1
|
Zhao J, Zhang R, Zhang Y, Piao H, Ren Z, Zhang H, Fan T, Jiang F, Cai Z, Fan L. Biobased Polybutyrolactam Nanofiber with Excellent Biodegradability and Cell Growth for Sustainable Healthcare Textiles. Biomacromolecules 2024; 25:5745-5757. [PMID: 39173040 DOI: 10.1021/acs.biomac.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The white pollution caused by unsustainable materials is a significant challenge around the globe. Here, a novel and fully biobased polybutyrolactam (PBY) nanofiber membrane was fabricated via the electrospinning method. As-spun PBY nanofiber membranes have good thermal stability, high porosity of up to 71.94%, and excellent wetting behavior. The biodegradability in soil, UV aging irradiation, and seawater was investigated. The PBY nanofiber membrane is almost completely degraded in the soil within 80 days, showing excellent degradability. More interestingly, γ-aminobutyric acid, as a healthcare agent with intrinsic hypotensive, tranquilizing, diuretic, and antidiabetic efficacy, can be detected in the degradation intermediates. In addition, the PBY nanofiber membrane also exhibits antibacterial ability against Escherichia coli. As a fully biomass-derived material, the PBY membrane has excellent biodegradable performance in various environments as well as negligible cytotoxicity and commendable cell proliferation. Our PBY nanofiber membrane shows great potential as biodegradable packaging and in vitro healthcare materials.
Collapse
Affiliation(s)
- Jian Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, Key Laboratory of Advanced Braided Composites Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Run Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yajing Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hongwei Piao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zhibo Ren
- Textile Testing Center, China Textile Information Center, Beijing 100025, China
| | - Huan Zhang
- Textile Testing Center, China Textile Information Center, Beijing 100025, China
| | - Tingting Fan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Feng Jiang
- State Key Laboratory of Bio-based Fiber Manufacture Technology, China Textile Academy, Beijing 100025, P.R. China
| | - Zengxiao Cai
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Linpeng Fan
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
2
|
Vatanpour V, Naziri Mehrabani SA, Dehqan A, Arefi-Oskoui S, Orooji Y, Khataee A, Koyuncu I. Performance improvement of polyethersulfone membranes with Ti 3AlCN MAX phase in the treatment of organic and inorganic pollutants. CHEMOSPHERE 2024; 362:142583. [PMID: 38866342 DOI: 10.1016/j.chemosphere.2024.142583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
In this work, the hydrophobic polyethersulfone (PES) membrane was modified by incorporating Ti3AlCN MAX phase. Synthesis of Ti3AlCN MAX phase was performed using the reactive sintering method. The scanning electron microscopy (SEM) images showed a 3D compressed layered morphology for the synthesized MAX phase. The Ti3AlCN MAX phase was added to the casting solution, and the mixed-matrix membranes were fabricated by the non-solvent induced phase inversion method. The performance and antifouling features of bare and modified membranes were explored by pure water flux, flux recovery ratio (FRR), and fouling resistance parameters. Through the modification of membranes by introducing the Ti3AlCN MAX phase, the enhancement of these features was observed, in which the membrane containing 1 wt% of MAX phase showed 17.7 L/m2.h.bar of permeability and 98.6% for FRR. Also, the separation efficiency of all membranes was evaluated by rejecting organic and inorganic pollutants. The Ti3AlCN MAX membranes could reject 96%, 95%, and 88% of reactive blue 50, Rose Bengal, and azithromycin antibiotics, respectively, as well as 98%, 80%, 86%, and 36% of Pb2+, As5+, Na2SO4, and NaCl, respectively. Finally, the outcomes indicated the Ti3AlCN MAX phase was an excellent and efficient novel additive for modifying the PES membrane.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, 15719-14911, Iran; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey.
| | - Seyed Ali Naziri Mehrabani
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey; Nano Science and Nano Engineering Department, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Ahmad Dehqan
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, 15719-14911, Iran
| | - Samira Arefi-Oskoui
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Chemical Engineering & ITU Synthetic Fuels and Chemicals Technology Center (ITU-SENTEK), Istanbul Technical University, Istanbul 34469, Turkey
| | - Ismail Koyuncu
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey.
