 has received tremendous attention in optoelectronics and nanomedicine. Here an integrated approach is proposed to follow up the transformation of MoS2 nanosheets at the nanoscale and assesss their impact on lung inflammation status over 1 month after a single inhalation in mice. Analysis of immune cells, alveolar macrophages, extracellular vesicles, and cytokine profiling in bronchoalveolar lavage fluid (BALF) shows that MoS2 nanosheets induced initiation of lung inflammation. However, the inflammation is rapidly resolved despite the persistence of various biotransformed molybdenum-based nanostructures in the alveolar macrophages and the extracellular vesicles for up to 1 month. Using in situ liquid phase transmission electron microscopy experiments, the dynamics of MoS2 nanosheets transformation triggered by reactive oxygen species could be evidenced. Three main transformation mechanisms are observed directly at the nanoscale level: 1) scrolling of the dispersed sheets leading to the formation of nanoscrolls and folded patches, 2) etching releasing soluble MoO4 - , and 3) oxidation generating oxidized sheet fragments. Extracellular vesicles released in BALF are also identified as a potential shuttle of MoS2 nanostructures and their degradation products and more importantly as mediators of inflammation resolution.
Collapse
Affiliation(s)
- Nathaly Ortiz Peña
- Université Paris Cité, MPQ Matériaux et Phénomènes Quantiques, CNRS, 10 rue Alice Domon et Léonie Duquet, 75205 Cedex 13, Paris, France
| | - Kondareddy Cherukula
- Université Paris Cité, MSC Matière et Systèmes Complexes, CNRS, 45 rue des Saints Pères, 75006, Paris, France
| | - Benjamin Even
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Ding-Kun Ji
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000, Strasbourg, France
| | - Sarah Razafindrakoto
- Université Paris Cité, MSC Matière et Systèmes Complexes, CNRS, 45 rue des Saints Pères, 75006, Paris, France
| | - Shiyuan Peng
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000, Strasbourg, France
| | - Amanda K A Silva
- Université Paris Cité, MSC Matière et Systèmes Complexes, CNRS, 45 rue des Saints Pères, 75006, Paris, France
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000, Strasbourg, France
| | - Hervé Hillaireau
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000, Strasbourg, France
| | - Elias Fattal
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Damien Alloyeau
- Université Paris Cité, MPQ Matériaux et Phénomènes Quantiques, CNRS, 10 rue Alice Domon et Léonie Duquet, 75205 Cedex 13, Paris, France
| | - Florence Gazeau
- Université Paris Cité, MSC Matière et Systèmes Complexes, CNRS, 45 rue des Saints Pères, 75006, Paris, France
| |
Collapse
|
7
|
Kim M, Li S, Kong DS, Song YE, Park SY, Kim HI, Jae J, Chung I, Kim JR. Polydopamine/polypyrrole-modified graphite felt enhances biocompatibility for electroactive bacteria and power density of microbial fuel cell. CHEMOSPHERE 2023; 313:137388. [PMID: 36455658 DOI: 10.1016/j.chemosphere.2022.137388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/19/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The interactions between the microbes and the surface of an anode play an important role in capturing the respiratory electrons from bacteria in a microbial fuel cell (MFC). The chemical and electrochemical characteristics of the carbon material affect biofilm growth and direct electron transfer in MFCs. This study examined the electrodeposition of polydopamine (PDA) and polypyrrole (PPY) on graphite felt electrode (GF). The MFC with the modified PDA/PPY-GF reached 920 mW/m2, which was 1.5, 1.17, and 1.18 times higher than those of the GF, PDA-GF, and PPY-GF, respectively. PDA has superior hydrophilicity and adhesive force biofilm formation, while PPY provides electrochemically active sites for microbial electron transfer. Raman spectroscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller surface area measurements, and contact angle analysis revealed the enhanced physicochemical properties of the carbon electrode. These results show that co-doped PDA/PPY provides a strategy for electroactive biofilm development and improves the bioelectrochemical performance in realistic MFC reactors.
