1
|
Leng W, Li X, Dong L, Guo Z, Ji X, Cai T, Xu C, Zhu Z, Lin J. The Regenerative Microenvironment of the Tissue Engineering for Urethral Strictures. Stem Cell Rev Rep 2024; 20:672-687. [PMID: 38305981 DOI: 10.1007/s12015-024-10686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Urethral stricture caused by various reasons has threatened the quality of life of patients for decades. Traditional reconstruction methods, especially for long-segment injuries, have shown poor outcomes in treating urethral strictures. Tissue engineering for urethral regeneration is an emerging concept in which special designed scaffolds and seed cells are used to promote local urethral regeneration. The scaffolds, seed cells, various factors and the host interact with each other and form the regenerative microenvironment. Among the various interactions involved, vascularization and fibrosis are the most important biological processes during urethral regeneration. Mesenchymal stem cells and induced pluripotent stem cells play special roles in stricture repair and facilitate long-segment urethral regeneration, but they may also induce carcinogenesis and genomic instability during reconstruction. Nevertheless, current technologies, such as genetic engineering, molecular imaging, and exosome extraction, provide us with opportunities to manage seed cell-related regenerative risks. In this review, we described the interactions among seed cells, scaffolds, factors and the host within the regenerative microenvironment, which may help in determining the exact molecular mechanisms involved in urethral stricture regeneration and promoting clinical trials and the application of urethral tissue engineering in patients suffering from urethral stricture.
Collapse
Affiliation(s)
- Wenyuan Leng
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Xiaoyu Li
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Lei Dong
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Zhenke Guo
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Xing Ji
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Tianyu Cai
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Chunru Xu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Zhenpeng Zhu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Jian Lin
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.
- Institute of Urology, Peking University, Beijing, 100034, China.
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China.
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China.
| |
Collapse
|
2
|
Jin Y, Zhao W, Yang M, Fang W, Gao G, Wang Y, Fu Q. Cell-Based Therapy for Urethral Regeneration: A Narrative Review and Future Perspectives. Biomedicines 2023; 11:2366. [PMID: 37760808 PMCID: PMC10525510 DOI: 10.3390/biomedicines11092366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/29/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Urethral stricture is a common urological disease that seriously affects quality of life. Urethroplasty with grafts is the primary treatment, but the autografts used in clinical practice have unavoidable disadvantages, which have contributed to the development of urethral tissue engineering. Using various types of seed cells in combination with biomaterials to construct a tissue-engineered urethra provides a new treatment method to repair long-segment urethral strictures. To date, various cell types have been explored and applied in the field of urethral regeneration. However, no optimal strategy for the source, selection, and application conditions of the cells is available. This review systematically summarizes the use of various cell types in urethral regeneration and their characteristics in recent years and discusses possible future directions of cell-based therapies.
Collapse
Affiliation(s)
- Yangwang Jin
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC 27157, USA
| | - Ming Yang
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| | - Wenzhuo Fang
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| | - Guo Gao
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| |
Collapse
|
3
|
Engineered human organ-specific urethra as a functional substitute. Sci Rep 2022; 12:21346. [PMID: 36494468 PMCID: PMC9734558 DOI: 10.1038/s41598-022-25311-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Urologic patients may be affected by pathologies requiring surgical reconstruction to re-establish a normal function. The lack of autologous tissues to reconstruct the urethra led clinicians toward new solutions, such as tissue engineering. Tridimensional tissues were produced and characterized from a clinical perspective. The balance was optimized between increasing the mechanical resistance of urethral-engineered tissue and preserving the urothelium's barrier function, essential to avoid urine extravasation and subsequent inflammation and fibrosis. The substitutes produced using a mix of vesical (VF) and dermal fibroblasts (DF) in either 90%:10% or 80%:20% showed mechanical resistance values comparable to human native bladder tissue while maintaining functionality. The presence of mature urothelium markers such as uroplakins and tight junctions were documented. All substitutes showed similar histological features except for the noticeable decrease in polysaccharide globules for the substitutes made with a higher proportion of DF. The degree of maturation evaluated with electron microscopy was positively correlated with the increased concentration of VF in the stroma. Substitutes produced with VF and at least 10% of DF showed sufficient mechanical resistance to withstand surgeon manipulation and high functionality, which may improve long-term patients' quality of life, representing a great future alternative to current treatments.
