1
|
Liu MM, Zhang LY, Liu Z. Microwave-enhanced hydrolysis of cellulose by acidic ionic liquids. Prep Biochem Biotechnol 2024; 54:1182-1185. [PMID: 38520299 DOI: 10.1080/10826068.2024.2333467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
In the [Bmim]Cl reaction medium, five different acidic ionic liquids were used as catalysts to study the effects of reaction time, reaction temperature, system water content, catalyst dosage, microwave power, and other factors on cellulose hydrolysis under microwave irradiation. The results showed that in the [Bmim]Cl reaction system, using N-methylpyrrolidone methylsulfonic acid salt as a catalyst, controlling the microwave reaction time at 10 min, reaction temperature at 130 °C, catalyst dosage at 1 g/g (cellulose), water addition at 0.756 μL/g ([Bmim]Cl), and microwave power at 480 W, resulted in the best cellulose hydrolysis effect with a glucose yield of 74.49%. Compared to conventional heating, the glucose yield increased by 24% and the hydrolysis time was reduced by 77%. Microwave irradiation significantly enhances the cellulose hydrolysis process in an ionic liquid medium.
Collapse
Affiliation(s)
- Meng-Meng Liu
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Liang-Yan Zhang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Zhen Liu
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
2
|
Zhang T, Zhang L, Wang F, Wang Y, Zhang T, Ran F. Woven fabric-based separators with low tortuosity for sodium-ion batteries. NANOSCALE 2024; 16:5323-5333. [PMID: 38372642 DOI: 10.1039/d3nr06536g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
In order to achieve high-performance and stable sodium-ion batteries, numerous attempts have been made to construct continuous ion transport pathways, in which a separator is one of the key components that affects the battery performance. In this study, a novel low-tortuosity woven fabric separator is fabricated by combining a weaving technique with a cellulose-solution method, followed by an infusion of a TEMPO-oxidized bacterial cellulose slurry into woven fabric substrates. The macropores in the fabric combine with the micropores in the oxidized bacterial cellulose to form a separator with a suitable pore structure and low tortuosity, forming a continuous sodium ion transport channel within the sodium-ion battery and effectively enhancing ion transport dynamics. The results show that, compared with a commercial polypropylene separator, the TEMPO-oxidized bacterial cellulose-woven fabric separator has a special weaving structure and lower tortuosity (0.77), as well as significant advantages in tensile strength (3.07 MPa), ionic conductivity (1.15 mS c), ionic transfer number (0.75), thermal stability, and electrochemical stability. This novel and simple preparation method provides new possibilities for achieving high-performance separators of sodium-ion batteries through rational structural design by textile technology.
Collapse
Affiliation(s)
- Tianyun Zhang
- School of Mechanical and Electronical Engineering, Department of Textile Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou 730500, China.
| | - Lirong Zhang
- School of Mechanical and Electronical Engineering, Department of Textile Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Fujuan Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou 730500, China.
| | - Yanci Wang
- School of Mechanical and Electronical Engineering, Department of Textile Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Tian Zhang
- School of Mechanical and Electronical Engineering, Department of Textile Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou 730500, China.
| |
Collapse
|
3
|
Zhou T, Gui C, Sun L, Hu Y, Lyu H, Wang Z, Song Z, Yu G. Energy Applications of Ionic Liquids: Recent Developments and Future Prospects. Chem Rev 2023; 123:12170-12253. [PMID: 37879045 DOI: 10.1021/acs.chemrev.3c00391] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Ionic liquids (ILs) consisting entirely of ions exhibit many fascinating and tunable properties, making them promising functional materials for a large number of energy-related applications. For example, ILs have been employed as electrolytes for electrochemical energy storage and conversion, as heat transfer fluids and phase-change materials for thermal energy transfer and storage, as solvents and/or catalysts for CO2 capture, CO2 conversion, biomass treatment and biofuel extraction, and as high-energy propellants for aerospace applications. This paper provides an extensive overview on the various energy applications of ILs and offers some thinking and viewpoints on the current challenges and emerging opportunities in each area. The basic fundamentals (structures and properties) of ILs are first introduced. Then, motivations and successful applications of ILs in the energy field are concisely outlined. Later, a detailed review of recent representative works in each area is provided. For each application, the role of ILs and their associated benefits are elaborated. Research trends and insights into the selection of ILs to achieve improved performance are analyzed as well. Challenges and future opportunities are pointed out before the paper is concluded.