Collapse
Affiliation(s)
- Minsoo Kim
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Shuwei Li
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Da Seul Kong
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Young Eun Song
- Advanced Biofuel and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Soo-Yong Park
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyoung-Il Kim
- School of Civil & Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jungho Jae
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Ildoo Chung
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
8
|
Facile and rapid synthesis of novel hybrid pigments and their application as colorants in high-performance polymer. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Mohammadkhah S, Ramezanzadeh M, Eivaz Mohammadloo H, Ramezanzadeh B, Ghamsarizade M. Construction of A nano-micro nacre-inspired 2D-MoS2-MOF-glutamate carrier toward designing a high-performance smart epoxy composite. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
A novel pH-and temperature sensitive polymer based on MoS2 modified poly (N-Isopropyl Acrylamide)/ allyl acetoacetate for doxorubicin delivery: synthesis, characterization, in-vitro release and cytotoxicity studies. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
11
|
Hesabi E, Nikpour Nezhati M, Ahmad Panahi H, Bandarchian F, Moniri E. Synthesis of MoS 2/Fe 3O 4/aminosilane/glycidyl methacrylate/melamine dendrimer grafted polystyrene/poly(N-vinylcaprolactam) nanocomposite for adsorption and controlled release of sertraline from aqueous solutions. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2021.1941956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Elham Hesabi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Homayon Ahmad Panahi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Farideh Bandarchian
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Elham Moniri
- Department of Chemistry, Varamin (Pishva) Branch, Islamic Azad University, Varamin, Iran
| |
Collapse
|
12
|
Lei Y, Yang G, Huang Q, Dou J, Dai L, Deng F, Liu M, Li X, Zhang X, Wei Y. Facile synthesis of ionic liquid modified silica nanoparticles for fast removal of anionic organic dyes with extremely high adsorption capacity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Direct grafting of cellulose nanocrystals with poly(ionic liquids) via Gamma-ray irradiation and their utilization for adsorptive removal of CR. Int J Biol Macromol 2022; 194:1029-1037. [PMID: 34856214 DOI: 10.1016/j.ijbiomac.2021.11.175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022]
Abstract
In this work, a simple but effective method based on Gamma-ray initiated polymerization was reported for the first time through direct irradiation of CNCs and ionic liquid monomer to obtain poly (ionic liquids) functionalized CNCs (IL@CNCs). The adsorptive removal of Congo red (CR) from aqueous solution by IL@CNCs was also examined and the influence of contact time, pH values, initial concentrations and temperature on adsorption behavior was investigated in detail. Under the same adsorption conditions, the adsorption capacity was increased from 59.72 mg/g (CNCs) to 195.83 mg/g (IL@CNCs). The results of the adsorption isotherm and adsorption kinetics showed that the experimental data were more suitable to be described by the Freundlich isotherm adsorption model and the pseudo-second-order model. The adsorption process of CR on the surface of the adsorbent was endothermic and spontaneous. When the aqueous solution was acidic, it was more conducive to the adsorption of CR. At 100% breakthrough, the value of adsorption capacity is 199.95 mg/g and the value of partition coefficient is 9.64. Moreover, the adsorption capacity is expected to be further improved through adjustment of polymerization parameters and this method can also be used for preparation other poly (ionic liquids) modified composites.
Collapse
|
14
|
Surface modification of MCM-41 by chain transfer free radical polymerization and their utilization for intracellular pH-responsive delivery of curcumin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Sun S, Sha X, Liang J, Yang G, Hu X, He Z, Liu M, Zhou N, Zhang X, Wei Y. Rapid synthesis of polyimidazole functionalized MXene via microwave-irradiation assisted multi-component reaction and its iodine adsorption performance. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126580. [PMID: 34252673 DOI: 10.1016/j.jhazmat.2021.126580] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 05/27/2023]
Abstract
The adsorption applications of MXene-based adsorbents have intensively investigated recently. However, the performance of MXene-based adsorbents has been largely limited owing to their lack of functional groups and adsorptive sites. Therefore, surface functionalization of MXene is an important route to achieve better performance for environmental adsorption. Herein, polyionic liquid functionalized MXene (named as MXene-PIL) was prepared through a multi-component reaction and adsorptive removal of iodine by MXene-PIL was also evaluated. The successful generation of PIL on MXene was confirmed by a series of characterization measurements. Furthermore, the effects of contact time, iodine concentration, environmental temperature and other factors on the adsorption performance of MXene-PIL were investigated. Adsorption kinetic analysis including pseudo-first-order dynamic model, pseudo-second-order dynamic model and Weber-Morris model, adsorption thermodynamic analysis such as Langmuir and Freundlich models and Van't Hoff equation were used for further analysis the adsorption behavior of iodine by MXene-PIL. We demonstrated that the adsorption capacity could be as high as about 170 mg/g, which is obviously larger than the unmodified MXene and most of other reported adsorbents. Taken together, a simple strategy has been developed for in-situ generation of PIL on MXene and the resultant composites show potential application for adsorptive removal of iodine.