| |
Collapse
|
3
|
Abstract
MXenes with their unique electronic, optical, chemical, and mechanical properties have shown great promise in soft robotics. MXene-based soft actuators have been designed to display ultrafast actuations and recovery speeds as well as angle-independent structural colors in response to vapor. Several studies have developed soft actuators by combining MXenes with other materials to mimic the movement of natural organisms. Thus, MXene-based soft actuators have the potential to revolutionize the field of soft robotics and flexible electronics (e.g., wearable devices and artificial muscles). MXene-based artificial muscles have been explored for use in kinetic soft robotics as actuators in microsystems requiring exceptional compliance. MXene-based sensors and actuators have already been developed for human-like sensors and photodetection. However, there are still challenges that need to be addressed in such applications, such as the design of stretchable and compliant robotic skins with a high-level functional integration for soft robotics. The integration of various devices, such as power sources, sensors, and actuators, into soft robotics is another crucial challenge. Despite the excellent stretchability and tensile strength of MXene-based composites, there is a vital need to develop their mechanical and electrochemical features and grant them multi-functionalities. Herein, recent developments pertaining to the applications of MXenes and their composites in soft robotics are discussed with a focus on the important challenges and future perspectives.
Collapse
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| |
Collapse
|
4
|
Saad Binkadem M. Fabrication of PCL/CMARX/GO Composite Nanofibrous Mats for Dye Adsorption: Wastewater Treatment. MEMBRANES 2023; 13:622. [PMID: 37504988 PMCID: PMC10383201 DOI: 10.3390/membranes13070622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/21/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
The effluents of industrial wastewater contain several toxic organic and inorganic pollutants that may contaminate clean and freshwater sources if untreated or poorly treated. These toxic pollutants include colors; hazardous compounds; surfactants; cosmetics; agrochemicals; pharmaceutical by-products; and agricultural, pharmaceutical, and medical contaminants. Treating wastewater has become a global problem. Many projects have been started in the last two decades to treat wastewater, resultant water pollution, and associated waste management problems. Adsorbants based on graphene oxide (GO) are viable wastewater treatment materials due to their adaptability, photocatalytic action, and capacity for self-assembly. Here, we report the fabrication of nanofibrous mats from polycaprolactone (PCL), carboxymethyl arabinoxylan (CMARX), and carboxyl-functionalized-graphene oxide using an electrospinning technique. The silver nanoparticles were loaded onto the mat to enhance their photocatalytic activity. These mats were characterized using different techniques, including Fourier transform infrared (FTIR), scanning electron microscope (SEM), and transmission electron microscope (TEM). The water contact angles were used to study their hydrophilic and hydrophobic behavior. The Langmuir isotherm model and adsorption kinetics were studied to evaluate their adsorption capabilities against methylene blue (MB). Sample 2 followed the Langmuir isotherm model (R2 = 0.9939). Adsorption kinetics exhibited pseudo-second order behavior (R2 = 0.9978) due to their maximum correlation coefficient values. MB has excellent adsorption at room temperature and the formation of the monolayer at the surface of the adsorption mat. An enhanced PO43- and MB adsorption was observed, providing recyclability up to 4-5 times. Hence, the fabricated nanofibrous mat would be a potential candidate for more effective wastewater treatment applications.
Collapse
Affiliation(s)
- Mona Saad Binkadem
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Fan G, Peng Q, Chen Y, Long Y, Bai J, Song G, Cheng Q. Preparation of biodegradable composite films based on carboxymethylated holocellulose from wheat straw. Int J Biol Macromol 2023; 242:124868. [PMID: 37201885 DOI: 10.1016/j.ijbiomac.2023.124868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Holocellulose was extracted from wheat straw and catalytically transformed into carboxymethylated holocellulose (CMHCS) to prepare a biodegradable composite film. By changing the type and amount of catalyst, the carboxymethylation of the holocellulose was optimized with respect to the degree of substitution (DS). A high DS of 2.46 was achieved in the presence of a cocatalyst composed of polyethylene glycol and cetyltrimethylammonium bromide. The effect of DS on the properties of CMHCS-derived biodegradable composite films was further investigated. Compared to pristine holocellulose, the mechanical properties of the composite film were significantly improved and increased with increasing DS. The tensile strength, elongation at break, and Young's modulus increased from 6.58 MPa, 51.4 %, and 26.13 MPa for the unmodified holocellulose-based composite film to 14.81 MPa, 89.36 %, and 81.73 MPa for the film derived from the CMHCS with a DS of 2.46. The biodegradability of the composite film was assessed under soil burial biodisintegration conditions and reached 71.5 % degradation after 45 d. Additionally, a possible degradation process for the composite film was proposed. The results indicated that the CMHCS-derived composite film has good comprehensive performance, and CMHCS is expected to be applied in the field of biodegradable composite materials.