Collapse
|
4
|
Tan Q, Le H, Tang C, Zhang M, Yang W, Hong Y, Wang X. Tailor-made natural and synthetic grafts for precise urethral reconstruction. J Nanobiotechnology 2022; 20:392. [PMID: 36045428 PMCID: PMC9429763 DOI: 10.1186/s12951-022-01599-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
Injuries to the urethra can be caused by malformations, trauma, inflammation, or carcinoma, and reconstruction of the injured urethra is still a significant challenge in clinical urology. Implanting grafts for urethroplasty and end-to-end anastomosis are typical clinical interventions for urethral injury. However, complications and high recurrence rates remain unsatisfactory. To address this, urethral tissue engineering provides a promising modality for urethral repair. Additionally, developing tailor-made biomimetic natural and synthetic grafts is of great significance for urethral reconstruction. In this work, tailor-made biomimetic natural and synthetic grafts are divided into scaffold-free and scaffolded grafts according to their structures, and the influence of different graft structures on urethral reconstruction is discussed. In addition, future development and potential clinical application strategies of future urethral reconstruction grafts are predicted.
Collapse
Affiliation(s)
- Qinyuan Tan
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China
| | - Hanxiang Le
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, People's Republic Of China
| | - Chao Tang
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China
| | - Ming Zhang
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China
| | - Weijie Yang
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China
| | - Yazhao Hong
- Department of Pediatric Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Street, Nanjing, 210029, People's Republic Of China.
| | - Xiaoqing Wang
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China.
| |
Collapse
|
5
|
Tissue Engineering and Regenerative Medicine in Pediatric Urology: Urethral and Urinary Bladder Reconstruction. Int J Mol Sci 2022; 23:ijms23126360. [PMID: 35742803 PMCID: PMC9224288 DOI: 10.3390/ijms23126360] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 11/22/2022] Open
Abstract
In the case of pediatric urology there are several congenital conditions, such as hypospadias and neurogenic bladder, which affect, respectively, the urethra and the urinary bladder. In fact, the gold standard consists of a urethroplasty procedure in the case of urethral malformations and enterocystoplasty in the case of urinary bladder disorders. However, both surgical procedures are associated with severe complications, such as fistulas, urethral strictures, and dehiscence of the repair or recurrence of chordee in the case of urethroplasty, and metabolic disturbances, stone formation, urine leakage, and chronic infections in the case of enterocystoplasty. With the aim of overcoming the issue related to the lack of sufficient and appropriate autologous tissue, increasing attention has been focused on tissue engineering. In this review, both the urethral and the urinary bladder reconstruction strategies were summarized, focusing on pediatric applications and evaluating all the biomaterials tested in both animal models and patients. Particular attention was paid to the capability for tissue regeneration in dependence on the eventual presence of seeded cell and growth factor combinations in several types of scaffolds. Moreover, the main critical features needed for urinary tissue engineering have been highlighted and specifically focused on for pediatric application.
Collapse
|
6
|
Vasyutin I, Butnaru D, Lyundup A, Timashev P, Vinarov A, Kuznetsov S, Atala A, Zhang Y. Frontiers in urethra regeneration: current state and future perspective. Biomed Mater 2021; 16. [PMID: 32503009 DOI: 10.1088/1748-605x/ab99d2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022]
Abstract
Despite the positive achievements attained, the treatment of male urethral strictures and hypospadiases still remains a challenge, particularly in cases of severe urethral defects. Complications and the need for additional interventions in such cases are common. Also, shortage of autologous tissue for graft harvesting and significant morbidity in the location of harvesting present problems and often lead to staged treatment. Tissue engineering provides a promising alternative to the current sources of grafts for urethroplasty. Since the first experiments in urethral substitution with tissue engineered grafts, this topic in regenerative medicine has grown remarkably, as many different types of tissue-engineered grafts and approaches in graft design have been suggested and testedin vivo. However, there have been only a few clinical trials of tissue-engineered grafts in urethral substitution, involving hardly more than a hundred patients overall. This indicates that the topic is still in its inception, and the search for the best graft design is continuing. The current review focuses on the state of the art in urethral regeneration with tissue engineering technology. It gives a comprehensive overview of the components of the tissue-engineered graft and an overview of the steps in graft development. Different cell sources, types of scaffolds, assembling approaches, options for vascularization enhancement and preclinical models are considered.