Collapse
Affiliation(s)
- Teng Zhou
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518048, China
| | - Chengmin Gui
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Longgang Sun
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Yongxin Hu
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Hao Lyu
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Zihao Wang
- Department for Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, D-39106 Magdeburg, Germany
| | - Zhen Song
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gangqiang Yu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| |
Collapse
|
4
|
Wu Y, Si H, Yu X, Fu F, Wang Z, Yao J, Liu X. Enhancing the solubility and antimicrobial activity of cellulose through esterification modification using amino acid hydrochlorides. Int J Biol Macromol 2023; 226:793-802. [PMID: 36526062 DOI: 10.1016/j.ijbiomac.2022.12.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Most amino acid molecules have good water solubility and are rich in functional groups, which makes them a promising derivatizing agent for cellulose. However, self-condensation of amino acids and low reaction efficiency always happen during esterification. Here, amino acid hydrochloride ([AA]Cl) is selected as raw material to synthesize cellulose amino acid ester (CAE). Based on TG-MS coupling technology, a significantly faster reaction rate of [AA]Cl compared to raw amino acid can be observed visually. CAE with the degree of substitution 0.412-0.516 is facilely synthesized under 130-170 °C for 10-50 min. Moreover, the effects of amounts of [AA]Cl agent, temperature, and time on the esterification are studied. The CAE can be well dissolved in 7 wt% NaOH aq., resulting in a 7.5 wt% dope. The rheological test of the dope demonstrated a shear-thinning behavior for Newtonian-like fluid, and a high gel temperature (41.7 °C). Further, the synthesized products show distinct antibacterial activity and the bacteriostatic reduction rate against E. coli can reach 99.5 %.
Collapse
Affiliation(s)
- Yang Wu
- Institute of Composite Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hongkuo Si
- Institute of Composite Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaodong Yu
- Institute of Composite Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Feiya Fu
- Institute of Composite Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Zongqian Wang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China.
| | - Juming Yao
- Institute of Composite Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiangdong Liu
- Institute of Composite Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
5
|
Wang C, Zhong WH. Promising Sustainable Technology for Energy Storage Devices: Natural Protein-derived Active Materials. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Liu J, Song Q, Zheng W, Jia W, Jia H, Nan Y, Ren F, Bao JJ, Li Y. Preparation of boronic acid and carboxyl-modified molecularly imprinted polymer and application in a novel chromatography mediated hollow fiber membrane to selectively extract glucose from cellulose hydrolysis. J Sep Sci 2022; 45:2415-2428. [PMID: 35474633 DOI: 10.1002/jssc.202200090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
Abstract
A novel boronic acid and carboxyl-modified glucose molecularly imprinted polymer (glucose-MIP) was prepared through suspension polymerization, which is based on 1.0 mmol glucose as a template, 1.2 mmol methacrylamidophenylboronic acid, and 6.8 mmol methacrylic acid as monomers, 19 mmol ethyleneglycol dimethacrylate, and 1 mmol methylene-bis-acrylamide as crosslinkers. The prepared glucose-MIP had a particle size of 25-70 μm, and was thermally stable below 215°C, with a specific surface area of 174.82 m2. g-1 and average pore size of 9.48 nm. The best selectivity between glucose and fructose was 2.71 and the maximum adsorption capacity of glucose-MIP was up to 236.32 mg. g-1 which was consistent with the Langmuir adsorption model. The similar adsorption abilities in 6 successive runs and the good desorption rate (99.4%) verified glucose-MIP could be reused. It was successfully used for extracting glucose from cellulose hydrolysis. The adsorption amount of glucose was 2.61 mg. mL-1 and selectivity between glucose and xylose reached 4.12. A newly established chromatography (glucose-MIP) mediated hollow fiber membrane method in time separated pure glucose from cellulose hydrolysates on a large-scale, and purified glucose solution with a concentration of 3.84 mg. mL-1 was obtained, which offered a feasible way for the industrial production of glucose from cellulose hydrolysates. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jia Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Qianyi Song
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Wenqing Zheng
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Wenhui Jia
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Haijiao Jia
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Yaqin Nan
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Fangfang Ren
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - James Jianmin Bao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Youxin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
7
|
Ionic liquid-nanoparticle based hybrid systems for energy conversion and energy storage applications. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Wang C, Shen S, Li Y, Pan H, Zhou Z, Li J, Wu B, Jing S, Guo C, Fan J, Guo H. The influence of the size of aromatic monomers on the structure and catalytic activity of polymer solid acids. NEW J CHEM 2022. [DOI: 10.1039/d1nj02596a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High activity hyper-crosslinked polymer solid acids (HCPSAs) were prepared from different aromatic monomers, and the structure was regulated by selecting the type and size of aromatic monomers.
