1
|
Nair A, Kurian A, Samuel A, Sumathi S. Photocatalytic degradation of crystal violet using yttrium and copper co-doped nickel aluminate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3746-3759. [PMID: 39828880 DOI: 10.1007/s11356-025-35913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/05/2025] [Indexed: 01/22/2025]
Abstract
Spinels are known for their enhanced photocatalytic activity which demonstrates as one of the promising solutions for the conversion of harmful organic dyes into simpler, less harmful molecules like CO2 and H2O. In this study, spinel nickel aluminate, copper-doped nickel aluminate, and yttrium, copper co-doped nickel aluminate were synthesized using the sol-gel process with citric acid as a capping agent. The synthesized compounds were characterized by various techniques, including XRD, UV-DRS, XPS, and SEM-EDAX, and tested for their photocatalytic activity against the crystal violet dye under UV light. The results showed a degradation of 97.40% within 120 min under UV light using yttrium-doped nickel aluminate and 96.32% degradation in 90 min using copper and yttrium co-doped nickel aluminate. The enhanced photocatalytic activity of yttrium-doped and yttrium-copper co-doped nickel aluminate compared to its undoped counterpart (83.54% in 120 min) highlights the beneficial impact of yttrium and copper incorporation on the material's performance.
Collapse
Affiliation(s)
- Anju Nair
- School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Ancy Kurian
- School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Abima Samuel
- School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Shanmugam Sumathi
- School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
2
|
Kaushal S, Thakur N, Kumar K. Investigation of the efficacy of Zn/Ce-CuO nanoparticles for enhanced photocatalytic, antibacterial, and antioxidant activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34180-2. [PMID: 38992302 DOI: 10.1007/s11356-024-34180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
The world is dealing with unprecedented environmental challenges, leading to a growing urgency to limit environmental damage. So, this study focuses on the synthesis of pure CuO, Zn, Ce, and Zn/Ce dual-doped CuO nanoparticles (NPs) using extract of Citrus limon leaves as reductant via simple co-precipitation method. The X-ray diffraction (XRD) characterization was employed to analyze structural characteristics of synthesized samples which confirm influence of Zn or Ce doping on crystallite size, dislocation density, and strain. The role of functional groups, changes in force constant, and bond length on addition of dopants was indicated by FTIR results. The SEM and TEM results showed variation in morphology from irregular to spherical. The zeta-potential and BET analysis confirmed surface potential as well as surface area characteristics. The change in energy gap values from 1.81 to 1.45 eV of Zn/Ce-doped CuO NPs computed from UV-vis analysis elevated its photocatalytic performance and reduced the chances of recombination of electron-hole pair due to presence of trapping levels between valence and conduction bands. The enhanced photo-degradation of Congo red (CR) and rhodamine B (RhB) with 91 and 94%, respectively, for Zn/Ce-doped CuO NPs was observed. The so-obtained samples have also exhibited good antibacterial and antioxidant activities.
Collapse
Affiliation(s)
- Shweta Kaushal
- Department of Chemistry, Career Point University, Hamirpur, Himachal Pradesh, 176041, India
- Center for Nano-Science and Technology, Career Point University, Hamirpur, Himachal Pradesh, 176041, India
| | - Naveen Thakur
- Department of Physics, Career Point University, Hamirpur, Himachal Pradesh, 176041, India
- Center for Nano-Science and Technology, Career Point University, Hamirpur, Himachal Pradesh, 176041, India
| | - Kuldeep Kumar
- Department of Chemistry, Career Point University, Hamirpur, Himachal Pradesh, 176041, India.
- Center for Nano-Science and Technology, Career Point University, Hamirpur, Himachal Pradesh, 176041, India.