Collapse
Affiliation(s)
- Igor Vasyutin
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Denis Butnaru
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Alexey Lyundup
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Peter Timashev
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Andrey Vinarov
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Sergey Kuznetsov
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, 391 Technology Way NE, Winston-Salem, NC 27101, United States of America
| | - Yuanyuan Zhang
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia.,Wake Forest Institute for Regenerative Medicine, 391 Technology Way NE, Winston-Salem, NC 27101, United States of America
| |
Collapse
|
7
|
Wan X, Zheng D, Yao H, Fu S, Wei Z, Wang Z, Xie M. An extracellular matrix-mimicking, bilayered, heterogeneous, porous, nanofibrous scaffold for anterior urethroplasty in a rabbit model. ACTA ACUST UNITED AC 2020; 15:065008. [PMID: 32580173 DOI: 10.1088/1748-605x/ab9fd0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Anterior urethral reconstruction is still a challenging clinical task, and tissue engineering technology offers new options for anterior urethroplasty. In this work, we evaluated an extracellular matrix (ECM) mimicking scaffold for anterior urethral reconstruction in a New Zealand white rabbit model. After the creation of a urethral defect, the ECM-mimicking scaffold was applied in six rabbits, and small intestinal submucosa (SIS) was used in three rabbits. The outcomes of urethrography and histological analysis were evaluated six months postoperatively. A larger urethral diameter was observed in the ECM-mimicking scaffolds (3.01 ± 0.12 mm) than in the SIS grafts (0.95 ± 0.07 mm). Urethral fistulae and stenosis were observed in the SIS grafts. Urothelial and smooth muscle cells were observed in all rabbits, but the ECM-mimicking scaffold showed better performance. The ECM-mimicking scaffold may be an effective clinical treatment option for congenital and acquired urethral pathologies.
Collapse
Affiliation(s)
- Xiang Wan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, People's Republic of China. These authors have contributed equally
| | | | | | | | | | | | | |
Collapse
|
8
|
The current state of tissue engineering in the management of hypospadias. Nat Rev Urol 2020; 17:162-175. [DOI: 10.1038/s41585-020-0281-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 12/20/2022]
|
9
|
A Comprehensive Review Emphasizing Anatomy, Etiology, Diagnosis, and Treatment of Male Urethral Stricture Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9046430. [PMID: 31139658 PMCID: PMC6500724 DOI: 10.1155/2019/9046430] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/31/2019] [Indexed: 12/21/2022]
Abstract
To date, urethral stricture disease in men, though relatively common, represents an often poorly managed condition. Therefore, this article is dedicated to encompassing the currently existing data upon anatomy, etiology, symptoms, diagnosis, and treatment of the disease, based on more than 40 years of experience at a tertiary referral center and a PubMed literature review enclosing publications until September 2018.
Collapse
|
10
|
Zurina IM, Shpichka AI, Saburina IN, Kosheleva NV, Gorkun AA, Grebenik EA, Kuznetsova DS, Zhang D, Rochev YA, Butnaru DV, Zharikova TM, Istranova EV, Zhang Y, Istranov LP, Timashev PS. 2D/3D buccal epithelial cell self-assembling as a tool for cell phenotype maintenance and fabrication of multilayered epithelial linings in vitro. ACTA ACUST UNITED AC 2018; 13:054104. [PMID: 29926804 DOI: 10.1088/1748-605x/aace1c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Maintaining the epithelial status of cells in vitro and fabrication of a multilayered epithelial lining is one of the key problems in the therapy using cell technologies. When cultured in a monolayer, epithelial cells change their phenotype from epithelial to epithelial-mesenchymal or mesenchymal that makes it difficult to obtain a sufficient number of cells in a 2D culture and to use them in tissue engineering. Here, using buccal epithelial cells from the oral mucosa, we developed a novel approach to recover and maintain the stable cell phenotype and form a multilayered epithelial lining in vitro via the 2D/3D cell self-assembling. Transitioning the cells from the monolayer to non-adhesive 3D culture conditions led to formation of self-assembling spheroids, with restoration of their epithelial characteristics after epithelial-mesenchymal transition. In 7 days, the cells within spheroids restored the apical-basal polarity, and the formation of both tight (ZO1) and adherent (E-cadherin) intercellular junctions was shown. Thus, culturing buccal epithelial cells in a 3D system allowed us to recover and durably maintain the morphological and functional characteristics of epithelial cells. The multilayered epithelial lining formation was achieved after placing spheroids for 7 days onto a hybrid matrix, which consisted of collagen layers and reinforcing poly (lactide-co-glycolide) fibers and was proven promising for replacement of the urothelium. Thus, we offer an effective technique of forming multilayered epithelial linings on carrier-matrices using cell spheroids that was not previously described elsewhere and can find a wide range of applications in tissue engineering, replacement surgery, and regenerative medicine.