Collapse
Affiliation(s)
- Shiyan Sun
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xuefeng Sha
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Jie Liang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Guang Yang
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xin Hu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Ziyang He
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China; Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Naigen Zhou
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Gamma-ray initiated polymerization from polydopamine-modified MoS2 nanosheets with poly (ionic liquid) and their utilization for adsorptive organic dyes with enhanced efficiency. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Long W, Ouyang H, Hu X, Liu M, Zhang X, Feng Y, Wei Y. State-of-art review on preparation, surface functionalization and biomedical applications of cellulose nanocrystals-based materials. Int J Biol Macromol 2021; 186:591-615. [PMID: 34271046 DOI: 10.1016/j.ijbiomac.2021.07.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022]
Abstract
Cellulose nanocrystals (CNCs) are a class of sustainable nanomaterials that are obtained from plants and microorganisms. These naturally derived nanomaterials are of abundant hydroxyl groups, well biocompatibility, low cost and biodegradable potential, making them suitable and promising candidates for various applications, especially in biomedical fields. In this review, the recent advances and development on the preparation, surface functionalization and biomedical applications of CNCs-based materials have been summarized and outlined. The main context of this paper could be divided into the following three parts. In the first part, the preparation strategies based on physical, chemical, enzymatic and combination techniques for preparation of CNCs have been summarized. The surface functionalization methods for synthesis CNCs-based materials with designed properties and functions were outlined in the following section. Finally, the current state about applications of CNCs-based materials for tissue engineering, medical hydrogels, biosensors, fluorescent imaging and intracellular delivery of biological agents have been highlighted. Moreover, current issues and future directions about the above aspects have also pointed out and discussed. We believe this review will attract great research attention of scientists from materials, chemistry, biomedicine and other disciplines. It will also provide some important insights on the future development of CNCs-based materials especially in biomedical fields.
Collapse
Affiliation(s)
- Wei Long
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Hui Ouyang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Xin Hu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yulin Feng
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polyer Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
18
|
Bahremand F, Shahrabi T, Ramezanzadeh B. Epoxy coating anti-corrosion properties enhancement via the steel surface treatment by nanostructured samarium oxide-poly-dopamine film. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123722. [PMID: 33264896 DOI: 10.1016/j.jhazmat.2020.123722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 06/12/2023]
Abstract
Nowadays, the rare earth element-based conversion coatings (REE-based CCs) are a potential eco-friendly alternative for hazardous and carcinogenic Cr-based CCs. These coatings have morphological defects that impair their performance; therefore, they need to be surface modified. In this study, for the first time, the steel surface was coated with an eco-friendly Sm-based CC and then post-modified by poly-dopamine based biopolymer. The air-exposed based self-polymerization and oxidant-induced polymerization are two protocols which have been utilized for poly-dopamine synthesis. The SEM/EDS analysis and Raman spectroscopy have been employed for the treated steel surface characterization. In addition, the electrochemical impedance spectroscopy (EIS) analysis and salt-spray test (SST) were carried out to investigate the epoxy (EP) coating corrosion protection performance. The Rt values of the EP applied on the Sm-PDA modified steel, subjected to a 3.5 wt. % NaCl solution, are respectively 2550 GΩ.cm2 and 100 kΩ. cm2 before and after the creation of scratch. These values are about 94000-fold and 21-fold more than the Rt of the defected/un-defected EP coatings applied on the unmodified steel. In addition, the EP applied on the Sm-PDA modified steel showed lower corrosion and less disbonding in SST and higher resistance against CD than the EP applied on the unmodified steel.
Collapse
Affiliation(s)
- Farshad Bahremand
- Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, 14115-143, Tehran, Iran
| | - Taghi Shahrabi
- Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, 14115-143, Tehran, Iran.
| | - Bahram Ramezanzadeh
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, 16765-654, Tehran, Iran.