| |
Collapse
|
3
|
Kulandaivel T, Subhramaniyan Rasappan A, Venkatesan Savunthari K, Samuel MS, Kumar M, Dahms HU, Anbalagan AK, Mohan G, Kheawhom S, Ganesan S. Facile fabrication of amorphous Al/Fe based metal-organic framework as effective heterogeneous fenton catalyst for environmental remediation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:156. [PMID: 38592524 DOI: 10.1007/s10653-024-01940-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/24/2024] [Indexed: 04/10/2024]
Abstract
This study presents a facile preparation and durable amorphous Fe and Al-based MOF nanoplate (AlFe-BTC MOFs) catalyst with notable stability in Fenton reactions. Rigorous characterization using XRD, HR-TEM, and BET confirms the amorphous nature of the synthesized AlFe-BTC MOFs, revealing mesopores (3.4 nm diameter), a substantial surface area (232 m2/g), and a pore volume of 0.69 cc/g. XPS analysis delineates distinct Al2p and Fe2p binding energy values, signifying specific chemical bonding. FE-SEM elemental mapping elucidates the distinctive distribution of Fe and Al within the framework of AlFe-BTC MOFs. In catalytic activity testing, the amorphous AlFe-BTC MOFs exhibited outstanding performance, achieving complete degradation of Methylene blue (MB) dye and 78% TOC removal over 45 min of treatment under mild reaction conditions. The catalyst's durability was assessed, revealing about 75% TOC removal and complete dye decomposition over five successive recycles, with less than 1 mg/L of Fe and Al leaching. UV-Vis spectra revealed the destruction of MB dye over multiple recycling studies. Based on this finding, the amorphous AlFe-BTC MOF nanoplates emerge as a promising solution for efficient dye removal from industrial wastewater, underscoring their potential in advanced environmental remediation processes.
Collapse
Affiliation(s)
- Thirumoorthy Kulandaivel
- Department of Chemistry, Saveetha School of Engineering, SIMATS, Chennai, 602 105, India.
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | | | | | - Melvin S Samuel
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI, 53233, USA
| | - Mohanraj Kumar
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, Taiwan, 413310, China
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City, Taiwan, 807, China
| | - Aswin Kumar Anbalagan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, 30013, China
| | - Gopalakrishnan Mohan
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Soorathep Kheawhom
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence On Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok, 10330, Thailand
- Bio-Circular-Green-Economy Technology and Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sivarasan Ganesan
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, Taiwan, 413310, China.
| |
Collapse
|
4
|
Xie Y, Peng X, Song X, Ning P, Sun X, Ma Y, Wang C, Li K. Structural/surface characterization of transition metal element-doped H-ZSM-5 adsorbent for CH 3SH removal: identification of active adsorption sites and deactivation mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24398-24411. [PMID: 38441737 DOI: 10.1007/s11356-024-32518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/14/2024] [Indexed: 04/07/2024]
Abstract
CH3SH is a potential hazard to both chemical production and human health, so controlling its emissions is an urgent priority. In this work, a series of transition metal-loaded H-ZSM-5 adsorbents (Si/Al = 25) (Cu, Fe, Co, Ni, Mn, and Zn) were synthesized through the wet impregnation method and tested for CH3SH physicochemical adsorption at 60 °C. It was shown that the Cu-modified H-ZSM-5 adsorbent was much more active for CH3SH removal due to its abundant strong acid sites than other transition metal-modified H-ZSM-5 adsorbents. The detailed physicochemical properties of various modified H-ZSM-5 adsorbents were characterized by SEM, XRD, N2 physisorption, XPS, H2-TPR, and NH3-TPD. The effects of metal loading mass ratio, calcination temperature, and acid or alkali modification on the performance of the adsorbent were also investigated, and finally 20% Cu/ZSM-5 was found to have the best adsorption capacity after calcined at 350 °C. Additionally, the Cu/ZSM-5 adsorbent modified by sodium bicarbonate could expose more active components, which improved the adsorbent's stability. However, the consumption and reduction of the active component Cu2+ and the accumulation of sulfate during the adsorption process are the main reasons for the deactivation of the adsorbent. In addition, the simultaneous purging of N2 + O2 can effectively restore the adsorption capacity of the deactivated adsorbent and can be used as a potential strategy to regenerate the adsorbent.