Collapse
Affiliation(s)
- I M Zurina
- FSBSI 'Institute of General Pathology and Pathophysiology', Moscow, Russia. Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Schäfer FM, Stehr M. Tissue engineering in pediatric urology - a critical appraisal. Innov Surg Sci 2018; 3:107-118. [PMID: 31579774 PMCID: PMC6604568 DOI: 10.1515/iss-2018-0011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/17/2018] [Indexed: 01/01/2023] Open
Abstract
Tissue engineering is defined as the combination of biomaterials and bioengineering principles together with cell transplantation or directed growth of host cells to develop a biological replacement tissue or organ that can be a substitute for normal tissue both in structure and function. Despite early promising preclinical studies, clinical translation of tissue engineering in pediatric urology into humans has been unsuccessful both for cell-seeded and acellular scaffolds. This can be ascribed to various factors, including the use of only non-diseased models that inaccurately describe the structural and functional modifications of diseased tissue. The paper addresses potential future strategies to overcome the limitations experienced in clinical applications so far. This includes the use of stem cells of various origins (mesenchymal stem cells, hematopoietic stem/progenitor cells, urine-derived stem cells, and progenitor cells of the urothelium) as well as the need for a deeper understanding of signaling pathways and directing tissue ingrowth and differentiation through the concept of dynamic reciprocity. The development of smart scaffolds that release trophic factors in a set and timely manner will probably improve regeneration. Modulation of innate immune response as a major contributor to tissue regeneration outcome is also addressed. It is unlikely that only one of these strategies alone will lead to clinically applicable tissue engineering strategies in pediatric urology. In the meanwhile, the fundamental new insights into regenerative processes already obtained in the attempts of tissue engineering of the lower urogenital tract remain our greatest gain.
Collapse
Affiliation(s)
- Frank-Mattias Schäfer
- Department of Pediatric Surgery and Pediatric Urology, Cnopfsche Kinderklinik, Nürnberg, Germany
| | - Maximilian Stehr
- Department of Pediatric Surgery and Pediatric Urology, Cnopfsche Kinderklinik, Nürnberg, Germany
| |
Collapse
|
12
|
Lv X, Feng C, Liu Y, Peng X, Chen S, Xiao D, Wang H, Li Z, Xu Y, Lu M. A smart bilayered scaffold supporting keratinocytes and muscle cells in micro/nano-scale for urethral reconstruction. Am J Cancer Res 2018; 8:3153-3163. [PMID: 29896309 PMCID: PMC5996367 DOI: 10.7150/thno.22080] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/30/2018] [Indexed: 11/05/2022] Open
Abstract
Rationale: In urethral tissue engineering, the currently available reconstructive procedures are insufficient due to a lack of appropriate scaffolds that would support the needs of various cell types. To address this problem, we developed a bilayer scaffold comprising a microporous network of silk fibroin (SF) and a nanoporous bacterial cellulose (BC) scaffold and evaluated its feasibility and potential for long-segment urethral regeneration in a dog model. Methods: The freeze-drying and self-assembling method was used to fabricate the bilayer scaffold by stationary cultivation G. xylinus using SF scaffold as a template. The surface morphology, porosity and mechanical properties of all prepared SF-BC scaffolds were characterized using Scanning electron microscopy (SEM), microcomputed tomography and universal testing machine. To further investigate the suitability of the bilayer scaffolds for tissue engineering applications, biocompatibility was assessed using an MTT assay. The cell distribution, viability and morphology were evaluated by seeding epithelial cells and muscle cells on the scaffolds, using the 3D laser scanning confocal microscopy, and SEM. The effects of urethral reconstruction with SF-BC bilayer scaffold was evaluated in dog urethral defect models. Results: Scanning electron microscopy revealed that SF-BC scaffold had a clear bilayer structure. The SF-BC bilayer scaffold is highly porous with a porosity of 85%. The average pore diameter of the porous layer in the bilayer SF-BC composites was 210.2±117.8 μm. Cultures established with lingual keratinocytes and lingual muscle cells confirmed the suitability of the SF-BC structures to support cell adhesion and proliferation. In addition, SEM demonstrated the ability of cells to attach to scaffold surfaces and the biocompatibility of the matrices with cells. At 3 months after implantation, urethra reconstructed with the SF-BC scaffold seeded with keratinocytes and muscle cells displayed superior structure compared to those with only SF-BC scaffold. Principal Conclusion: These results demonstrate that the bilayer SF-BC scaffold may be a promising biomaterial with good biocompatibility for urethral regeneration and could be used for numerous other types of hollow-organ tissue engineering grafts, including vascular, bladder, ureteral, bowel, and intestinal.