| |
Collapse
|
19
|
Molaei MJ. Two-dimensional (2D) materials beyond graphene in cancer drug delivery, photothermal and photodynamic therapy, recent advances and challenges ahead: A review. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.101830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Bahremand F, Shahrabi T, Ramezanzadeh B. Development of a nanostructured film based on samarium (III)/polydopamine on the steel surface with superior anti-corrosion and water-repellency properties. J Colloid Interface Sci 2021; 582:342-352. [PMID: 32827959 DOI: 10.1016/j.jcis.2020.08.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 11/16/2022]
Abstract
HYPOTHESIS The application of various hydrophobic/superhydrophobic coatings on the surface of metals has become the hot topic of the recent studies. The corrosion protection effectiveness and environmental issues are two important factors that should be taken into consideration when developing advanced surface coatings. Recently, the rare-earth elements (i.e., samarium) and biopolymers (i.e., polydopamine) have attracted much attention in the metals' corrosion control field. EXPERIMENTS The Sm(NO3)3 containing solution was sprayed to the steel (St-12) sheets. Then, the Sm-modified plates were post-modified by polydopamine biopolymers that were synthesized by the self-polymerization (using tris (hydroxymethyl) aminomethane as a buffer), and oxidant-induced (using CuSO4 as an oxidant) approaches. The structural analysis was carried out by different techniques such as contact angle (CA) test. Moreover, the electrochemical impedance spectroscopy (EIS) and polarization tests were performed to investigate the anti-corrosion performance of various samples. FINDINGS The CA test results revealed that by applying the nanostructured Sm-based film, the surface of the metal becomes near superhydrophobic (CA > 140°). EIS results evidenced the significant impact of the post-treatment of the Sm-treated samples by polydopamine (PDA) nanoparticles (NPs) on its corrosion protection ability enhancement. Also, the polarization test results confirmed that all treatments could retard the corrosion of steel via a mixed-type inhibition mechanism.
Collapse
Affiliation(s)
- Farshad Bahremand
- Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran, Iran
| | - Taghi Shahrabi
- Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran, Iran.
| | - Bahram Ramezanzadeh
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran.
| |
Collapse
|
21
|
Synthesis of a novel metal-organic nanocomposite film (MONF) with superior corrosion protection performance based on the biomimetic polydopamine (PDA)-based molecules and Sm2O3 particles on the steel surface. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
El-Kousy SM, El-Shorbagy HG, El-Ghaffar MA. Chitosan/montmorillonite composites for fast removal of methylene blue from aqueous solutions. MATERIALS CHEMISTRY AND PHYSICS 2020; 254:123236. [DOI: 10.1016/j.matchemphys.2020.123236] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
23
|
Domi B, Bhorkar K, Rumbo C, Sygellou L, Yannopoulos SN, Quesada R, Tamayo-Ramos JA. Fate assessment of commercial 2D MoS 2 aqueous dispersions at physicochemical and toxicological level. NANOTECHNOLOGY 2020; 31:445101. [PMID: 32674094 DOI: 10.1088/1361-6528/aba6b3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The physicochemical properties and the toxicological potential of commercially available MoS2 nanoparticles with different lateral size and degradation stage were studied in the present research work. To achieve this, the structure and stoichiometry of fresh and old aqueous suspensions of micro-MoS2 and nano-MoS2 was analyzed by Raman, while x-ray photoelectron spectroscopy allowed to identify more quantitatively the nature of the formed oxidized species. A, the toxicological impact of the nanomaterials under analysis was studied using adenocarcinomic human alveolar basal epithelial cells (A549 cells) and the unicellular fungus S. cerevisiae as biological models. Cell viability assays and reactive oxygen species (ROS) determinations demonstrated different toxicity levels depending on the cellular model used and in function of the degradation state of the selected commercial nanoproducts. Both MoS2 nanoparticle types induced sublethal damage on the A549 cells though the increase of intracellular ROS levels, while comparable concentrations reduced the viability of yeast cells. In addition, the old MoS2 nanoparticles suspensions exhibited a higher toxicity for both human and yeast cells than the fresh ones. Our findings demonstrate that the fate assessment of nanomaterials is a critical aspect to increase the understanding on their characteristics and on their potential impact on biological systems along their life cycle.