Collapse
Affiliation(s)
- Yuxuan Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Xiao Peng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- Faculty of Chemistry and Chemical Engineering, Zhaotong College, Zhaotong, 657000, People's Republic of China
| | - Xin Song
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- National-Regional Engineering Center for Recovery of Waste Gases From Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- National-Regional Engineering Center for Recovery of Waste Gases From Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Xin Sun
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Yixing Ma
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- National-Regional Engineering Center for Recovery of Waste Gases From Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Chi Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| | - Kai Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- National-Regional Engineering Center for Recovery of Waste Gases From Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| |
Collapse
|
5
|
Selvamani M, Kesavan A, Arulraj A, Ramamurthy PC, Rahaman M, Pandiaraj S, Thiruvengadam M, Sacari Sacari EJ, Limache Sandoval EM, Viswanathan MR. Microwave-Assisted Synthesis of Flower-like MnMoO 4 Nanostructures and Their Photocatalytic Performance. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1451. [PMID: 38611966 PMCID: PMC11012821 DOI: 10.3390/ma17071451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 02/02/2024] [Indexed: 04/14/2024]
Abstract
This article describes an affordable method for the synthesis of MnMoO4 nanoflowers through the microwave synthesis approach. By manipulating the reaction parameters like solvent, pH, microwave power, and irradiation duration along this pathway, various nanostructures can be acquired. The synthesized nanoflowers were analyzed by using a powder X-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), and UV-vis diffuse reflectance spectroscopy (UV-DRS) to determine their crystalline nature, morphological and functional group, and optical properties, respectively. X-ray photoelectron spectroscopy (XPS) was performed for the examination of elemental composition and chemical states by qualitative and quantitative analysis. The results of the investigations demonstrated that the MnMoO4 nanostructures with good crystallinity and distinct shape were formed successfully. The synthesized MnMoO4 nanoflowers were tested for their efficiency as a photocatalyst in the degradation studies of methylene blue (MB) as model organic contaminants in an aqueous medium under visible light, which showed their photocatalytic activity with a degradation of 85%. Through the band position calculations using the electronegative value of MnMoO4, the photocatalytic mechanism of the nanostructures was proposed. The results indicated that the effective charge separation, and transfer mechanisms, in addition to the flower-like shape, were responsible for the photocatalytic performance. The stability of the recovered photocatalyst was examined through its recyclability in the degradation of MB. Leveraging MnMoO4's photocatalytic properties, future studies may focus on scaling up these processes for practical and large-scale environmental remediation.
Collapse
Affiliation(s)
- Muthamizh Selvamani
- Department of Physiology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Arulvarman Kesavan
- Department of Physics & Nanotechnology, SRM Institute of Science & Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Arunachalam Arulraj
- Departamento de Electricidad, Facultad de Ingeniería, Universidad Tecnológica Metropolitana (UTEM), Macul, Santiago 7800002, Chile;
| | - Praveen C. Ramamurthy
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India;
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea;
| | - Elisban Juani Sacari Sacari
- Centro de Energías Renovables de Tacna, Facultad de Ciencias, Universidad Nacional Jorge Basadre Grohmann, Avenida Miraflores S/N, Ciudad Universitaria, Tacna 23003, Peru;
| | - Elmer Marcial Limache Sandoval
- Grupo de Investigación HIDROCIENCIA, Facultad de Ciencias de la Salud, Universidad Privada de Tacna, Av. Jorge Basadre Grohmann S/N Pocollay, Tacna 23003, Peru
| | - Mangalaraja Ramalinga Viswanathan
- Faulty of Engineering and Sciences, Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Peñalolén, Santiago 7941169, Chile;
- Department of Mechanical Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| |
Collapse
|
6
|
Mahadadalkar MA, Park N, Yusuf M, Nagappan S, Nallal M, Park KH. Electrospun Fe doped TiO 2 fiber photocatalyst for efficient wastewater treatment. CHEMOSPHERE 2023; 330:138599. [PMID: 37030342 DOI: 10.1016/j.chemosphere.2023.138599] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 05/14/2023]
Abstract
Water pollution caused by industrial wastewater is the most critical environmental problem in the world. Synthetic dyes are commonly used in various industries such as paper, plastic, printing, leather and textile for their ability to impact color. Complex composition, high toxicity and low biodegradability of dyes make them difficult to degrade which causes a substantial negative impact on overall ecosystems. To address this issue we synthesized TiO2 fibers photocatalyst using the combination of sol-gel and electrospinning techniques to be used in the degradation of dyes which causes water pollution. We doped Fe in TiO2 fibers to enhance the absorption in the visible region of the solar spectrum which will also help to increase the degradation efficiency. As synthesized pristine TiO2 fibers and Fe doped TiO2 fibers were analyzed using different characterization techniques such as X-ray diffraction, Scanning electron microscopy, Transmission electron microscopy, UV-Visible spectroscopy, X-ray photoelectron spectroscopy. 5% Fe doped TiO2 fibers show excellent photocatalytic degradation activity for rhodamine B (99% degradation in 120 min). It can be utilized for degradation of other dye pollutants such as methylene blue, Congo red and methyl orange. It shows good photocatalytic activity (97%) even after 5 cycles of reuse. The radical trapping experiments reveals that holes, •O2- and •OH has a significant contribution in the photocatalytic degradation. Due to the robust fibrous nature of 5FeTOF the process of collection of photocatalysts was simple and without loss as compared to powder photocatalysts. This justifies our selection of electrospinning method of synthesis of 5FeTOF which is also useful for large scale production.