Collapse
|
13
|
Zhou S, Yang R, Zou Q, Zhang K, Yin T, Zhao W, Shapter JG, Gao G, Fu Q. Fabrication of Tissue-Engineered Bionic Urethra Using Cell Sheet Technology and Labeling By Ultrasmall Superparamagnetic Iron Oxide for Full-Thickness Urethral Reconstruction. Theranostics 2017; 7:2509-2523. [PMID: 28744331 PMCID: PMC5525753 DOI: 10.7150/thno.18833] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/21/2017] [Indexed: 01/18/2023] Open
Abstract
Urethral strictures remain a reconstructive challenge, due to less than satisfactory outcomes and high incidence of stricture recurrence. An “ideal” urethral reconstruction should establish similar architecture and function as the original urethral wall. We fabricated a novel tissue-engineered bionic urethras using cell sheet technology and report their viability in a canine model. Small amounts of oral and adipose tissues were harvested, and adipose-derived stem cells, oral mucosal epithelial cells, and oral mucosal fibroblasts were isolated and used to prepare cell sheets. The cell sheets were hierarchically tubularized to form 3-layer tissue-engineered urethras and labeled by ultrasmall super-paramagnetic iron oxide (USPIO). The constructed tissue-engineered urethras were transplanted subcutaneously for 3 weeks to promote the revascularization and biomechanical strength of the implant. Then, 2 cm length of the tubularized penile urethra was replaced by tissue-engineered bionic urethra. At 3 months of urethral replacement, USPIO-labeled tissue-engineered bionic urethra can be effectively detected by MRI at the transplant site. Histologically, the retrieved bionic urethras still displayed 3 layers, including an epithelial layer, a fibrous layer, and a myoblast layer. Three weeks after subcutaneous transplantation, immunofluorescence analysis showed the density of blood vessels in bionic urethra was significantly increased following the initial establishment of the constructs and was further up-regulated at 3 months after urethral replacement and was close to normal level in urethral tissue. Our study is the first to experimentally demonstrate 3-layer tissue-engineered urethras can be established using cell sheet technology and can promote the regeneration of structural and functional urethras similar to normal urethra.
Collapse
|
14
|
Abstract
Reconstructive urologists are constantly facing diverse and complex pathologies that require structural and functional restoration of urinary organs. There is always a demand for a biocompatible material to repair or substitute the urinary tract instead of using patient's autologous tissues with its associated morbidity. Biomimetic approaches are tissue-engineering tactics aiming to tailor the material physical and biological properties to behave physiologically similar to the urinary system. This review highlights the different strategies to mimic urinary tissues including modifications in structure, surface chemistry, and cellular response of a range of biological and synthetic materials. The article also outlines the measures to minimize infectious complications, which might lead to graft failure. Relevant experimental and preclinical studies are discussed, as well as promising biomimetic approaches such as three-dimensional bioprinting.
Collapse
Affiliation(s)
- Moustafa M Elsawy
- Division of Surgery and Interventional Science, Royal Free Hospital, NHS Trust, University College London (UCL)
- Division of Reconstructive Urology, University College London Hospitals (uclh), London, UK
- Urology Department, School of Medicine, Alexandria University, Alexandria, Egypt
| | - Achala de Mel
- Division of Surgery and Interventional Science, Royal Free Hospital, NHS Trust, University College London (UCL)
| |
Collapse
|
15
|
Fukahori M, Chitose SI, Sato K, Sueyoshi S, Kurita T, Umeno H, Monden Y, Yamakawa R. Regeneration of Vocal Fold Mucosa Using Tissue-Engineered Structures with Oral Mucosal Cells. PLoS One 2016; 11:e0146151. [PMID: 26730600 PMCID: PMC4701435 DOI: 10.1371/journal.pone.0146151] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 12/13/2015] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Scarred vocal folds result in irregular vibrations during phonation due to stiffness of the vocal fold mucosa. To date, a completely satisfactory corrective procedure has yet to be achieved. We hypothesize that a potential treatment option for this disease is to replace scarred vocal folds with organotypic mucosa. The purpose of this study is to regenerate vocal fold mucosa using a tissue-engineered structure with autologous oral mucosal cells. STUDY DESIGN Animal experiment using eight beagles (including three controls). METHODS A 3 mm by 3 mm specimen of canine oral mucosa was surgically excised and divided into epithelial and subepithelial tissues. Epithelial cells and fibroblasts were isolated and cultured separately. The proliferated epithelial cells were co-cultured on oriented collagen gels containing the proliferated fibroblasts for an additional two weeks. The organotypic cultured tissues were transplanted to the mucosa-deficient vocal folds. Two months after transplantation, vocal fold vibrations and morphological characteristics were observed. RESULTS A tissue-engineered vocal fold mucosa, consisting of stratified epithelium and lamina propria, was successfully fabricated to closely resemble the normal layered vocal fold mucosa. Laryngeal stroboscopy revealed regular but slightly small mucosal waves at the transplanted site. Immunohistochemically, stratified epithelium expressed cytokeratin, and the distributed cells in the lamina propria expressed vimentin. Elastic Van Gieson staining revealed a decreased number of elastic fibers in the lamina propria of the transplanted site. CONCLUSION The fabricated mucosa with autologous oral mucosal cells successfully restored the vocal fold mucosa. This reconstruction technique could offer substantial clinical advantages for treating intractable diseases such as scarring of the vocal folds.