Collapse
Affiliation(s)
- Brixhilda Domi
- International Research Centre in Critical Raw Materials-ICCRAM, Universidad de Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Nath J, Saikia PP, Handique J, Gupta K, Dolui SK. Multifunctional mussel‐inspired Gelatin and Tannic acid‐based hydrogel with pH‐controllable release of vitamin B
12. J Appl Polym Sci 2020. [DOI: 10.1002/app.49193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jayashree Nath
- Department of Chemical SciencesTezpur University Tezpur Assam India
| | | | - Junali Handique
- Department of Chemical SciencesTezpur University Tezpur Assam India
| | - Kuldeep Gupta
- Department of Molecular Biology and BiotechnologyTezpur University Tezpur Assam India
| | | |
Collapse
|
25
|
Eliodório KP, Pereira GJ, Morandim‐Giannetti A. Functionalized chitosan with butylammonium ionic liquids for removal of Cr(
VI
) from aqueous solution. J Appl Polym Sci 2020. [DOI: 10.1002/app.49912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Rahmati Z, Abdi J, Vossoughi M, Alemzadeh I. Ag-doped magnetic metal organic framework as a novel nanostructured material for highly efficient antibacterial activity. ENVIRONMENTAL RESEARCH 2020; 188:109555. [PMID: 32559687 DOI: 10.1016/j.envres.2020.109555] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
In the last decades, numerous attempts have been made to prevent microbial pollution spreading, using antibacterial agents. Zeolitic imidazolate framework-8 (ZIF-8) belongs to a subgroup of metal organic frameworks (MOFs) merits of attention due to the zinc ion clusters and its effective antibacterial activity. In this work, Ag-doped magnetic microporous γ-Fe2O3@SiO2@ZIF-8-Ag (FSZ-Ag) was successfully synthesized by a facile methodology in room temperature and used as an antibacterial agent against the growth of the Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. Several characterization methods were applied to analyze the properties of the materials, and the results confirmed the accuracy of the synthesis procedure. Silver ions have employed to enhance the efficiency of antibacterial activity. As the results illustrated, FSZ-Ag nanostructured material had superior performance to inactive E. coli and S. aureus in growth inhibition test in liquid media. The best antibacterial activity as minimum inhibitory concentration (MIC) was 100 mg/L of FSZ-Ag against both bacteria. Leaching rates of silver ions showed that 80% of Ag released in the solutions, which was responsible for inhibiting the growth of bacteria. Also, fluorescence microscopy was used to investigate bacterial viability after 20 h contacting FSZ-Ag to distinguish live and dead bacteria by staining with DAPI and PI fluorescence stains. This novel magnetic nanostructured material is an excellent promising candidate to use in biological applications as high potential bactericidal materials.
Collapse
Affiliation(s)
- Ziba Rahmati
- Department of Chemical and Petroleum Engineering, Sharif University, Tehran, Iran; Institute for Biotechnology and Environment, Sharif University of Technology, Tehran, Iran
| | - Jafar Abdi
- Faculty of Chemical and Material Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University, Tehran, Iran; Institute for Biotechnology and Environment, Sharif University of Technology, Tehran, Iran.
| | - Iran Alemzadeh
- Department of Chemical and Petroleum Engineering, Sharif University, Tehran, Iran; Institute for Biotechnology and Environment, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
27
|
RETRACTED: Construction of an excellent eco-friendly anti-corrosion system based on epoxy@Sm2O3-polydopamine biopolymer on the mild steel surface. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Self-healing, sensitive and antifreezing biomass nanocomposite hydrogels based on hydroxypropyl guar gum and application in flexible sensors. Int J Biol Macromol 2020; 155:1569-1577. [DOI: 10.1016/j.ijbiomac.2019.11.134] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 01/08/2023]
|
29
|
Guo L, Liu Y, Dou J, Huang Q, Lei Y, Chen J, Wen Y, Li Y, Zhang X, Wei Y. Highly efficient removal of Eu3+ ions using carbon nanotubes-based polymer composites synthesized from the combination of Diels-Alder and multicomponent reactions. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Long W, Ouyang H, Zhou C, Wan W, Yu S, Qian K, Liu M, Zhang X, Feng Y, Wei Y. A novel one-pot strategy for fabrication of PEGylated MoS2 composites for pH responsive controlled drug delivery. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Ma A, Jiang C, Li M, Cao L, Deng Z, Bai L, Wang W, Chen H, Yang H, Wei D. Surface-initiated photoinduced electron transfer ATRP and mussel-inspired chemistry: Surface engineering of graphene oxide for self-healing hydrogels. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104547] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Highly efficient removal of iodine ions using MXene-PDA-Ag2Ox composites synthesized by mussel-inspired chemistry. J Colloid Interface Sci 2020; 567:190-201. [DOI: 10.1016/j.jcis.2020.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 02/05/2023]
|
33
|
Abbasvash L, Shadjou N. Synthesize of β-cyclodextrin functionalized dendritic fibrous nanosilica and its application for the removal of organic dye (malachite green). J Mol Recognit 2020; 33:e2850. [PMID: 32253790 DOI: 10.1002/jmr.2850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/05/2020] [Accepted: 03/16/2020] [Indexed: 11/10/2022]
Abstract
Dye removal from industrial waste water has become an important issue. The highvisibility, undesirability and recalcitrance are the significant environmental problemfor the dyes. In the present work,β-cyclodextrin functionalized KCC-1 (KCC-1-NH-β-CD)was synthesized and utilized to the removal of hazardous malachite green. In order to study the morphology of the synthesized nano adsorbent, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were obtained from the surface of the sample. Additionally, the functionalization of KCC-1 with β-cyclodextrin was confirmed with Furrier Transform Infrared spectroscopy (FTIR). The textural property of KCC-1 was verified using nitrogen adsorption/ desorption analysis (BET equation). UV-Vis spectroscopy utilized for the investigation of malachite green by KCC-1-NH-β-CD. Specific surface area of the adsorbent was calculated to be 140 m2 /g and it can be stated that the synthesized nano adsorbent has high removal efficiency. It should be noted that the adsorption capacity of the employed nano adsorbent was more than 95%, which could be attributed to high porosity of β-cyclodextrin functionalized KCC-1.