Collapse
Affiliation(s)
- Cui Wang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Shuguang Shen
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yehui Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Huajie Pan
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zijian Zhou
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jing Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Bin Wu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Shuaiqi Jing
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Chenyuan Guo
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jimin Fan
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Hongsheng Guo
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
9
|
Wang P, Yuan YJ, Liu QY, Cheng Q, Shen ZK, Yu ZT, Zou Z. Solar-Driven Lignocellulose-to-H 2 Conversion in Water using 2D-2D MoS 2 /TiO 2 Photocatalysts. CHEMSUSCHEM 2021; 14:2860-2865. [PMID: 34041860 DOI: 10.1002/cssc.202100829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Indexed: 06/12/2023]
Abstract
As an alternative strategy for H2 production under ambient conditions, solar-driven lignocellulose-to-H2 conversion provides a very attractive approach to store and utilize solar energy sustainably. Exploiting efficient photocatalyst for photocatalytic lignocellulose-to-H2 conversion is of huge significance and remains the key challenge for development of solar H2 generation from lignocellulose. Herein, 2D-2D MoS2 /TiO2 photocatalysts with large 2D nanojunction were constructed for photocatalytic lignocellulose-to-H2 conversion. In this smart structure, the 2D nanojunctions acted as efficient channel for charge transfer from TiO2 to MoS2 to improve charge separation efficiency and thus enhance photocatalytic lignocellulose-to-H2 conversion activity. The 2 % MoS2 /TiO2 photocatalyst showed the highest photocatalytic lignocellulose-to-H2 conversion performance with the maximal H2 generation rate of 201 and 21.4 μmol h-1 g-1 in α-cellulose and poplar wood chip aqueous solution, respectively. The apparent quantum yield at 380 nm reached 1.45 % for 2 % 2D-2D TiO2 /MoS2 photocatalyst in α-cellulose aqueous solution. This work highlights the importance of optimizing the interface structures of photocatalyst for solar-driven lignocellulose-to-H2 conversion.
Collapse
Affiliation(s)
- Pei Wang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, 310018, Hangzhou, P. R. China
| | - Yong-Jun Yuan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, 310018, Hangzhou, P. R. China
| | - Qing-Yu Liu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, 310018, Hangzhou, P. R. China
| | - Quan Cheng
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, 310018, Hangzhou, P. R. China
| | - Zhi-Kai Shen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, 310018, Hangzhou, P. R. China
| | - Zhen-Tao Yu
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Science, Nanjing University, 210093, Nanjing, P. R. China
| | - Zhigang Zou
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Science, Nanjing University, 210093, Nanjing, P. R. China
| |
Collapse
|
10
|
Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater. Int J Biol Macromol 2020; 164:2477-2496. [DOI: 10.1016/j.ijbiomac.2020.08.074] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
|
11
|
Deng Y, Yao J, Li H. Effects of ionicity and chain structure on the physicochemical properties of protic ionic liquids. AIChE J 2020. [DOI: 10.1002/aic.16982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yuyan Deng
- Department of Chemistry, ZJU‐NHU United R&D Center Zhejiang University Hangzhou China
| | - Jia Yao
- Department of Chemistry, ZJU‐NHU United R&D Center Zhejiang University Hangzhou China
| | - Haoran Li
- Department of Chemistry, ZJU‐NHU United R&D Center Zhejiang University Hangzhou China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| |
Collapse
|
12
|
Romeo I, Olivito F, Tursi A, Algieri V, Beneduci A, Chidichimo G, Maiuolo L, Sicilia E, De Nino A. Totally green cellulose conversion into bio-oil and cellulose citrate using molten citric acid in an open system: synthesis, characterization and computational investigation of reaction mechanisms. RSC Adv 2020; 10:34738-34751. [PMID: 35514415 PMCID: PMC9056826 DOI: 10.1039/d0ra06542k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/13/2020] [Indexed: 11/21/2022] Open
Abstract
The simultaneous transformation of crystalline or amorphous cellulose into a furan-based bio-oil and cellulose citrate was realized avoiding the use of strong inorganic acids, drastic conditions, enzymatic treatments or microorganism fermentation. This innovative method is very eco-friendly and involves the use of molten citric acid under solvent free conditions at atmospheric pressure. An accurate discussion on chemical composition of the bio-oil enriched in bioprivileged molecules as well as structural and morphological characterization of cellulose citrate was reported. Moreover, mechanistic hypotheses were formulated on the basis of experimental findings and detailed DFT quantum-mechanical simulations were carried out to confirm, step by step, the proposed reaction paths. Innovative and efficient conversion of cellulose in furan-based bio-oil and cellulose citrate.![]()
Collapse
Affiliation(s)
- Isabella Romeo
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- 87036 Arcavacata di Rende (CS)
- Italy
| | - Fabrizio Olivito
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- 87036 Arcavacata di Rende (CS)
- Italy
| | - Antonio Tursi
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- 87036 Arcavacata di Rende (CS)
- Italy
| | - Vincenzo Algieri
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- 87036 Arcavacata di Rende (CS)
- Italy
| | - Amerigo Beneduci
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- 87036 Arcavacata di Rende (CS)
- Italy
| | - Giuseppe Chidichimo
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- 87036 Arcavacata di Rende (CS)
- Italy
| | - Loredana Maiuolo
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- 87036 Arcavacata di Rende (CS)
- Italy
| | - Emilia Sicilia
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- 87036 Arcavacata di Rende (CS)
- Italy
| | - Antonio De Nino
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- 87036 Arcavacata di Rende (CS)
- Italy
| |
Collapse
|
13
|
Tao M, Sun N, Li Y, Wang S, Wang X. The fabrication of trifunctional polyoxometalate hybrids for the cascade conversion of glycerol to lactic acid. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01851d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lactic acid (LA) has been produced with cascade reactions under non-noble metal and base-free conditions.