Collapse
Affiliation(s)
- Mioko Fukahori
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Shun-ichi Chitose
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Kiminori Sato
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Shintaro Sueyoshi
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Takashi Kurita
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hirohito Umeno
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yu Monden
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Ryoji Yamakawa
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| |
Collapse
|
16
|
Saksena R, Gao C, Wicox M, de Mel A. Tubular organ epithelialisation. J Tissue Eng 2016; 7:2041731416683950. [PMID: 28228931 PMCID: PMC5308438 DOI: 10.1177/2041731416683950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 12/11/2022] Open
Abstract
Hollow, tubular organs including oesophagus, trachea, stomach, intestine, bladder and urethra may require repair or replacement due to disease. Current treatment is considered an unmet clinical need, and tissue engineering strategies aim to overcome these by fabricating synthetic constructs as tissue replacements. Smart, functionalised synthetic materials can act as a scaffold base of an organ and multiple cell types, including stem cells can be used to repopulate these scaffolds to replace or repair the damaged or diseased organs. Epithelial cells have not yet completely shown to have efficacious cell-scaffold interactions or good functionality in artificial organs, thus limiting the success of tissue-engineered grafts. Epithelial cells play an essential part of respective organs to maintain their function. Without successful epithelialisation, hollow organs are liable to stenosis, collapse, extensive fibrosis and infection that limit patency. It is clear that the source of cells and physicochemical properties of scaffolds determine the successful epithelialisation. This article presents a review of tissue engineering studies on oesophagus, trachea, stomach, small intestine, bladder and urethral constructs conducted to actualise epithelialised grafts.
Collapse
Affiliation(s)
- Rhea Saksena
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Chuanyu Gao
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Mathew Wicox
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Achala de Mel
- Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|
17
|
Atala A, Danilevskiy M, Lyundup A, Glybochko P, Butnaru D, Vinarov A, Yoo JJ. The potential role of tissue-engineered urethral substitution: clinical and preclinical studies. J Tissue Eng Regen Med 2015; 11:3-19. [PMID: 26631921 DOI: 10.1002/term.2112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 10/01/2015] [Accepted: 10/15/2015] [Indexed: 01/10/2023]
Abstract
Urethral strictures and anomalies remain among the difficult problems in urology, with urethroplasty procedures being the most effective treatment options. The two major types of urethroplasty are anastomotic urethroplasty and widening the urethral lumen using flaps or grafts (i.e. substitution urethroplasty). However, no ideal material for the latter has been found so far. Designing and selecting such a material is a necessary and challenging endeavour, driving the need for further bioengineered urethral tissue research. This article reviews currently available studies on the potentialities of tissue engineering in urethral reconstruction, in particular those describing the use of both acellular and recellularized tissue-engineered constructs in animal and human models. Possible future developments in this field are also discussed. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anthony Atala
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mikhail Danilevskiy
- Research Institute of Uronephrology and Reproductive Health, I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Alexey Lyundup
- Research Institute of Molecular Medicine, I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Petr Glybochko
- I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Denis Butnaru
- Research Institute of Uronephrology and Reproductive Health, I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Andrey Vinarov
- Research Institute of Uronephrology and Reproductive Health, I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| |
Collapse
|
18
|
Lv X, Yang J, Feng C, Li Z, Chen S, Xie M, Huang J, Li H, Wang H, Xu Y. Bacterial Cellulose-Based Biomimetic Nanofibrous Scaffold with Muscle Cells for Hollow Organ Tissue Engineering. ACS Biomater Sci Eng 2015; 2:19-29. [PMID: 33418641 DOI: 10.1021/acsbiomaterials.5b00259] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we built a bilayer nanofibrous material by utilizing the gelatinization properties of potato starch (PS) to interrupt bacterial cellulose (BC) assembly during static culture to create more free spaces within the fibrous network. Then, muscle cells were cultured on the loose surface of the BC/PS scaffolds to build biomaterials for hollow organ reconstruction. Our results showed that the BC/PS scaffolds exhibited similar mechanical characters to those in the traditional BC scaffolds. And the pore sizes and porosities of BC/PS scaffolds could be controlled by adjusting the starch content. The average nanofiber diameters of unmodified BC and BC/PS composites is approximately to that of the urethral acellular matrix. Those scaffolds permit the muscle cells infiltration into the loose layer and the BC/PS membranes with muscle cells could enhance wound healing in vivo and vitro. Our study suggested that the use of bilayer BC/PS nanofibrous scaffolds may lead to improved vessel formation. BC/PS nanofibrous scaffolds with muscle cells enhanced the repair in dog urethral defect models, resulting in patent urethra. Improved organized muscle bundles and epithelial layer were observed in animals treated with BC/PS scaffold seeded by muscle cells compared with those treated with pure BC/PS scaffold. This study suggests that this biomaterial could be suitable for tissue engineered urinary tract reconstruction and this type of composite scaffold could be used for numerous other types of hollow organ tissue engineering grafts, including vascular, bladder, ureter, esophagus, and intestine.