Collapse
Affiliation(s)
- Leila Abbasvash
- Nanotechnology Research Group, Faculty of Science, Urmia University, Urmia, Iran
| | - Nasrin Shadjou
- Nanotechnology Research Group, Faculty of Science, Urmia University, Urmia, Iran
| |
Collapse
|
34
|
Huang R, Lin Q, Zhong Q, Zhang X, Wen X, Luo H. Removal of Cd(II) and Pb(II) from aqueous solution by modified attapulgite clay. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.01.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
35
|
Jiang X, Xi M, Bai L, Wang W, Yang L, Chen H, Niu Y, Cui Y, Yang H, Wei D. Surface-initiated PET-ATRP and mussel-inspired chemistry for surface engineering of MWCNTs and application in self-healing nanocomposite hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110553. [DOI: 10.1016/j.msec.2019.110553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022]
|
36
|
Shahlol OM, Isawi H, El-Malky MG, Al-Aassar AEHM, zwai AE. Performance evaluation of the different nano-enhanced polysulfone membranes via membrane distillation for produced water desalination in Sert Basin-Libya. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
37
|
Liao Q, Chen D, Zhang X, Ma Y, Yang B, Zhao C, Yang W. Surface Engineering of Organic Polymers by Photo‐induced Free Radical Coupling with p‐Dimethylaminophenyl Group as A Synthesis Block. ChemistrySelect 2020. [DOI: 10.1002/slct.202000082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qingyu Liao
- College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne PolymersBeijing University of Chemical Technology Beijing 100029
| | - Dong Chen
- College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne PolymersBeijing University of Chemical Technology Beijing 100029
| | - Xianhong Zhang
- College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne PolymersBeijing University of Chemical Technology Beijing 100029
| | - Yuhong Ma
- College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne PolymersBeijing University of Chemical Technology Beijing 100029
| | - Biao Yang
- School of Materials Science & Mechanical EngineeringBeijing Technology & Business University Beijing 100048
| | - Changwen Zhao
- College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne PolymersBeijing University of Chemical Technology Beijing 100029
| | - Wantai Yang
- College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne PolymersBeijing University of Chemical Technology Beijing 100029
| |
Collapse
|
38
|
A novel double polymer modified hydrophobic/hydrophilic stationary phase for liquid chromatography. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.08.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Efficient removal of partially hydrolysed polyacrylamide in polymer-flooding produced water using photocatalytic graphitic carbon nitride nanofibres. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
40
|
Yang G, Huang Q, Huang H, Chen J, Lei Y, Deng F, Liu M, Wen Y, Zhang X, Wei Y. Preparation of cationic poly(ionic liquids) functionalization of silica nanoparticles via multicomponent condensation reaction with significant enhancement of adsorption capacity. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Utilization of Cucurbit[6]uril as an effective adsorbent for the remediation of Phthalocyanine and Procion golden yellow dyes. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Yu P, Pang H, Huang J, Meng Y, Huang H, Li S, Liao B, Liang L. Synthesis and rapid cement hardening evaluation of polycarboxylate superplasticizers incorporating ester groups in their backbone chain. J Appl Polym Sci 2020. [DOI: 10.1002/app.48989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Peitao Yu
- Guangzhou Institute of ChemistryChinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Hao Pang
- Guangzhou Institute of ChemistryChinese Academy of Sciences Guangzhou China
| | - Jianheng Huang
- Guangzhou Institute of ChemistryChinese Academy of Sciences Guangzhou China
| | - Yeyun Meng
- Guangzhou Institute of ChemistryChinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Hao Huang
- Guangzhou Institute of ChemistryChinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Simin Li
- Guangzhou Institute of ChemistryChinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Bing Liao
