1
|
Zhao Z, Yang T, Li F. Sperm RNA code in spermatogenesis and male infertility. Reprod Biomed Online 2024; 49:104375. [PMID: 39481211 DOI: 10.1016/j.rbmo.2024.104375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/22/2024] [Accepted: 07/05/2024] [Indexed: 11/02/2024]
Abstract
Spermatozoa are traditionally thought to be transcriptionally inert, but recent studies have revealed the presence of sperm RNA, some of which is derived from the residues of spermatocyte transcription and some from epididymosomes. Paternal sperm RNA can be affected by external factors and further modified at the post-transcriptional level, for example N6-methyladenosine (m6A), thus shaping spermatogenesis and reproductive outcome. This review briefly introduces the origin of sperm RNA and, on this basis, summarizes the current knowledge on RNA modifications and their functional role in spermatogenesis and male infertility. The bottlenecks and knowledge gaps in the current research on RNA modification in male reproduction have also been indicated. Further investigations are needed to elucidate the functional consequences of these modifications, providing new therapeutic and preventive strategies for reproductive health and genetic inheritance.
Collapse
Affiliation(s)
- Zhongyi Zhao
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Tingting Yang
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| | - Fuping Li
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|
2
|
Charles DK, Lange MJ, Ortiz NM, Purcell S, Smith RP. A narrative review of sperm selection technology for assisted reproduction techniques. Transl Androl Urol 2024; 13:2119-2133. [PMID: 39434753 PMCID: PMC11491204 DOI: 10.21037/tau-24-195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/19/2024] [Indexed: 10/23/2024] Open
Abstract
Background and Objective In-vitro fertilization (IVF) with intracytoplasmic sperm injection (ICSI) has become increasingly prevalent even in cases without significant male factor infertility; however, stagnant live-birth rates, both nationally and internationally, have driven more research into sperm selection. To date, nothing has replaced swim-up and density-gradient preparation methods and therefore we sought to review the state of the science. Methods A PubMed search was performed between years of 1989 and 2024 for English research articles reporting data on sperm selection technology in assisted reproductive technology. Key Content and Findings IVF with ICSI is increasingly prevalent even in men with normal semen parameters. Despite technologic advances and widespread use, reproductive outcomes with ICSI have been stagnant. This market for opportunity growth has allowed for sperm selection techniques to grow exponentially with heterogeneity in utilization and a paucity of positive reproductive outcomes. Swim-up and density-gradient centrifugation remain the most utilized sperm selection techniques. Various future technologies show promise including epigenetics, sperm biomarkers and a potential role of artificial intelligence; however, more research is needed. Conclusions Given unchanged IVF success rates, sperm selection technologies hold promise to improve reproductive outcomes beyond traditional ICSI. At present, no technique has shown superiority to swim up and density centrifugation.
Collapse
Affiliation(s)
- David K. Charles
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| | - Moritz J. Lange
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| | - Nicolas M. Ortiz
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| | - Scott Purcell
- Virginia Fertility and IVF, Charlottesville, VA, USA
- PS Fertility, Charlottesville, VA, USA
| | - Ryan P. Smith
- Department of Urology, University of Virginia, Charlottesville, VA, USA
- PS Fertility, Charlottesville, VA, USA
| |
Collapse
|
3
|
Mehta P, Singh R. Small RNAs: an ideal choice as sperm quality biomarkers. FRONTIERS IN REPRODUCTIVE HEALTH 2024; 6:1329760. [PMID: 38406667 PMCID: PMC10884189 DOI: 10.3389/frph.2024.1329760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
Spermatozoa were classically known as vehicles for the delivery of the paternal genome to the oocyte. However, in 1962, spermatozoa were discovered to carry significant amounts of RNA in them, which raised questions about the significance of these molecules in such a highly specialized cell. Scientific research in the last six decades has investigated the biological significance of sperm RNAs by various means. Irrespective of what sperm RNAs do, their presence in spermatozoa has attracted attention for their exploitation as biomarkers of fertility. Research in this direction started in the year 2000 and is still underway. A major hurdle in this research is the definition of the standard human sperm RNAome. Only a few normozoospermic samples have been analyzed to define the normal sperm RNAome. In this article, we provide a perspective on the suitability of sperm RNAs as biomarkers of fertility and the importance of defining the normal sperm RNAome before we can succeed in identifying RNA-based biomarkers of sperm quality and fertility. The identification of sperm RNA biomarkers of fertility can be exploited for quality screening of donor sperm samples, explain infertility in idiopathic cases, and RNA therapeutics for the treatment of male infertility.
Collapse
Affiliation(s)
- Poonam Mehta
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
- Division of Endocrinology, Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, India
| | - Rajender Singh
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
- Division of Endocrinology, Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Dewry RK, Mohanty TK, Nath S, Bhakat M, Yadav HP, Baithalu RK. Comparative RNA isolation methods from fresh ejaculated spermatozoa in Sahiwal cattle ( Bos indicus) and Murrah buffalo ( Bubalus bubalis) bulls for high quality and enhanced RNA yield. Anim Biotechnol 2023; 34:5180-5191. [PMID: 37965764 DOI: 10.1080/10495398.2023.2276713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Sperm mRNA transcriptional profiling can be used to evaluate the fertility of breeding bulls. The aim of the study was to compare the modified RNA isolation methods for higher RNA yield and quality from freshly ejaculated sperm of cattle and buffalo bulls. Ten fresh ejaculates from each Sahiwal (n = 10 bulls × 10 ejaculates) and Murrah bulls (n = 10 bulls x 10 ejaculates) were used for RNA isolation. From the recovered live sperm, total sperm RNA was isolated by conventional methods (TRIzol, Double TRIzol), membrane-based methods combined with TRIzol (RNeasy + TRIzol) with the addition of β-mercaptoethanol (BME) and Kit (RNeasy mini) methods in fresh semen. Among different isolation methods; the membrane-based modified methods combined with TRIzol (RNeasy + TRIzol) with the addition of β-mercaptoethanol (BME) resulted significantly (p < .05) higher total RNA quantity (300-340 ng/µL) and better purity in different concentrations of spermatozoa viz., 30-40 million, 70-80 million and 300-400 million sperm. The study concluded that the inclusion of BME to the combined membrane-based methods with somatic cell lysis buffer solution was best for constant increased yield and purity of RNA isolation from Sahiwal cattle and Murrah buffalo bull sperm.
Collapse
Affiliation(s)
- Raju Kumar Dewry
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, India
| | - Tushar Kumar Mohanty
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, India
| | - Sapna Nath
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, India
| | - Mukesh Bhakat
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, India
| | - Hanuman Prasad Yadav
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, India
| | - Rubina Kumari Baithalu
- Reproductive Biotechnology Laboratory ICAR-National Dairy Research Institute (Deemed University), Karnal, India
| |
Collapse
|
5
|
Alizadeh A, Mirzaahmadi S, Asaadi Tehrani G, Jabbara N. A comparative assessment of RNF38 and P53 genes expression in the sperm samples obtained from males with normozoospermia and asthenospermia: A case-control study. Int J Reprod Biomed 2023; 20:1019-1028. [PMID: 36819206 PMCID: PMC9928977 DOI: 10.18502/ijrm.v20i12.12563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/07/2022] [Accepted: 10/30/2022] [Indexed: 01/11/2023] Open
Abstract
Background Infertility is considered as a common problem appears in about 10-12% of couples in their reproductive ages. Ring finger protein 38 (RNF38) gene is a ubiquitin-protein ligase that can regulate Protein 53 (P53) and affect cellular motility. Objective Considering the role of P53 on cellular motility and RNF38 on the regulation of P53, the present study aimed to assess the difference between RNF38 and P53 genes expression in normozoospermic and asthenospermic samples as a diagnostic biomarker in males. Materials and Methods The present study was conducted among 21 asthenospermicsand 63 healthy individuals. First, the real-time polymerase chain reaction technique was applied to measure the expression level of the P53 and RNF38 genes extracted from sperm samples, and the glyceraldehyde-3phosphate dehydrogenase gene was selected as the reference gene. Results An increase and a decrease occurred in the level of P53 and RNF38 genes expressions in asthenospermic and normozoospermic samples, respectively. In addition, a significant difference was observed between increasing P53 gene expression (p < 0.001), reducing RNF38 one, and decreasing sperm motility (p < 0.001) in asthenospermic cells compared to that of normozoospermic ones. Conclusion Based on the results, an increase in the expression of the P53 gene and a decrease in the expression of the RNF38 gene had a significant relationship with asthenospermia in men. Therefore, it is expected that an effective step should be adopted to diagnose the asthenospermia expression pattern by using these results.