Collapse
Affiliation(s)
| | - NaHyun Park
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Mohammad Yusuf
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Saravanan Nagappan
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Muthuchamy Nallal
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Kang Hyun Park
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
7
|
Mahalaxmi S, Rajesh G, Senthil Kumar P, Akilandeswari S, Arul Joshua M, Uma Shankar V, Ramya M, Thirumalai K, Rangasamy G. Fabrication of an effectual, stable and reusable Mg-doped CdAl 2O 4 nanoparticles for photodegradation of toxic pollutants under visible light illumination. CHEMOSPHERE 2023; 322:138178. [PMID: 36828113 DOI: 10.1016/j.chemosphere.2023.138178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/20/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The water contamination caused by discharging extensive organic dyes stuff into water bodies is one of the utmost significant concerns disturbing the environment and human life. CdAl2O4 spinel materials have been excellent in the elimination of emerging pollutants by the photocatalysis route. These materials, when altered through methods namely doping with Mg ions, have benefits over CdAl2O4, especially reduced energy gap and light absorbed in the visible region. The XRD established the creation of space group R 3‾ with no other phase step being found. The photoluminescence outcomes indicated that Mg-doped CdAl2O4 nanoparticles had the preventing e--h+ recombination possibility, which was favorable for the photocatalytic process. The Mg (0.075 M)-doped CdAl2O4 catalyst had higher photocatalytic performance with 94 and 96% removal of two azo (BB and BG) dyes under a mere 90 min visible light irradiation, which indicated enhanced Photodegradation behaviors when compared to other Mg (0.025, 0.050 M)-doped and pure CdAl2O4 materials. More interestingly, pH 5 was optimum for the Mg (0.075 M)-doped CdAl2O4 samples photodegradation of both dyes, and the optimum catalyst amount was 5 mg/100 mL. The doped Mg ions influenced the elimination of both dyes by inducing the manufacture of more active species. The Mg (0.075 M)-doped CdAl2O4 samples is reusable and highly stable with only a 5% reduction in degradation rate after six cycles. Based on the quencher and ESR investigations, the .OH- and h+ are described as active species in the removal reaction. We hope our present examinations highlight the possibility of using Mg (0.075 M)-doped CdAl2O4 product for a broad range of photodegradation applications, also it may be applied for several ecological remediations, surface cleaning devices, foods and pharmaceutical industry applications.
Collapse
Affiliation(s)
- S Mahalaxmi
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - G Rajesh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India.
| | - S Akilandeswari
- PG & Research Department of Physics, Government College for Women (Autonomous), Kumbakonam, Tamil Nadu, India
| | - M Arul Joshua
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - V Uma Shankar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - M Ramya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - K Thirumalai
- Department of Chemistry, Government Arts College, Tiruvannamalai, Tamil Nadu, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
8
|
Cong Z, Zhou L, Zheng N, Sesay T. Synthesis and visible-light photocatalytic property of spinel CuAl 2O 4 for vehicle emissions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64123-64136. [PMID: 37060404 DOI: 10.1007/s11356-023-26814-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/31/2023] [Indexed: 04/16/2023]
Abstract
Photodegradation of vehicle emissions is a promising approach for dealing with atmospheric pollution in road tunnels. In this research, copper aluminate nanoparticles (CuAl2O4) were prepared by the sol-gel method using copper nitrate, aluminum nitrate, and citric acid as precursor materials. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectroscopy to validate their structure, surface morphology, and optical properties, respectively. The XRD and SEM results confirm that the CuAl2O4 powder has a particle size of 20-37 nm and exhibits a spinel-type structure. The upper limit of the stimulation wavelength in the UV-Vis diffuse reflectance spectrum is located at 725 nm with a band gap (Eg) of about 1.50 eV, which is suitable for effective visible-light degradation. Photocatalytic performance of the CuAl2O4 nanoparticles was analyzed by investigating the effects of light source, calcination temperature, and catalyst loading amount on the degradation of vehicle emissions (CO, HC, and NO). Best results were obtained under fluorescent light irradiation by CuAl2O4 nanoparticles calcined at 700 °C. The optimum catalyst amount for decomposing CO, HC, and NO were determined as 0.5 g, 0.5 g, and 2 g, respectively. Overall, the photocatalytic performance study verifies that spinel CuAl2O4 photocatalyst is a valuable material for next-generation technologies aimed at reducing harmful emissions from vehicles.