Collapse
Affiliation(s)
- XiangGuo Lv
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - JingXuan Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Chao Feng
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhe Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - ShiYan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - MinKai Xie
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - JianWen Huang
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - HongBin Li
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - HuaPing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - YueMin Xu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Eastern Urological Reconstruction and Repair Institute, Shanghai, China
| |
Collapse
|
19
|
Wang DJ, Li MY, Huang WT, Lu MH, Hu C, Li K, Qiu JG, Gao X. Repair of urethral defects with polylactid acid fibrous membrane seeded with adipose-derived stem cells in a rabbit model. Connect Tissue Res 2015; 56:434-9. [PMID: 25943462 DOI: 10.3109/03008207.2015.1035376] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM The aim of this study is to evaluate the capacity of polylactid acid (PLA) fibrous membrane seeded with allogeneic rabbit adipose tissue-derived stem cells (ADSCs) to repair urethral defects in a rabbit model. MATERIALS AND METHODS Rabbit ADSCs were harvested and phenotypically characterized. Twenty-four New Zealand male rabbits with 5-mm urethral mucosal defects were randomly divided into two groups. They underwent urethroplasty either with PLA fibrous membrane seeded with ADSCs (group A) or blank PLA fibrous membrane (group B). At 4 and 6 weeks after urethroplasty, the urethral grafts were collected and analyzed grossly and histologically. The incidence rate of urethrostenosis was measured. RESULTS The adipose tissue-derived cells in monolayer culture showed a typical morphology of mesenchymal stem cells (MSCs). They were positive for the MSC marker CD44 but negative for lineage markers CD45 and CD105. Six weeks after surgery, the incidence rate of urethrostenosis in group A was significantly lower than that in group B (p < 0.05). In group A, the ADSC-seeded grafts showed a normal urethral architecture with a thickened muscle layer. In contrast, the newly developed urethra in group B demonstrated a fewer number of urothelial layers and scarce or no smooth muscle cells. CONCLUSION The PLA scaffold seeded with ADSCs is effective in urethral regeneration in a rabbit model. ADSCs may represent a promising source of seed cells for urethral tissue engineering.
Collapse
Affiliation(s)
- De-juan Wang
- a Department of Urology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Mao-yin Li
- a Department of Urology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Wen-tao Huang
- a Department of Urology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Min-hua Lu
- a Department of Urology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Cheng Hu
- a Department of Urology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Ke Li
- a Department of Urology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Jian-guang Qiu
- a Department of Urology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Xin Gao
- a Department of Urology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
20
|
Osman NI, Hillary C, Bullock AJ, MacNeil S, Chapple CR. Tissue engineered buccal mucosa for urethroplasty: progress and future directions. Adv Drug Deliv Rev 2015; 82-83:69-76. [PMID: 25451857 DOI: 10.1016/j.addr.2014.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/22/2014] [Accepted: 10/03/2014] [Indexed: 01/15/2023]
Abstract
PURPOSE Autologous buccal mucosa is commonly utilized in the surgical treatment of urethral strictures. Extensive strictures require a larger quantity of tissue, which may lead to donor site morbidity. This review assesses progress in producing tissue engineered buccal mucosa as an alternative graft material. RESULTS Few clinical studies have introduced cells onto biological or synthetic scaffolds and implanted resulting constructs in patients. The available studies show that buccal mucosa cells on acellular human dermis or on collagen matrix lead to good acute stage tissue integration. Urothelial cells on a synthetic substrate also perform well. However while some patients do well many years post-grafting, others develop stricture recurrence. Acellular biomaterials used to treat long urethral defects in animals commonly lead to fibrosis. CONCLUSIONS Tissue engineered buccal mucosa shows promise as a substitute for native tissue. The fibrosis which occurs months post-implantation may reflect the underlying disease process recurring in these patients.