Collapse
Affiliation(s)
- Alireza Alizadeh
- Department of Genetics, Faculty of Basic Sciences, Islamic Azad University, Zanjan Branch, Zanjan, Iran
| | - Sina Mirzaahmadi
- Department of Genetics, Faculty of Basic Sciences, Islamic Azad University, Zanjan Branch, Zanjan, Iran
| | - Golnaz Asaadi Tehrani
- Department of Genetics, Faculty of Basic Sciences, Islamic Azad University, Zanjan Branch, Zanjan, Iran
| | - Neda Jabbara
- Department of Genetics, Faculty of Basic Sciences, Islamic Azad University, Zanjan Branch, Zanjan, Iran
| |
Collapse
|
6
|
Expression of estrogen receptors, PELP1, and SRC in human spermatozoa and their associations with semen quality. Hum Cell 2023; 36:554-567. [PMID: 36577884 PMCID: PMC9947025 DOI: 10.1007/s13577-022-00847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/25/2022] [Indexed: 12/29/2022]
Abstract
Sperm cells are target cells for both estrogens and xenoestrogens. Due to the specific structure of spermatozoa, these hormonal compounds may act on sperm in a non-genomic mechanism only. However, the ESR-mediated signaling pathways are still poorly understood. In this study, we obtained 119 samples from male participants of Caucasian descent who donated semen for standard analysis. We analyzed gene expression of estrogen receptors (ESR1 and ESR2) and their coregulators-proline-, glutamic acid-, and leucine-rich protein 1 (PELP1), and cellular kinase c-Src (SRC). RNA level was established using reverse-transcribed RNA as a template, followed by a polymerase chain reaction. Proteins' presence was confirmed by western blot and immunocytochemistry techniques. "Normal" values of semen parameters were defined as follows: > 32% sperm with progressive motility, > 4% sperm cells with normal morphology, > 15 × 106 sperm per mL, > 58% live spermatozoa and leukocyte amount < 106 cells per mL, according to WHO 2010 reference. Semen parameters that deviated from these "normal" values were labeled as "abnormal". Gene expression ratios revealed significant, moderate, and negative correlations for ESR1/ESR2 and weak, negative ESR2/PELP1 correlations in the subgroup of patients with abnormal values of semen parameters. In addition, SRC/PELP1 was moderately and positively correlated in the subgroup with parameters within the reference values established by WHO 2010. Our study showed that both PELP1 scaffolding protein and SRC kinase might influence semen quality via ESRs. It seems that not the expression of a single gene may affect the sperm quality, but more gene-to-gene mutual ratio. Characterization of estrogen-signaling pathway-related genes' modulated expression in sperm cells could aid in better understanding sperm biology and quality.
Collapse
|
7
|
Indriastuti R, Pardede BP, Gunawan A, Ulum MF, Arifiantini RI, Purwantara B. Sperm Transcriptome Analysis Accurately Reveals Male Fertility Potential in Livestock. Animals (Basel) 2022; 12:2955. [PMID: 36359078 PMCID: PMC9657999 DOI: 10.3390/ani12212955] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2023] Open
Abstract
Nowadays, selection of superior male candidates in livestock as a source of frozen semen based on sperm quality at the cellular level is not considered accurate enough for predicting the potential of male fertility. Sperm transcriptome analysis approaches, such as messenger RNA levels, have been shown to correlate with fertility rates. Using this technology in livestock growth has become the principal method, which can be widely applied to predict male fertility potential in the livestock industry through the analysis of the sperm transcriptome. It provides the gene expression to validate the function of sperm in spermatogenesis, fertilization, and embryo development, as the parameters of male fertility. This review proposes a transcriptomic analysis approach as a high-throughput method to predict the fertility potential of livestock more accurately in the future.
Collapse
Affiliation(s)
- Rhesti Indriastuti
- Reproductive Biology Study Program, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
- Tuah Sakato Technology and Resource Development Center, Department of Animal Husbandry and Animal Health of West Sumatra, Payakumbuh 26229, Indonesia
| | - Berlin Pandapotan Pardede
- Department of Veterinary Clinic, Reproduction, and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
| | - Asep Gunawan
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Mokhamad Fakhrul Ulum
- Department of Veterinary Clinic, Reproduction, and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
| | - Raden Iis Arifiantini
- Department of Veterinary Clinic, Reproduction, and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
| | - Bambang Purwantara
- Department of Veterinary Clinic, Reproduction, and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
8
|
Bisconti M, Leroy B, Gallagher MT, Senet C, Martinet B, Arcolia V, Wattiez R, Kirkman-Brown JC, Simon JF, Hennebert E. The ribosome inhibitor chloramphenicol induces motility deficits in human spermatozoa: A proteomic approach identifies potentially involved proteins. Front Cell Dev Biol 2022; 10:965076. [PMID: 36120567 PMCID: PMC9478589 DOI: 10.3389/fcell.2022.965076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Mature spermatozoa are almost completely devoid of cytoplasm; as such it has long been believed that they do not contain ribosomes and are therefore not capable of synthesising proteins. However, since the 1950s, various studies have shown translational activity within spermatozoa, particularly during their in vitro capacitation. But the type of ribosomes involved (cytoplasmic or mitochondrial) is still debated. Here, we investigate the presence and activity of the two types of ribosomes in mature human spermatozoa. By targeting ribosomal RNAs and proteins, we show that both types of ribosomes are localized in the midpiece as well as in the neck and the base of the head of the spermatozoa. We assessed the impact of cycloheximide (CHX) and chloramphenicol (CP), inhibitors of cytoplasmic and mitochondrial ribosomes, respectively, on different sperm parameters. Neither CHX, nor CP impacted sperm vitality, mitochondrial activity (measured through the ATP content), or capacitation (measured through the content in phosphotyrosines). However, increasing CP concentrations induced a decrease in total and progressive motilities as well as on some kinematic parameters while no effect was observed with CHX. A quantitative proteomic analysis was performed by mass spectrometry in SWATH mode to compare the proteomes of spermatozoa capacitated in the absence or presence of the two ribosome inhibitors. Among the ∼700 proteins identified in the different tested conditions, 3, 3 and 25 proteins presented a modified abundance in the presence of 1 and 2 mg/ml of CHX, and 1 mg/ml of CP, respectively. The observed abundance variations of some CP-down regulated proteins were validated using Multiple-Reaction Monitoring (MRM). Taken together, our results are in favor of an activity of mitochondrial ribosomes. Their inhibition by CP results in a decrease in the abundance of several proteins, at least FUNDC2 and QRICH2, and consequently induces sperm motility deficits.