- Guangzhou Institute of ChemistryChinese Academy of Sciences Guangzhou China
| | - liyan Liang
- Guangzhou Institute of ChemistryChinese Academy of Sciences Guangzhou China
| |
Collapse
|
43
|
Tian J, Zhou H, Jiang R, Chen J, Mao L, Liu M, Deng F, Liu L, Zhang X, Wei Y. Preparation and biological imaging of fluorescent hydroxyapatite nanoparticles with poly(2-ethyl-2-oxazoline) through surface-initiated cationic ring-opening polymerization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110424. [PMID: 31923979 DOI: 10.1016/j.msec.2019.110424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 11/29/2022]
Abstract
Fluorescent hydroxyapatite (HAp) nanoparticles have received significant attention in biomedical fields due to their outstanding advantages, such as low immunogenicity, excellent biocompatibility and biodegradability. However, fluorescent HAp nanoparticles with well controlled size and morphology are coated with hydrophobic molecules and their biomedical applications are largely restricted by their poor dispersibility in physiological solutions. Therefore, surface modification of these hydrophobic fluorescent HAp nanoparticles to render them water dispersibility is of utmost importance for biomedical applications. In this work, we reported for the first time for preparation of water-dispersible hydrophilic fluorescent Eu3+-doped HAp nanoparticles (named as HAp-PEOTx) through the cationic ring-opening polymerization using hydrophilic and biocompatible 2-ethyl-2-oxazoline (EOTx) as the monomer. The characterization techniques, such as nuclear magnetic resonance (NMR) spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) have been used to characterize these samples. Results confirmed that we could successfully obtain the hydrophilic fluorescent HAp-PEOTx composites through the strategy described above. These fluorescent HAp-PEOTx composites display great water dispersibility, unique fluorescent properties and excellent biocompatibility, making them promising for in vitro bioimaging applications.
Collapse
Affiliation(s)
- Jianwen Tian
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Huajian Zhou
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Ruming Jiang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Junyu Chen
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Liucheng Mao
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Fengjie Deng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Liangji Liu
- Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Nanchang, Jiangxi 330006, China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yen Wei
- Department of Chemistry, Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China; Department of Chemistry, Center for Nanotechnology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
44
|
Wu J, Zhang J, Zhou S, Yang Z, Zhang X. Ag nanoparticle-decorated carbon nanotube sponges for removal of methylene blue from aqueous solution. NEW J CHEM 2020. [DOI: 10.1039/d0nj00860e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fabrication of AgNP-Pdop-CNTS for MB adsorption and regeneration.
Collapse
Affiliation(s)
- Junjie Wu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology
- Soochow University
- Suzhou 215006
- China
| | - Jiapeng Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology
- Soochow University
- Suzhou 215006
- China
| | - Shenglin Zhou
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology
- Soochow University
- Suzhou 215006
- China
| | - Zhaohui Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology
- Soochow University
- Suzhou 215006
- China
- Jiangsu Key Laboratory of Thin Films
| | - Xiaohua Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology
- Soochow University
- Suzhou 215006
- China
- Jiangsu Key Laboratory of Thin Films
| |
Collapse
|
45
|
Souri Z, Adeli M, Mehdipour E. Two-dimensional MoS2: a platform for constructing three-dimensional structures using RAFT polymerization. NEW J CHEM 2020. [DOI: 10.1039/d0nj03285a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Controlled and straightforward functionalization are relevant strategies to obtain MoS2 platforms with defined functionality and improved processability.