Collapse
Affiliation(s)
- Zhuohong Cong
- Key Laboratory of Road Construction Technology & Equipment, Ministry of Education, Chang'an University, Xi'an, 710064, Shaanxi, China.
| | - Liang Zhou
- Hunan Academy of Building Research, Changsha, 410000, Hunan, China
| | - Nanxiang Zheng
- Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University, Xi'an, 710064, Shaanxi, China
| | - Taiwo Sesay
- School of Highway, Chang'an University, Xi'an, 710064, China
| |
Collapse
|
9
|
Vinayagasundaram C, Samson Nesaraj A, Sivaranjana P. Overview on multicomponent ceramic composite materials used for efficient photocatalysis – An update. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Madaan V, Mohan B, Bhankar V, Ranga R, Kumari P, Singh P, Sillanpää M, Kumar A, Solovev AA, Kumar K. Metal-Decorated CeO2 nanomaterials for photocatalytic degradation of organic pollutants. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Chellammal Gayathri R, Elakkiya V, Sumathi S. Synthesis of cerium and bismuth doped nickel aluminate for the photodegradation of methylene blue, methyl orange and rhodamine B dyes. CHEMOSPHERE 2022; 303:135056. [PMID: 35618053 DOI: 10.1016/j.chemosphere.2022.135056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
In the current research, NiAl2O4, NiAl1.98Bi0.02O4 and NiAl1.98Ce0.02O4 are fabricated by the sol-gel method. Doping of larger ions (Ce3+ and Bi3+) into smaller aluminium ion lattice increased the lattice constant from 8.0091 Å to 8.9732 Å and 8.0272 Å respectively. XPS spectra of NiAl1.98Ce0.02O4 confirmed the existence of Ce ion in Ce3+ and Ce4+. Spherical shaped particles with visible pores are noticed in the Transmission Electron Microscopy (TEM). The bandgap of the tailored materials has decreased to 2.25 eV and 2.98 eV and increased the catalytic efficiency due to the decrease in electron-hole pair recombination rate. The photocatalytic efficiency of the materials was tested against methylene blue (MB), methyl orange (MO) and rhodamine B (RhB) dyes. In the case of MB degradation, the efficiency of nickel aluminate (0.5 mg/mL) was 54% under UV light irradiation after 60 min, which was increased to 94% and 89% through cerium doped and bismuth doped nickel aluminate catalyst respectively. A drastic increase from 31% to 94% (NiAl1.98Ce0.02O4) and 91% (NiAl1.98Bi0.02O4) was noticed against MO degradation. Doping of cerium and bismuth in nickel aluminate enhanced the photocatalytic activity against the selected coloured organic pollutants.
Collapse
Affiliation(s)
- R Chellammal Gayathri
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - V Elakkiya
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - S Sumathi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
12
|
Navaneetha Pandiyaraj K, Vasu D, Ramkumar M, Deshmukh R, Ghobeira R. Improved degradation of textile effluents via the synergetic effects of Cu-CeO2 catalysis and non-thermal atmospheric pressure plasma treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
|
14
|
Lu Y, Jing H, Yu H, Zhao Y, Li Y, Huo M, Zhu S, Crittenden JC. Enhanced catalytic performance of BiVO4/Pt under the combination of visible-light illumination and ultrasound waves. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|