Collapse
Affiliation(s)
- Marie Bisconti
- Laboratory of Cell Biology, Research Institute for Biosciences, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, CISMa, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Meurig T. Gallagher
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Centre for Human Reproductive Science, Birmingham Women’s and Children’s National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Coralie Senet
- Laboratory of Cell Biology, Research Institute for Biosciences, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Baptiste Martinet
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Vanessa Arcolia
- Clinique de Fertilité Régionale de Mons, CHU Ambroise Paré Hospital, Mons, Belgium
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, CISMa, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Jackson C. Kirkman-Brown
- Institute of Metabolism and Systems Research, University of Birmingham, Centre for Human Reproductive Science, Birmingham Women’s and Children’s National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Jean-François Simon
- Clinique de Fertilité Régionale de Mons, CHU Ambroise Paré Hospital, Mons, Belgium
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
- *Correspondence: Elise Hennebert,
| |
Collapse
|
9
|
Guo H, Shen X, Hu H, Zhou P, He T, Xia L, Tan D, Zhang X, Zhang Y. Alteration of RNA modification signature in human sperm correlates with sperm motility. Mol Hum Reprod 2022; 28:gaac031. [PMID: 35959987 PMCID: PMC9422301 DOI: 10.1093/molehr/gaac031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
RNA modifications, which are introduced post-transcriptionally, have recently been assigned pivotal roles in the regulation of spermatogenesis and embryonic development. However, the RNA modification landscape in human sperm is poorly characterized, hampering our understanding about the potential role played by RNA modification in sperm. Through our recently developed high-throughput RNA modification detection platform based on liquid chromatography with tandem mass spectroscopy, we are the first to have characterized the RNA modification signature in human sperm. The RNA modification signature was generated on the basis of 49 samples from participants, including 13 healthy controls, 21 patients with asthenozoospermia (AZS) and 15 patients with teratozoospermia (TZS). In total, we identified 13 types of RNA modification marks on the total RNA in sperm, and 16 types of RNA modification marks on sperm RNA fragments of different sizes. The levels of these RNA modifications on the RNA of patients with AZS or TZS were altered, compared to controls, especially on sperm RNA fragments > 80 nt. A few types of RNA modifications, such as m1G, m5C, m2G and m1A, showed clear co-expression patterns as well as high linear correlations with clinical sperm motility. In conclusion, we characterized the RNA modification signature of human sperm and identified its correlation with sperm motility, providing promising candidates for use in clinical sperm quality assessment and new research insights for exploring the underlying pathological mechanisms in human male infertility syndromes.
Collapse
Affiliation(s)
- Huanping Guo
- Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xipeng Shen
- Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hua Hu
- Center for Reproductive & Genetic Medical, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Peng Zhou
- Center for Reproductive & Genetic Medical, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Tong He
- Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Lin Xia
- Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Dongmei Tan
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yunfang Zhang
- Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Swanson GM, Estill MS, Krawetz SA. The transcript integrity index (TII) provides a standard measure of sperm RNA. Syst Biol Reprod Med 2022; 68:258-271. [PMID: 35658756 DOI: 10.1080/19396368.2022.2071133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Standardizing RNA quality is key to interpreting RNA-seq data as a compromised sample can mask the underlying biology. The challenge remains when evaluating RNA quality in samples with high RNA fragmentation. For example, programmed fragmentation and cytoplasmic expulsion, integral to sperm maturation, is a prime example of the complexities of interpreting RNA-seq data, given that fragmentation can be random and\or targeted. To meet this challenge, we developed an algorithm that accurately measures RNA quality in samples with high fragmentation, such as spermatozoa. The integrity of 1,000 previously identified abundant sperm transcripts were independently visualized and evaluated using the Transcript Integrity Index (TII) algorithm to identify intact transcripts. Full-length transcripts from visual and the TII algorithm were evaluated for testis preference in humans using the GTEx tissues database. Samples were then filtered by the Interquartile Range (IQR), identifying those in which the greatest number of transcripts failed to pass the visual or TII thresholds. Transcript lists were overlapped, forming the set of intact transcripts used as TII standards. Each sample was re-evaluated as a function of this TII set of intact transcripts, with poor quality samples identified as those failing in the largest number of transcripts. While ontologically enriched in roles related to spermatogenesis and/or fertilization, samples did not segregate based on birth outcome. The TII algorithm proved an effective means to identify samples of similar quality from sperm, a cell type enriched in biologically fragmented RNAs. The algorithm should facilitate other studies using samples compromised by high levels of RNA fragmentation, such as Formalin-Fixed Paraffin-Embedded samples. Requisite to assessing male health, TII provides a solution to the long-sought-after standard that identifies samples of similar quality.
Collapse
Affiliation(s)
- Grace M Swanson
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Molly S Estill
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen A Krawetz
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
11
|
Braz CU, Taylor T, Namous H, Townsend J, Crenshaw T, Khatib H. Paternal diet induces transgenerational epigenetic inheritance of DNA methylation signatures and phenotypes in sheep model. PNAS NEXUS 2022; 1:pgac040. [PMID: 36713326 PMCID: PMC9802161 DOI: 10.1093/pnasnexus/pgac040] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/05/2022] [Accepted: 04/02/2022] [Indexed: 06/18/2023]
Abstract
Transgenerational epigenetic inheritance (TEI) requires transmission of environmentally induced epigenetic changes and associated phenotypes to subsequent generations without continued exposure to the environmental factor that originated the change. TEI is well-established in plants and Caenorhabditis elegans; however, occurrence in mammals is debated and poorly understood. Here, we examined whether paternal diet from weaning to puberty-induced changes in sperm DNA methylation that were transmitted to subsequent generations. Over 100 methylated cytosines, environmentally altered in the F0 generation, were inherited by the F1 and F2 generations. Furthermore, the F0 paternal diet was associated with growth and male fertility phenotypes in subsequent generations. Differentially methylated cytosines were correlated with gene expression. Our results demonstrate that some sperm methylation sites may escape DNA methylation erasure and are transmitted to subsequent generations despite the 2 waves of epigenetic programming: in primordial germ cells and in embryos after fertilization. These results advance our understanding of the complex relationships between nature and nurture.
Collapse
Affiliation(s)
- Camila U Braz
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Todd Taylor
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hadjer Namous
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jessica Townsend
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Thomas Crenshaw
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
12
|
Joshi M, Andrabi SW, Singh V, Bansal SK, Makker GC, Mishra G, Gupta G, Rajender S. Coding and regulatory transcriptome comparisons between fertile and infertile spermatozoa identify RNA signatures of male infertility. Andrologia 2022; 54:e14437. [PMID: 35437806 DOI: 10.1111/and.14437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/07/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to identify RNA-based signatures of male infertility by sperm transcriptome analysis. In this study, deep sequencing analyses of coding (mRNA) and regulatory (miRNA) transcriptomes were performed by pooling 15 oligo/oligoasthenozoospermic infertile sperm and 9 normozoospermic fertile sperm samples. Furthermore, interesting candidates were selected for validation by real-time PCR. The comparison of miRNAs between cases and controls identified 94 differentially expressed miRNAs, of which at least 38 have known functions in spermatogenesis. In transcriptome (mRNA) data, a total of 60,505 transcripts were obtained. The comparison of coding RNAs between cases and controls revealed 11,688 differentially expressed genes. miRNA-mRNA paired analysis revealed that 94 differentially expressed miRNAs could potentially target 13,573 genes, of which 6419 transcripts were actually differentially expressed in our data. Out of these, 3303 transcripts showed inverse correlation with their corresponding regulatory miRNAs. Moreover, we found that most of the genes of miRNA-mRNA pairs were involved in male germ cell differentiation, apoptosis, meiosis, spermiogenesis and male infertility. In conclusion, we found that a number of sperm transcripts (miRNAs and mRNAs) have a very high potential of serving as infertility/sperm quality markers.