Collapse
Affiliation(s)
- N I Osman
- Kroto Research Institute, University of Sheffield, Sheffield, UK; Department of Urology, Royal Hallamshire Hospital, Sheffield, UK
| | - C Hillary
- Kroto Research Institute, University of Sheffield, Sheffield, UK; Department of Urology, Royal Hallamshire Hospital, Sheffield, UK
| | - A J Bullock
- Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - S MacNeil
- Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - C R Chapple
- Department of Urology, Royal Hallamshire Hospital, Sheffield, UK.
| |
Collapse
|
21
|
Wang Y, Fu Q, Zhao RY, Deng CL. Muscular tubes of urethra engineered from adipose-derived stem cells and polyglycolic acid mesh in a bioreactor. Biotechnol Lett 2014; 36:1909-16. [PMID: 24930094 DOI: 10.1007/s10529-014-1554-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/08/2014] [Indexed: 12/17/2022]
Abstract
We have explored the feasibility of using adipose-derived stem cells (ADSCs) and polyglycolic acid (PGA) for constructing muscular tubes of urethra in a bioreactor. With the induction of by 5-azacytidine, ADSCs were found to acquire a myoblast phenotype. Here we seeded ADSCs in a PGA mesh to construct the cell-PGA complex that was cultured statically for 1 week. Afterwards, the cell-PGA complex was subjected to extension stimulation in a bioreactor for 5 weeks. A muscular tube of urethra was formed after 6 weeks. Histological examination showed differentiated ADSCs and collagenous fibers had orientated well. This study demonstrates that tissue engineering of urethra tissues in vitro by using a bioreactor leads to tissue maturation and the differentiation of ADSCs. This novel technique could provide an effective approach for urethra tissue engineering.
Collapse
Affiliation(s)
- Ying Wang
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yi Shan Road 600, Shanghai, 200233, China
| | | | | | | |
Collapse
|
22
|
Masuda T, Yamagishi Y, Takei N, Owaki H, Matsusaki M, Akashi M, Arai F. Three-Dimensional Assembly of Multilayered Tissues Using Water Transfer Printing. JOURNAL OF ROBOTICS AND MECHATRONICS 2013. [DOI: 10.20965/jrm.2013.p0690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A rapid construction process is necessary to build up numerous cell modules into three-dimensional (3D) tissues that retain the tissue geometries and initial conditions of the cells. We propose a new 3D assembly technique using water transfer printing to fabricate a hollow tubular tissue structure. Utilizing this assembly technique, we discuss the relationship between the 3D transcriptional body of a gel matrix and the developed shape of transferred tissue. We then fabricate hollow tubular tissue. Simulation of the 3D environment in which tissues normally develop and function is crucial for the engineering of in vitro models that can be used for the formation of complex tissues. These artificial hollow tubular tissues could be used as in vitro simulators for drug efficiency evaluation and operative training.
Collapse
|
23
|
Hanazaki Y, Masumoto JI, Sato S, Furusawa K, Fukui A, Sasaki N. Multiscale analysis of changes in an anisotropic collagen gel structure by culturing osteoblasts. ACS APPLIED MATERIALS & INTERFACES 2013; 5:5937-5946. [PMID: 23806015 DOI: 10.1021/am303254e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mimicking the complicated anisotropic structures of a native tissue is extremely important in tissue engineering. In a previous study, we developed an anisotropic collagen gel scaffold (ACGS) having a hierarchical structure and a properties gradient. In this study, our objective was to see how cells remodel the scaffolds through the cells-ACGS interaction. For this purpose, we cultured osteoblastic cells on ACGS, which we regarded as a model system for the cells-extracellular matrix (cell-ECM) interaction. Changes in the ACGS-cell composites structure by cell-ECM interactions was investigated from a macroscopic level to a microscopic level. Osteoblastic cells were also cultured on an isotropic collagen gel (ICGS) as a control. During the cultivation, mechanical stimuli were applied to collagen-cell composites for adequate matrix remodeling. Confocal laser scanning microscope (CLSM) was used to observe macroscopic changes in the ACGS-cell composite structure by osteoblastic cells. Small-angle X-ray scattering (SAXS) measurements were performed to characterize microscopic structural changes in the composites. Macroscopic observations using CLSM revealed that osteoblastic cells remained only in the diluted phase in ACGS and they collected collagen fibrils or formed a toroidal structure, depending on the depth from the ACGS surface in the tubular diluted phase. The cells were uniformly distributed in ICGS. SAXS analysis suggests that collagen fibrils were remodeled by osteoblastic cells, and this remodeling process would be affected by the structure difference between ACGS and ICGS. These results suggest that we directly regulate cell-ECM interaction by the unique anisotropic and hierarchical structure of ACGS. The cell-gel composite presented in this study would promise an efficient scaffold material in tissue engineering.
Collapse
Affiliation(s)
- Yohei Hanazaki
- Transdisciplinary Life Science Course, Graduate School of Life Science, Hokkaido University, Kita-ku, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
24
|
|