Collapse
Affiliation(s)
- Zeinab Souri
- Faculty of Science
- Department of Chemistry
- Lorestan University
- Khorramabad
- Iran
| | - Mohsen Adeli
- Faculty of Science
- Department of Chemistry
- Lorestan University
- Khorramabad
- Iran
| | - Ebrahim Mehdipour
- Faculty of Science
- Department of Chemistry
- Lorestan University
- Khorramabad
- Iran
| |
Collapse
|
46
|
Habibiyan A, Ramezanzadeh B, Mahdavian M, Kasaeian M. Facile size and chemistry-controlled synthesis of mussel-inspired bio-polymers based on Polydopamine Nanospheres: Application as eco-friendly corrosion inhibitors for mild steel against aqueous acidic solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111974] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
Yang G, Huang Q, Gan D, Huang H, Chen J, Deng F, Liu M, Wen Y, Zhang X, Wei Y. Biomimetic functionalization of carbon nanotubes with poly(ionic liquids) for highly efficient adsorption of organic dyes. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.112059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Yang G, Huang H, Chen J, Gan D, Deng F, Huang Q, Wen Y, Liu M, Zhang X, Wei Y. Preparation of ionic liquids functionalized nanodiamonds-based composites through the Michael addition reaction for efficient removal of environmental pollutants. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Baby R, Saifullah B, Hussein MZ. Carbon Nanomaterials for the Treatment of Heavy Metal-Contaminated Water and Environmental Remediation. NANOSCALE RESEARCH LETTERS 2019; 14:341. [PMID: 31712991 PMCID: PMC6848366 DOI: 10.1186/s11671-019-3167-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/30/2019] [Indexed: 05/08/2023]
Abstract
Nanotechnology is an advanced field of science having the ability to solve the variety of environmental challenges by controlling the size and shape of the materials at a nanoscale. Carbon nanomaterials are unique because of their nontoxic nature, high surface area, easier biodegradation, and particularly useful environmental remediation. Heavy metal contamination in water is a major problem and poses a great risk to human health. Carbon nanomaterials are getting more and more attention due to their superior physicochemical properties that can be exploited for advanced treatment of heavy metal-contaminated water. Carbon nanomaterials namely carbon nanotubes, fullerenes, graphene, graphene oxide, and activated carbon have great potential for removal of heavy metals from water because of their large surface area, nanoscale size, and availability of different functionalities and they are easier to be chemically modified and recycled. In this article, we have reviewed the recent advancements in the applications of these carbon nanomaterials in the treatment of heavy metal-contaminated water and have also highlighted their application in environmental remediation. Toxicological aspects of carbon-based nanomaterials have also been discussed.
Collapse
Affiliation(s)
- Rabia Baby
- Education Department Sukkur IBA University, Sukkur, Sindh 65200 Pakistan
- MSCL, Institute of Advanced Technology, University Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Bullo Saifullah
- MSCL, Institute of Advanced Technology, University Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Mohd Zobir Hussein
- MSCL, Institute of Advanced Technology, University Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
50
|
Long W, Ouyang H, Wan W, Yan W, Zhou C, Huang H, Liu M, Zhang X, Feng Y, Wei Y. "Two in one": Simultaneous functionalization and DOX loading for fabrication of nanodiamond-based pH responsive drug delivery system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110413. [PMID: 31923965 DOI: 10.1016/j.msec.2019.110413] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/13/2019] [Accepted: 11/07/2019] [Indexed: 01/17/2023]
Abstract
Nanodiamond (ND) has been widely studied as a new type of carbon nanomaterials that is expected to be used as a promising candidate in various fields especially in the field of biomedicine. However, its poor water dispersibility and insufficient controlled release limit its practical applications. In this paper, ND-based composites with pH-responsive hydrazone bonds were successfully prepared by a simple chemical reaction between ester groups and hydrazine hydrate, in which ester groups were conjugated on the surface of ND via thiol-ene click reaction. On the other hand, CHO-PEG and doxorubicin hydrochloride (DOX) were linked on the carriers through formation of hydrazone bonds, resulting in improving water dispersibility and high drug loading capacity. The structure, thermal stability, surface morphology and particle size of ND carriers were characterized by different equipment. Results demonstrated that we have successfully prepared these functionalized ND. The release rate of DOX in acidic environment was significantly greater than that in normal physiological environment. More importantly, cell viability and optical imaging results showed that ND-based composites possess good biocompatibility, therapeutic effect, and could successfully transport DOX to HepG2 cells. Considering the above results, we believe that our new ND carriers will become promising candidates for intracellular controlled drug delivery and cancer treatment.
Collapse
Affiliation(s)
- Wei Long
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Hui Ouyang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Weimin Wan
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Wenfeng Yan
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Chaoqun Zhou
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Hongye Huang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yulin Feng
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|