Collapse
Affiliation(s)
- Meghali Joshi
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | - Syed Waseem Andrabi
- Department of Zoology, Lucknow University, Lucknow, India.,Makker Infertility Clinic, Lucknow, India
| | - Vertika Singh
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | | | | | | | - Gopal Gupta
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Singh Rajender
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
13
|
Hernández-Silva G, Caballero-Campo P, Chirinos M. Sperm mRNAs as potential markers of male fertility. Reprod Biol 2022; 22:100636. [PMID: 35338912 DOI: 10.1016/j.repbio.2022.100636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/17/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022]
Abstract
Advances in transcriptomic technologies are contributing to an increased understanding of the role of spermatozoal RNA in sperm physiology. Although sperm transcriptomic studies have delivered large amounts of valuable information, no new male fertility biomarkers have emerged from such studies to date. This review summarizes current knowledge about the potential relevance of certain mRNA as biomarkers, focusing on comparative studies of human spermatozoa transcriptomic profiles from fertile and pathological semen samples. Asthenozoospermia is the semen aberrant condition that has been most exhaustively investigated to date. We cross-analyzed findings from three different studies on the transcriptome of asthenozoospermic semen samples and identified 100 transcripts that were consistently differentially expressed and that consequently are candidates for characterizing the molecular source of this sperm anomaly. The potential use of sperm mRNAs as predictors of outcomes of assisted reproductive technologies (ART) is also reviewed. Improving the understanding of the human spermatozoa mRNA content is expected to improve the evaluation and diagnosis of infertile men, and ultimately facilitate the selection of the best treatment to overcome infertility.
Collapse
Affiliation(s)
- Gabriela Hernández-Silva
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Pedro Caballero-Campo
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Mayel Chirinos
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico.
| |
Collapse
|
14
|
Panahi A, Mirza Ahmadi S, Asaadi Tehrani G. Comparison between SPATA18 and P53 Gene Expressions in The Sperm Cells Obtained from Normospermic and Asthenospermic Samples: A Case-Control Study. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2022; 16:122-127. [PMID: 35639655 PMCID: PMC9108294 DOI: 10.22074/ijfs.2021.138190.1029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 08/05/2021] [Indexed: 11/04/2022]
Abstract
Background Improving sperm motility results in increasing the success of a treatment cycle. Recently, sperm RNA has been used for diagnostic purposes such as whole seminal fluid, sperm analysis, and sperm quality test in patients undergoing in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI). SPATA18-P53 pathway is considered an essential pathway related to sperm mitochondria, which controls mitochondrial quality by eliminating its oxidative proteins. Oxidative stress may decrease sperm motility and affect sperm quality negatively due to an increase in P53 expression. SPATA18 protein is found in satellite fibers related to outer dense fibers in the middle piece of sperm. The downregulation of SPATA18 in the asthenospermia group can represent this gene's critical function in sperm motility and fertility. The present study aimed to assess the relationship between SPATA18 and P53 gene expression in sperm cells obtained from normospermia and asthenospermia. Materials and Methods In this case-control study, the quantitative real-time polymerase chain reaction (RT-PCR) technique was used to measure the SPATA18 and P53 gene expression level in sperm samples collected from 21 patients and 63 healthy individuals. Further, the sperm DNA fragmentation assay (SDFA) kit was applied to determine the relative apoptosis level in cells and evaluate the biochemical information related to the patients' sperm samples. Furthermore, all the participants completed the consent form, and the ethics committee confirmed the study. Results Based on the results, the P53 and SPATA18 gene expression levels in most of the samples, in which motility was less than 40%, increased and decreased (P≤0.001), respectively. Conclusion The SPATA18 and P53 gene expression levels increased and decreased in the asthenospermic patients, respectively, compared to the control group. Thus, the P53 and SPATA18 expression levels can be used as an appropriate marker for diagnosing sperm motility in males.
Collapse
Affiliation(s)
| | - Sina Mirza Ahmadi
- P.O.Box: 58145-45156Department of the GeneticsZanjan BranchIslamic Azad UniversityZanjanIran
| | | |
Collapse
|
15
|
Santiago J, Silva JV, Howl J, Santos MAS, Fardilha M. All you need to know about sperm RNAs. Hum Reprod Update 2021; 28:67-91. [PMID: 34624094 DOI: 10.1093/humupd/dmab034] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Spermatogenesis generates a small and highly specialised type of cell that is apparently incapable of transcription and translation. For many years, this dogma was supported by the assumption that (i) the compact sperm nucleus, resulting from the substitution of histones by protamine during spermatogenesis, renders the genome inaccessible to the transcriptional machinery; and (ii) the loss of most organelles, including endoplasmic reticulum and ribosomes, limits or prevents translational activity. Despite these observations, several types of coding and non-coding RNAs have been identified in human sperm. Their functional roles, particularly during fertilisation and embryonic development, are only now becoming apparent. OBJECTIVE AND RATIONALE This review aimed to summarise current knowledge of the origin, types and functional roles of sperm RNAs, and to evaluate the clinical benefits of employing these transcripts as biomarkers of male fertility and reproductive outcomes. The possible contribution of sperm RNAs to intergenerational or transgenerational phenotypic inheritance is also addressed. SEARCH METHODS A comprehensive literature search on PubMed was conducted using the search terms 'sperm' AND 'RNA'. Searches focussed upon articles written in English and published prior to August 2020. OUTCOMES The development of more sensitive and accurate RNA technologies, including RNA sequencing, has enabled the identification and characterisation of numerous transcripts in human sperm. Though a majority of these RNAs likely arise during spermatogenesis, other data support an epididymal origin of RNA transmitted to maturing sperm by extracellular vesicles. A minority may also be synthesised by de novo transcription in mature sperm, since a small portion of the sperm genome remains packed by histones. This complex RNA population has important roles in paternal chromatin packaging, sperm maturation and capacitation, fertilisation, early embryogenesis and developmental maintenance. In recent years, additional lines of evidence from animal models support a role for sperm RNAs in intergenerational or transgenerational inheritance, modulating both the genotype and phenotype of progeny. Importantly, several reports indicate that the sperm RNA content of fertile and infertile men differs considerably and is strongly modulated by the environment, lifestyle and pathological states. WIDER IMPLICATIONS Transcriptional profiling has considerable potential for the discovery of fertility biomarkers. Understanding the role of sperm transcripts and comparing the sperm RNA fingerprint of fertile and infertile men could help to elucidate the regulatory pathways contributing to male factor infertility. Such data might also provide a molecular explanation for several causes of idiopathic male fertility. Ultimately, transcriptional profiling may be employed to optimise ART procedures and overcome some of the underlying causes of male infertility, ensuring the birth of healthy children.
Collapse
Affiliation(s)
- Joana Santiago
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Joana V Silva
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.,i3S-Institute for Innovation and Health Research, University of Porto, Porto, Portugal.,Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - John Howl
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton, UK
| | - Manuel A S Santos
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
16
|
Faraji S, Rashki Ghaleno L, Sharafi M, Hezavehei M, Totonchi M, Shahverdi A, Fathi R. Gene Expression Alteration of Sperm-Associated Antigens in Human Cryopreserved Sperm. Biopreserv Biobank 2021; 19:503-510. [PMID: 34009011 DOI: 10.1089/bio.2020.0165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Sperm-associated antigens (SPAGs) are 18 types of proteins, some of which play important roles in various biological functions associated with assisted reproductive technology outcomes, and are consequently important to the success of fertility programs. Despite the favorable outcomes of fecundity rates among male patients with cancer using cryopreserved sperm, the detrimental impact of freezing on cells has been noted in many studies. Cryopreservation has been thought to have adverse effects on sperm quality through disruptions in the expressions of SPAG genes. This study aimed to evaluate the effects of cryopreservation on the expressions of SPAGs genes and their transcriptome alterations in human sperm. Materials and Methods: A total of 12 normal ejaculations were prepared using the density gradient centrifugation procedure, and the motile sperm fractions were divided into fresh and frozen groups. In the latter, sperm samples were mixed with SpermFreeze® solution as the cryoprotectant. The cryovial of sperm suspension was first held just over nitrogen vapor and then dipped inside liquid nitrogen. After 3 days, the specimens were thawed in tap water and incubated for 2 hours for recovery. Then, RNA from sperm was extracted for SPAG gene expression analysis, using real-time polymerase chain reaction. Results: Our findings showed a decrease in expression of SPAG5 (p-value = 0.009), SPAG7 (p-value = 0.004), and SPAG12 (SNU13/NHP2L1; p-value = 0.039) genes during cryopreservation. Discussion: The results indicate that the freezing procedure could negatively affect gene expression and to some extent proteins in human spermatozoa. Conclusion: The alteration of SPAG expression could provide new information on the molecular correlation between cryopreservation and increased failure in intracytoplasmic sperm injection and in vitro fertilization.