Collapse
Affiliation(s)
- Guozhi Fan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 433023, China.
| | - Qiao Peng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 433023, China
| | - Yi Chen
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 433023, China
| | - Yifei Long
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 433023, China
| | - Juan Bai
- Ecoplast Technologies Inc, Wuhan 430202, China
| | - Guangsen Song
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 433023, China
| | - Qunpeng Cheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 433023, China
| |
Collapse
|
6
|
Gheimasi MHM, Sadr MK, Lorestani B, Cheraghi M, Emadzadeh D, Abdollahi S. Efficiency evaluation of titanium oxide nanocomposite membrane in adsorption of chromium from oil effluents. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:668. [PMID: 37178265 DOI: 10.1007/s10661-023-11314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Reverse osmosis and nanofiltration (NF) are the essential physical separation technologies used to remove contaminants from liquid streams. A hybrid of nanofiltration and forward osmosis (FO) was used to increase the removal efficiency of heavy metals in synthesized oil effluents. Thin-film nanocomposite (TFN) membranes were synthesized by applying surface polymerization on a polysulfone substrate to use in the forward osmosis process. The impact of different membrane fabrication conditions such as time, temperature, and pressure on effluent flux, the effect of different concentrations of the heavy metal solution on adsorption rate and sedimentation rate, the impact of TiO2 nanoparticles on the performance and structure of forward osmosis membranes were investigated. The morphology, composition, and properties of TiO2 nanocomposites made by the infrared spectrometer and X-ray diffraction (XRD) were studied. Kinetic modeling and Langmuir, Freundlich, and Tamkin relationships were used to draw adsorption isotherms and evaluate adsorption equilibrium data. The results indicated that pressure and temperature directly affect water outlet flux, and time affects it indirectly. Evaluating the isothermal relationships revealed that chromium adsorption from the TFN 0.05 ppm membrane and thin-film composite (TFC) membrane follows the Langmuir model with correlation coefficients of 0.996 and 0.995, respectively. The significant removal of heavy metals and the acceptable amount of water flux demonstrated the appropriate potential of the titanium oxide nanocomposite membrane, which can be used as an effective adsorbent to remove chromium from aqueous solutions.
Collapse
Affiliation(s)
| | - Maryam Kiani Sadr
- Department of Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
| | - Bahareh Lorestani
- Department of Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Mehrdad Cheraghi
- Department of Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Daryoush Emadzadeh
- Department of Chemical Engineering, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran
| | - Sedighe Abdollahi
- Department of Environmental Science and Engineering, Faculty of Natural Resources and Environment, Malayer University, Malayer, Iran
| |
Collapse
|
7
|
Jiao Z, Liu M, Wang Z, Ning X, Yang Y, Li S, Liu T. Ti3C2OH MXene supported NiPtP nanoparticles with low noble metal content as hydrazine dehydrogenation catalysts. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
8
|
Su W, Liu L, Chen Y, Cui J, Zhao X. Preparation of thin-film composite membrane with Turing structure by PEO-assisted interfacial polymerization combined with choline chloride modification to improve permeability. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
A review on recent advances in 2D-transition metal carbonitride-MXenes nano-sheets/polymer composites' electromagnetic shields, mechanical and thermal properties. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
10
|
Subash A, Naebe M, Wang X, Kandasubramanian B. Biopolymer - A sustainable and efficacious material system for effluent removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130168. [PMID: 36302289 DOI: 10.1016/j.jhazmat.2022.130168] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Undesired discharge of various effluents directly into the aquatic ecosystem can adversely affect water quality, endangering aquatic and terrestrial flora and fauna. Therefore, the conceptual design and fabrication of a sustainable system for alleviating the harmful toxins that are discharged into the atmosphere and water bodies using a green sustainable approach is a fundamental standpoint. Adsorptive removal of toxins (∼99% removal efficacy) is one of the most attractive and facile approaches for cleaner technologies that remediate the environmental impacts and provide a safe operating space. Recently, the introduction of biopolymers for the adsorptive abstraction of toxins from water has received considerable attention due to their eclectic accessibility, biodegradability, biocompatibility, non-toxicity, and enhanced removal efficacy (∼ 80-90% for electrospun fibers). This review summarizes the recent literature on the biosorption of various toxins by biopolymers and the possible interaction between the adsorbent and adsorbate, providing an in-depth perspective of the adsorption mechanism. Most of the observed results are explained in terms of (1) biopolymers classification and application, (2) toxicity of various effluents, (3) biopolymers in wastewater treatment and their removal mechanism, and (4) regeneration, reuse, and biodegradation of the adsorbent biopolymer.