Collapse
Affiliation(s)
- Meilin Tao
- Key Lab of Polyoxometalate Science of Ministry of Education
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Ningyue Sun
- Key Lab of Polyoxometalate Science of Ministry of Education
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Yiming Li
- Key Lab of Polyoxometalate Science of Ministry of Education
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Shengtian Wang
- Key Lab of Polyoxometalate Science of Ministry of Education
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Xiaohong Wang
- Key Lab of Polyoxometalate Science of Ministry of Education
- Northeast Normal University
- Changchun 130024
- P. R. China
| |
Collapse
|
14
|
Han J, Wang Y, Wan J, Ma Y. Catalytic hydrolysis of cellulose by phosphotungstic acid-supported functionalized metal-organic frameworks with different electronegative groups. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15345-15353. [PMID: 30929176 DOI: 10.1007/s11356-019-04923-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
It is found that strong electronegative groups can selectively adsorb cellulose by hydrogen bonds. Grafting strong negatively charged groups onto catalysts to achieve the functionalization of the catalyst can give it the ability to selectively adsorb cellulose without affecting its catalysis, which is of great significance for the hydrolysis of cellulose. In this study, PTA@MIL-101-X (X = -Br, -NH2, -Cl, -NO2) materials were synthesized to investigate the effect of grafting different electronegative groups on carriers to the directional hydrolysis of cellulose. The synthesized catalysts used phosphotungstic acid as the catalytic center while treated MIL-101 structure as the carrier. The grafting of different electronegative groups changed the crystal structure of the metal organic framework without affecting its stability during the reaction. The strong negative functional groups can selectively adsorb cellulose by forming hydrogen bonds with cellulose hydroxyl groups and weaken the hydrogen bonds within cellulose molecules. This hydrogen bond can reduce the side reaction of glucose, lighten the difficulty of cellulose hydrolysis, and improve the efficiency of cellulose conversion at the same time. The hydrolysis rate of cellulose increased with the electronegativity enhancement of the grafted functional groups, and the grafted -NO2 catalyst PTA@MIL-101-NO2 obtained the highest glucose yield of 16.2% in the cellulose-directed hydrolysis. The -NH2 can form a chemical linkage with PTA through electrostatic interaction to get the highest immobilization stability and exhibit excellent stability in the recycling of catalysts. Graphical abstract.
Collapse
Affiliation(s)
- Jinye Han
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yan Wang
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| | - Jinquan Wan
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yongwen Ma
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
15
|
Cai G, Yang S, Zhou Q, Liu L, Lu X, Xu J, Zhang S. Physicochemical Properties of Various 2-Hydroxyethylammonium Sulfonate -Based Protic Ionic Liquids and Their Potential Application in Hydrodeoxygenation. Front Chem 2019; 7:196. [PMID: 31024888 PMCID: PMC6460099 DOI: 10.3389/fchem.2019.00196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/14/2019] [Indexed: 11/13/2022] Open
Abstract
In order to obtain the regularities of physicochemical properties of hydroxy protic ionic liquids (PILs) and broaden their potential application, a series of 2-hydroxyethylammonium sulfonate-based PILs were synthesized through proton transfer reaction and characterized by NMR and FT-IR and elemental analysis. Their phase transfer behavior (T m) and initial decomposition point (T d) were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively. Meanwhile, the regularities of density (ρ), viscosity (η) and electrical conductivity (σ) of synthesized PILs at different temperatures were measured. The results indicated that their physicochemical properties were tightly related with their structures and the interactions between cations and anions. In addition, the dissociation constants (pKa) of synthesized PILs were obtained by acid-base titration, which revealed that all synthesized PILs had pKa exceeding 7 and their cations were the crux of determining the pKa value. Moreover, several synthesized PILs with a low melting temperature also showed potential application in the deoxidation reaction of cyclohexanol, as they had conversion rates approximating 100% and the selectivity of cyclohexane or cyclohexene was about 80%.
Collapse
Affiliation(s)
- Guangming Cai
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shaoqi Yang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Qing Zhou
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Lifei Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xingmei Lu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Junli Xu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|