Collapse
Affiliation(s)
- Samaneh Faraji
- Department of Molecular and Cellular Biology, Faculty of Basic Science and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran.,Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Leila Rashki Ghaleno
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohsen Sharafi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
17
|
Hodge MJ, de las Heras-Saldana S, Rindfleish SJ, Stephen CP, Pant SD. Characterization of Breed Specific Differences in Spermatozoal Transcriptomes of Sheep in Australia. Genes (Basel) 2021; 12:genes12020203. [PMID: 33573244 PMCID: PMC7912062 DOI: 10.3390/genes12020203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 01/22/2021] [Indexed: 01/27/2023] Open
Abstract
Reduced reproductive efficiency results in economic losses to the Australian sheep industry. Reproductive success, particularly after artificial insemination, is dependent on a number of contributing factors on both ewe and ram sides. Despite considerable emphasis placed on characterising ewe side contributions, little emphasis has been placed on characterising ram side contributions to conception success. Over 14,000 transcripts are in spermatozoa of other species, which are transferred to the ova on fertilisation. These transcripts conceivably influence early embryonic development and whether conception is successful. Semen was collected (n = 45) across three breeds; Merino, Dohne, and Poll Dorset. Following collection, each ejaculate was split in two; an aliquot was assessed utilising Computer Assisted Semen Analysis (CASA) and the remaining was utilised for RNA extraction and subsequent next-generation sequencing. Overall, 754 differentially expressed genes were identified in breed contrasts and contrast between ejaculates of different quality. Downstream analysis indicated that these genes could play significant roles in a broad range of physiological functions, including maintenance of spermatogenesis, fertilisation, conception, embryonic development, and offspring production performance. Overall results provide evidence that the spermatozoal transcriptome could be a crucial contributing factor in improving reproductive performance as well as in the overall productivity and profitability of sheep industries.
Collapse
Affiliation(s)
- Marnie J. Hodge
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.J.H.); (C.P.S.)
- Apiam Animal Health, Apiam Genetic Services, Dubbo, NSW 2830, Australia;
| | - Sara de las Heras-Saldana
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia;
| | | | - Cyril P. Stephen
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.J.H.); (C.P.S.)
| | - Sameer D. Pant
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.J.H.); (C.P.S.)
- Correspondence:
| |
Collapse
|
18
|
Roles for the RNA polymerase III regulator MAFR-1 in regulating sperm quality in Caenorhabditis elegans. Sci Rep 2020; 10:19367. [PMID: 33168938 PMCID: PMC7652826 DOI: 10.1038/s41598-020-76423-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
The negative regulator of RNA polymerase (pol) III mafr-1 has been shown to affect RNA pol III transcript abundance, lipid biosynthesis and storage, progeny output, and lifespan. We deleted mafr-1 from the Caenorhabditis elegans genome and found that animals lacking mafr-1 replicated many phenotypes from previous RNAi-based studies and discovered a new sperm-specific role. Utilizing a yeast two-hybrid assay, we discovered several novel interactors of MAFR-1 that are expressed in a sperm- and germline-enriched manner. In support of a role for MAFR-1 in the male germline, we found mafr-1 null males have smaller spermatids that are less capable in competition for fertilization; a phenotype that was dependent on RNA pol III activity. Restoration of MAFR-1 expression specifically in the germline rescued the spermatid-related phenotypes, suggesting a cell autonomous role for MAFR-1 in nematode male fertility. Based on the high degree of conservation of Maf1 activity across species, our study may inform similar roles for Maf1 and RNA pol III in mammalian male fertility.
Collapse
|
19
|
Pang WK, Kang S, Ryu DY, Rahman MS, Park YJ, Pang MG. Optimization of sperm RNA processing for developmental research. Sci Rep 2020; 10:11606. [PMID: 32665575 PMCID: PMC7360572 DOI: 10.1038/s41598-020-68486-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Recent studies have demonstrated the significance of sperm RNA function as a transporter of important information directing the course of life. To determine the message contained in sperm RNA, it is necessary to optimize transcriptomic research tools. The current study was performed to optimize the processing of sperm RNA from sample storage to quantitative real-time PCR and assess the corresponding method with to evaluate male fertility and its representative markers, equatorin (EQTN) and peroxiredoxin (PRDX). Following successive steps of the Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines, several options were compared using boar spermatozoa. To evaluate the optimized procedures, the relationship between mRNA expression of EQTN and PRDX in spermatozoa and the fertility (litter size) of 20 individual boars was assessed. Unexpectedly, DNase treatment during RNA isolation had the deleterious effect by decreasing the RNA concentration by 56% and eliminating the correlation between EQTN and PRDX4 mRNA expression and male fertility. Moreover, when sperm RNA was processed using the corresponding method, the results showed the highest exon sequence expression, male fertility prediction power, and consistency. This optimized protocol for predicting male fertility can be used to study the transport of messages directing the life course from spermatozoon to offspring.
Collapse
Affiliation(s)
- Won-Ki Pang
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Saehan Kang
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
20
|
Gorchakov R, Berry RM, Patel SM, El Sahly HM, Ronca SE, Murray KO. Optimizing PCR Detection of Zika Virus from Various Body Fluids. Am J Trop Med Hyg 2019; 100:427-433. [PMID: 30560770 PMCID: PMC6367632 DOI: 10.4269/ajtmh.18-0755] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Current diagnostic protocols of acute Zika virus (ZIKV) infection focus on detection of viral RNA in serum or urine using reverse transcription quantitative polymerase chain reaction (RT-qPCR); however, detecting infection can be a challenge, given that 80% of people with acute ZIKV infection are asymptomatic, and the window to detect viremia in serum is short. The ability to extend that window is needed to detect ZIKV at later time points after infection, particularly in high-risk individuals such as pregnant women. We evaluated RNA extraction methods to optimize detection of ZIKV in various body fluids using RT-qPCR as a means of improving the analytical sensitivity of detection. We optimized methods for ZIKV RNA recovery from a number of body fluids by spiking with three varying concentrations of virus, then comparing recovery with that of spiked buffer control. RNA extraction protocols were adjusted as necessary for maximum RNA recovery. Adjustment of the elution step was essential for improved ZIKV RNA recovery from whole blood, saliva, vaginal secretions, and breast milk. Optimal recovery from urine samples required the addition of Urine Conditioning Buffer, and the use of RLT Plus buffer and RNeasy Mini Spin Columns was necessary for RNA extractions from semen samples. Optimized QIAamp MinElute Virus Spin Kit (QIAGEN, Valencia, CA) protocol followed by the singleplex ZIKV RT-qPCR assay provided a reliable method for detection of ZIKV RNA in a variety of biological samples. Improved diagnostics are crucial for timely detection and diagnosis, particularly during pregnancy when the consequences of ZIKV infection can greatly impact the developing fetus.