Collapse
Affiliation(s)
- Alsha Subash
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia; Nano Surface Texturing, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - Xungai Wang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India.
| |
Collapse
|
11
|
Chaudhary V, Khanna V, Ahmed Awan HT, Singh K, Khalid M, Mishra YK, Bhansali S, Li CZ, Kaushik A. Towards hospital-on-chip supported by 2D MXenes-based 5 th generation intelligent biosensors. Biosens Bioelectron 2023; 220:114847. [PMID: 36335709 PMCID: PMC9605918 DOI: 10.1016/j.bios.2022.114847] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/19/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022]
Abstract
Existing public health emergencies due to fatal/infectious diseases such as coronavirus disease (COVID-19) and monkeypox have raised the paradigm of 5th generation portable intelligent and multifunctional biosensors embedded on a single chip. The state-of-the-art 5th generation biosensors are concerned with integrating advanced functional materials with controllable physicochemical attributes and optimal machine processability. In this direction, 2D metal carbides and nitrides (MXenes), owing to their enhanced effective surface area, tunable physicochemical properties, and rich surface functionalities, have shown promising performances in biosensing flatlands. Moreover, their hybridization with diversified nanomaterials caters to their associated challenges for the commercialization of stability due to restacking and oxidation. MXenes and its hybrid biosensors have demonstrated intelligent and lab-on-chip prospects for determining diverse biomarkers/pathogens related to fatal and infectious diseases. Recently, on-site detection has been clubbed with solution-on-chip MXenes by interfacing biosensors with modern-age technologies, including 5G communication, internet-of-medical-things (IoMT), artificial intelligence (AI), and data clouding to progress toward hospital-on-chip (HOC) modules. This review comprehensively summarizes the state-of-the-art MXene fabrication, advancements in physicochemical properties to architect biosensors, and the progress of MXene-based lab-on-chip biosensors toward HOC solutions. Besides, it discusses sustainable aspects, practical challenges and alternative solutions associated with these modules to develop personalized and remote healthcare solutions for every individual in the world.
Collapse
Affiliation(s)
- Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, Delhi, 110043, India; SUMAN Laboratory (SUstainable Materials & Advanced Nanotechnology Lab), New Delhi 110072, India.
| | - Virat Khanna
- Department of Mechanical Engineering, MAIT, Maharaja Agrasen University, HP, 174103, India
| | - Hafiz Taimoor Ahmed Awan
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Kamaljit Singh
- Department of Mechanical Engineering, MAIT, Maharaja Agrasen University, HP, 174103, India
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia; Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, Sønderborg, 6400, Denmark
| | - Shekhar Bhansali
- Department of Electrical and Computing Engineering, Florida International University, Miami, FL, 33174, USA
| | - Chen-Zhong Li
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA.
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, 33805, USA; School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India.
| |
Collapse
|
12
|
Mahdavi H, Hosseini F. Fabrication of high-performance mixed matrix blend membranes comprising PES and TPU reinforced with APTS functionalized-graphene oxide via VIPS-NIPS technique for aqueous dye treatment and antifouling properties. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Mahdavi H, Hosseini F, Ghanbari R. Incorporation of MIL-101(Fe)/Tannic acid-PEG to PES-TPU blend membrane to modify a membrane with riveting mechanical stability and separation performance. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Alcohols assisted in-situ growth of MoS2 membrane on tubular ceramic substrate for nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Preparation and characterization of biodegradable polybutylene succinate/polyurethane membrane for harvesting of Chlorella sorokiniana microalgae. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|