Collapse
Affiliation(s)
- Rodion Gorchakov
- Department of Pediatrics-Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Rebecca M Berry
- Department of Pediatrics-Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Shital M Patel
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Hana M El Sahly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Shannon E Ronca
- Department of Pediatrics-Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Kristy O Murray
- Department of Pediatrics-Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| |
Collapse
|
21
|
Nätt D, Kugelberg U, Casas E, Nedstrand E, Zalavary S, Henriksson P, Nijm C, Jäderquist J, Sandborg J, Flinke E, Ramesh R, Örkenby L, Appelkvist F, Lingg T, Guzzi N, Bellodi C, Löf M, Vavouri T, Öst A. Human sperm displays rapid responses to diet. PLoS Biol 2019; 17:e3000559. [PMID: 31877125 PMCID: PMC6932762 DOI: 10.1371/journal.pbio.3000559] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/18/2019] [Indexed: 11/25/2022] Open
Abstract
The global rise in obesity and steady decline in sperm quality are two alarming trends that have emerged during recent decades. In parallel, evidence from model organisms shows that paternal diet can affect offspring metabolic health in a process involving sperm tRNA-derived small RNA (tsRNA). Here, we report that human sperm are acutely sensitive to nutrient flux, both in terms of sperm motility and changes in sperm tsRNA. Over the course of a 2-week diet intervention, in which we first introduced a healthy diet followed by a diet rich in sugar, sperm motility increased and stabilized at high levels. Small RNA-seq on repeatedly sampled sperm from the same individuals revealed that tsRNAs were up-regulated by eating a high-sugar diet for just 1 week. Unsupervised clustering identified two independent pathways for the biogenesis of these tsRNAs: one involving a novel class of fragments with specific cleavage in the T-loop of mature nuclear tRNAs and the other exclusively involving mitochondrial tsRNAs. Mitochondrial involvement was further supported by a similar up-regulation of mitochondrial rRNA-derived small RNA (rsRNA). Notably, the changes in sugar-sensitive tsRNA were positively associated with simultaneous changes in sperm motility and negatively associated with obesity in an independent clinical cohort. This rapid response to a dietary intervention on tsRNA in human sperm is attuned with the paternal intergenerational metabolic responses found in model organisms. More importantly, our findings suggest shared diet-sensitive mechanisms between sperm motility and the biogenesis of tsRNA, which provide novel insights about the interplay between nutrition and male reproductive health.
Collapse
Affiliation(s)
- Daniel Nätt
- Linköping University, Department of Clinical and Experimental Medicine, Division of Neurobiology, Linkoping, Sweden
| | - Unn Kugelberg
- Linköping University, Department of Clinical and Experimental Medicine, Division of Neurobiology, Linkoping, Sweden
| | - Eduard Casas
- Josep Carreras Leukaemia Research Institute (IJC), Program for Predictive and Personalized Medicine of Cancer (PMPPC-IGTP), Barcelona, Spain
| | - Elizabeth Nedstrand
- Linköping University, Department of Clinical and Experimental Medicine, Division of Obstetrics and Gynecology, Linköping, Sweden
| | - Stefan Zalavary
- Linköping University, Department of Clinical and Experimental Medicine, Division of Obstetrics and Gynecology, Linköping, Sweden
| | - Pontus Henriksson
- Karolinska Institute, Department of Biosciences and Nutrition, Huddinge, Sweden
- Linköping University, Department of Medical and Health Sciences, Division of Community Medicine, Linköping, Sweden
| | - Carola Nijm
- Linköping University, Department of Clinical and Experimental Medicine, Division of Obstetrics and Gynecology, Linköping, Sweden
| | - Julia Jäderquist
- Linköping University, Department of Clinical and Experimental Medicine, Division of Obstetrics and Gynecology, Linköping, Sweden
| | - Johanna Sandborg
- Karolinska Institute, Department of Biosciences and Nutrition, Huddinge, Sweden
- Linköping University, Department of Medical and Health Sciences, Division of Community Medicine, Linköping, Sweden
| | - Eva Flinke
- Linköping University, Department of Medical and Health Sciences, Division of Community Medicine, Linköping, Sweden
| | - Rashmi Ramesh
- Linköping University, Department of Clinical and Experimental Medicine, Division of Neurobiology, Linkoping, Sweden
| | - Lovisa Örkenby
- Linköping University, Department of Clinical and Experimental Medicine, Division of Neurobiology, Linkoping, Sweden
| | - Filip Appelkvist
- Linköping University, Department of Clinical and Experimental Medicine, Division of Neurobiology, Linkoping, Sweden
| | - Thomas Lingg
- Linköping University, Department of Clinical and Experimental Medicine, Division of Neurobiology, Linkoping, Sweden
| | - Nicola Guzzi
- Lund University, Stem Cell Center, Department of Laboratory Medicine, Division of Molecular Hematology, Lund, Sweden
| | - Cristian Bellodi
- Lund University, Stem Cell Center, Department of Laboratory Medicine, Division of Molecular Hematology, Lund, Sweden
| | - Marie Löf
- Karolinska Institute, Department of Biosciences and Nutrition, Huddinge, Sweden
- Linköping University, Department of Medical and Health Sciences, Division of Community Medicine, Linköping, Sweden
| | - Tanya Vavouri
- Josep Carreras Leukaemia Research Institute (IJC), Program for Predictive and Personalized Medicine of Cancer (PMPPC-IGTP), Barcelona, Spain
| | - Anita Öst
- Linköping University, Department of Clinical and Experimental Medicine, Division of Neurobiology, Linkoping, Sweden
| |
Collapse
|
22
|
Abstract
Having been debated for many years, the presence and role of spermatozoal RNAs is resolving, and their contribution to development is now appreciated. Data from different species continue show that sperm contain a complex suite of coding and noncoding RNAs that play a role in an individual's life course. Mature sperm RNAs provide a retrospective of spermatogenesis, with their presence and abundance reflecting sperm maturation, fertility potential, and the paternal contribution to the developmental path the offspring may follow.Sperm RNAs delivered upon fertilization provide some of the initial contacts with the oocyte, directly confront the maternal with the paternal contribution as a prelude to genome consolidation. Following syngamy, early embryo development may in part be modulated by paternal RNAs that can include epidydimal passengers. This provides a direct path to relay an experience and then initiate a paternal response to the environment to the oocyte and beyond. Their epigenetic impact is likely felt prior to embryonic genome activation when the population of sperm delivered transcripts markedly changes. Here, we review the insights gained from sperm RNAs over the years, the subtypes, and the caveats of the RNAs described. We discuss the role of sperm RNAs in fertilization and embryo development, and their possible mechanism(s) influencing offspring phenotype. Approaches to meet the future challenges as the study of sperm RNAs continues, include, elucidating the potential mechanisms underlying how paternal allostatic load, the constant adaptation of health to external conditions, may be relayed by sperm RNAs to affect future generations.
Collapse
Affiliation(s)
- Marta Gòdia
- Animal Genomics Group, Center for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Cerdanyola del Vallès (Barcelona), Catalonia, Spain
| | - Grace Swanson
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Stephen A Krawetz
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA.,C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
23
|
Hasegawa T, Takahashi J, Iwahashi H. RNA Quality Control Using External Standard RNA. Pol J Microbiol 2018; 67:347-353. [PMID: 30451452 PMCID: PMC7256816 DOI: 10.21307/pjm-2018-042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2018] [Indexed: 11/13/2022] Open
Abstract
In this paper, we propose a new evaluation method using external standard RNA for quality control of the extracted RNA. RNA Integrity Number and UV absorption are generally used as a basis for RNA quality control; however, these methods do not always reflect the quality of mRNA. While standard RNA is supposedly designed on the basis of mRNA, it has the potential to be used to evaluate the quality of the mRNA. In this study, we took into consideration the three essential factors, viz., yield of mRNA, inhibition to DNA polymerase, and degradation of mRNA for determining the RNA quality using standard RNA. It would be possible to know yield of mRNA and inhibition of the enzyme reaction by adding standard RNA before RNA extraction and looking at standard RNA loss. Degradation was evaluated by comparing the differences in the 3’ and 5’ regions of the RNA. In our study, it was demonstrated that in the crude extract of Saccharomyces cerevisiae, degradation was comparatively higher at the 3’ end of RNA than at the 5’ end. Hence, the degree of RNA degradation can be evaluated by comparing the ratio of degradation from the 3’ and 5’ end.
Collapse
Affiliation(s)
- Takema Hasegawa
- Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Junko Takahashi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Hitoshi Iwahashi
- Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| |
Collapse
|
24
|
Zhang T, Wu J, Liao C, Ni Z, Zheng J, Yu F. System analysis of teratozoospermia mRNA profile based on integrated bioinformatics tools. Mol Med Rep 2018; 18:1297-1304. [PMID: 29901159 PMCID: PMC6072217 DOI: 10.3892/mmr.2018.9112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/20/2018] [Indexed: 12/13/2022] Open
Abstract
mRNA has an important role in spermatogenesis and the maintenance of fertility, and may act as a potential biomarker for the clinical diagnosis of infertility. In the present study, potential biomarkers associated with teratozoospermia were screened through systemic bioinformatics analysis. Initially, genome-wide expression profiles were downloaded from the Gene Expression Omnibus and primary analysis was conducted using R software, which included preprocessing of raw microarray data, transformation between probe ID and gene symbol and identification of differentially expressed genes. Subsequently, a functional enrichment analysis was conducted using the Database for Annotation, Visualization and Integrated Discovery to investigate the biological processes involved in the development of teratozoospermia. Finally, a protein-protein interaction network of notable differentially expressed genes was constructed and cross-analysis performed for multiple datasets, to obtain a potential biomarker for teratozoospermia. It was observed that G protein subunit β 3, G protein subunit α o1 and G protein subunit g transducin 1 were upregulated and enriched using Kyoto Encyclopedia of Genes and Genomes (KEGG) in the network and in cross analysis. Furthermore, ribosomal protein S3 (RPS3), RPS5, RPS6, RPS16 and RPS23 were downregulated and enriched using KEGG in teratozoospermia. In conclusion, the results of the present study identified several mRNAs involved in sperm morphological development, which may aid in the understanding and treatment of infertility.
Collapse
Affiliation(s)
- Tiancheng Zhang
- Key Lab of Reproduction Regulation of NPFPC, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 300000, P.R. China
| | - Jun Wu
- Key Lab of Reproduction Regulation of NPFPC, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 300000, P.R. China
| | - Caihua Liao
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541004, P.R. China
| | - Zhong Ni
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jufen Zheng
- Key Lab of Reproduction Regulation of NPFPC, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 300000, P.R. China
| | - Fudong Yu
- Key Lab of Reproduction Regulation of NPFPC, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 300000, P.R. China
| |
Collapse
|
25
|
Yuan HF, Zhao K, Zang Y, Liu CY, Hu ZY, Wei JJ, Zhou T, Li Y, Zhang HP. Effect of folate deficiency on promoter methylation and gene expression of Esr1, Cav1, and Elavl1, and its influence on spermatogenesis. Oncotarget 2018; 8:24130-24141. [PMID: 28445960 PMCID: PMC5421833 DOI: 10.18632/oncotarget.15731] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/08/2017] [Indexed: 11/25/2022] Open
Abstract
This study aims to investigate the effect of folate deficiency on the male reproductive function and the underlying mechanism. A total of 269 screened participants from 421 recruitments were enrolled in this study. An animal model of folate deficiency was constructed. Folate concentration was measured in the ejaculate, and its association with semen parameters was then determined. The expression and promoter methylation status of ESR1, CAV1, and ELAVL1 were also evaluated. Results showed that seminal plasma folate level was significantly lower among subjects with azoospermia than those with normozoospermia. Low folate level was significantly correlated with low sperm concentration in men with normozoospermia. Folate deficiency significantly reduced the expression of ESR1, CAV1, and ELAVL1, which are critical to spermatogenesis. However, low folate levels did not increase the methylation levels of the promoter regions of ESR1, CAV1, and ELAVL1 in human sperm DNA. Thus, folate deficiency impairs spermatogenesis may partly due to inhibiting the expression of these genes. Thus future research should determine the significance of sufficient folate status in male fertilization and subsequent pregnancy outcomes.
Collapse
Affiliation(s)
- Hong-Fang Yuan
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Center of Human Reproduction, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Yan Liu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Yong Hu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Jing Wei
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhou
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Li
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Ping Zhang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Center of Human Reproduction, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Bianchi E, Stermer A, Boekelheide K, Sigman M, Hall SJ, Reyes G, Dere E, Hwang K. High-quality human and rat spermatozoal RNA isolation for functional genomic studies. Andrology 2018; 6:374-383. [PMID: 29470852 DOI: 10.1111/andr.12471] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/11/2017] [Accepted: 01/04/2018] [Indexed: 12/30/2022]
Abstract
Sperm RNA is a sensitive monitoring endpoint for male reproductive toxicants, and a potential biomarker to assess male infertility and sperm quality. However, isolation of sperm RNA is a challenging procedure due to the heterogeneous population of cells present in the ejaculate, the low yield of RNA per spermatozoon, and the absence of 18S and 28S ribosomal RNA subunits. The unique biology of spermatozoa has created some uncertainty in the field about RNA isolation methods, indicating the need for rigorous quality control checks to ensure reproducibility of data generated from sperm RNA. Therefore, we developed a reliable and effective protocol for RNA isolation from rat and human spermatozoa that delivers highly purified and intact RNA, verified using RNA-specific electrophoretic chips and molecular biology approaches such as RT-PCR and Western blot analysis. The sperm RNA isolation technique was optimized using rat spermatozoa and then adapted to human spermatozoa. Three steps in the sperm isolation procedure, epididymal fluid collection, sperm purification, and spermatozoon RNA extraction, were evaluated and assessed. The sperm RNA extraction methodology consists of collection of rat epididymal fluid with repeated needle punctures of the epididymis, somatic cell elimination using detergent-based somatic cell lysis buffer (SCLB) and the use of RNA isolation Kit. Rat sperm heads are more resistant to disruption than human spermatozoa, necessitating the addition of mechanical lysis with microbeads and heat in the rat protocol, whereas the human sperm protocol only required lysis buffer. In conclusion, this methodology results in reliable and consistent isolation of high-quality sperm RNA. Using this technique will aid in translation of data collected from animal models, and reproducibility of clinical assessment of male factor fertility using RNA molecular biomarkers.
Collapse
Affiliation(s)
- E Bianchi
- Division of Urology, Rhode Island Hospital, Providence, RI, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - A Stermer
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - K Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - M Sigman
- Division of Urology, Rhode Island Hospital, Providence, RI, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - S J Hall
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - G Reyes
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - E Dere
- Division of Urology, Rhode Island Hospital, Providence, RI, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - K Hwang
- Division of Urology, Rhode Island Hospital, Providence, RI, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
27
|
Carkci S, Etem EO, Ozaydin S, Karakeci A, Tektemur A, Ozan T, Orhan I. Ion channel gene expressions in infertile men: A case-control study. Int J Reprod Biomed 2017; 15:749-756. [PMID: 29492471 PMCID: PMC5816234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Infertility is described as not receiving pregnancy despite unprotected and regular sexual intercourse in a 1 yr period. It is detected by 15% of the couples. Male and female factor in the etiology may be detected in similar rates. OBJECTIVE The present study aims to investigate ion channel gene expression in semen samples of infertile male compared with fertile men. MATERIALS AND METHODS A total of 150 men who applied to the urology clinic due to infertility were divided into five equal groups: asthenozoospermia, oligozoospermia, oligoasthenoteratozoospermia, teratozoospermia, and normozoospermia (control). All paticipants were evaluated with Cation Channel Spermia (CatSper) 1, 2, 3, 4, Proton Voltage Gated Ion Channel1 (Hv1), Potassium Channel Subfamily U1 (KCNU1), and transmembrane protein (TMEM16A) gene expression in semen samples. RESULTS "CatSper1, 4, HV1, KCNU1, and TMEM16A gene expression were detected higher in the oligozoospermia group compared to the controls. CatSper1, 2, 3, 4, KCNU1, and TMEM16A gene expression in the asthenozoospermia group and CatSper1, 2, 3, 4, KCNU1, and TMEM16A gene expression in the teratozoospermia group were detected lower compared to the controls. CatSper1, 4, HV1, and TMEM16A gen expression were higher in the oligoasthenoteratozoospermia men than the controls while CatSper3 gen expression was detected as lower." CONCLUSION It was detected that these ion channels have an effect on sperm progressive motility and morphology. It may be considered that mutations in these ion channels may result in infertility.
Collapse
Affiliation(s)
- Serkan Carkci
- Department of Urology, Faculty of Medicine, Firat University, Elazig, Turkey.
| | - Ebru Onalan Etem
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey.
| | - Seda Ozaydin
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey.
| | - Ahmet Karakeci
- Department of Urology, Faculty of Medicine, Firat University, Elazig, Turkey.
| | - Ahmet Tektemur
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey.
| | - Tunc Ozan
- Department of Urology, Faculty of Medicine, Firat University, Elazig, Turkey.
| | - Irfan Orhan
- Department of Urology, Faculty of Medicine, Firat University, Elazig, Turkey.
| |
Collapse
|
28
|
Carkci S, Onalan Etem E, Ozaydin S, Karakeci A, Tektemur A, Ozan T, Orhan I. Ion channel gene expressions in infertile men: A case-control study. Int J Reprod Biomed 2017. [DOI: 10.29252/ijrm.15.12.749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
29
|
Testicular Dysgenesis Syndrome and Long-Lasting Epigenetic Silencing of Mouse Sperm Genes Involved in the Reproductive System after Prenatal Exposure to DEHP. PLoS One 2017; 12:e0170441. [PMID: 28085963 PMCID: PMC5234833 DOI: 10.1371/journal.pone.0170441] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/04/2017] [Indexed: 11/19/2022] Open
Abstract
The endocrine disruptor bis(2-ethylhexyl) phthalate (DEHP) has been shown to exert adverse effects on the male animal reproductive system. However, its mode of action is unclear and a systematic analysis of its molecular targets is needed. In the present study, we investigated the effects of prenatal exposure to 300 mg/kg/day DEHP during a critical period for gonads differentiation to testes on male mice offspring reproductive parameters, including the genome-wide RNA expression and associated promoter methylation status in the sperm of the first filial generation. It was observed that adult male offspring displayed symptoms similar to the human testicular dysgenesis syndrome. A combination of sperm transcriptome and methylome data analysis allowed to detect a long-lasting DEHP-induced and robust promoter methylation-associated silencing of almost the entire cluster of the seminal vesicle secretory proteins and antigen genes, which are known to play a fundamental role in sperm physiology. It also resulted in the detection of a DEHP-induced promoter demethylation associated with an up-regulation of three genes apparently not relevant for sperm physiology and partially related to the immune system. As previously reported, DEHP induced an increase in mir-615 microRNA expression and a genome-wide decrease in microRNA promoter methylation. A functional analysis revealed DEHP-induced enrichments in down-regulated gene transcripts coding for peroxisome proliferator-activated receptors and tumor necrosis factor signaling pathways, and in up-regulated gene transcripts coding for calcium binding and numerous myosin proteins. All these enriched pathways and networks have been described to be associated in some way with the reproductive system. This study identifies a large new array of genes dysregulated by DEHP that may play a role in the complex system controlling the development of the male reproductive system.
Collapse
|
30
|
Vandenbrouck Y, Lane L, Carapito C, Duek P, Rondel K, Bruley C, Macron C, Gonzalez de Peredo A, Couté Y, Chaoui K, Com E, Gateau A, Hesse AM, Marcellin M, Méar L, Mouton-Barbosa E, Robin T, Burlet-Schiltz O, Cianferani S, Ferro M, Fréour T, Lindskog C, Garin J, Pineau C. Looking for Missing Proteins in the Proteome of Human Spermatozoa: An Update. J Proteome Res 2016; 15:3998-4019. [PMID: 27444420 DOI: 10.1021/acs.jproteome.6b00400] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Chromosome-Centric Human Proteome Project (C-HPP) aims to identify "missing" proteins in the neXtProt knowledgebase. We present an in-depth proteomics analysis of the human sperm proteome to identify testis-enriched missing proteins. Using protein extraction procedures and LC-MS/MS analysis, we detected 235 proteins (PE2-PE4) for which no previous evidence of protein expression was annotated. Through LC-MS/MS and LC-PRM analysis, data mining, and immunohistochemistry, we confirmed the expression of 206 missing proteins (PE2-PE4) in line with current HPP guidelines (version 2.0). Parallel reaction monitoring acquisition and sythetic heavy labeled peptides targeted 36 ≪one-hit wonder≫ candidates selected based on prior peptide spectrum match assessment. 24 were validated with additional predicted and specifically targeted peptides. Evidence was found for 16 more missing proteins using immunohistochemistry on human testis sections. The expression pattern for some of these proteins was specific to the testis, and they could possibly be valuable markers with fertility assessment applications. Strong evidence was also found of four "uncertain" proteins (PE5); their status should be re-examined. We show how using a range of sample preparation techniques combined with MS-based analysis, expert knowledge, and complementary antibody-based techniques can produce data of interest to the community. All MS/MS data are available via ProteomeXchange under identifier PXD003947. In addition to contributing to the C-HPP, we hope these data will stimulate continued exploration of the sperm proteome.
Collapse
Affiliation(s)
- Yves Vandenbrouck
- CEA, DRF, BIG, Laboratoire de Biologie à Grande Echelle, 17 rue des martyrs, Grenoble F-38054, France.,Inserm U1038 , 17, rue des Martyrs, Grenoble F-38054, France.,Université de Grenoble , Grenoble F-38054, France
| | - Lydie Lane
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva , 1, rue Michel-Servet, 1211 Geneva 4, Switzerland.,CALIPHO Group, SIB-Swiss Institute of Bioinformatics, CMU , rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, Université de Strasbourg, CNRS UMR7178, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Paula Duek
- CALIPHO Group, SIB-Swiss Institute of Bioinformatics, CMU , rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Karine Rondel
- Protim, Inserm U1085, Irset, Campus de Beaulieu, Rennes 35042, France
| | - Christophe Bruley
- CEA, DRF, BIG, Laboratoire de Biologie à Grande Echelle, 17 rue des martyrs, Grenoble F-38054, France.,Inserm U1038 , 17, rue des Martyrs, Grenoble F-38054, France.,Université de Grenoble , Grenoble F-38054, France
| | - Charlotte Macron
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, Université de Strasbourg, CNRS UMR7178, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Yohann Couté
- CEA, DRF, BIG, Laboratoire de Biologie à Grande Echelle, 17 rue des martyrs, Grenoble F-38054, France.,Inserm U1038 , 17, rue des Martyrs, Grenoble F-38054, France.,Université de Grenoble , Grenoble F-38054, France
| | - Karima Chaoui
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Emmanuelle Com
- Protim, Inserm U1085, Irset, Campus de Beaulieu, Rennes 35042, France
| | - Alain Gateau
- CALIPHO Group, SIB-Swiss Institute of Bioinformatics, CMU , rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Anne-Marie Hesse
- CEA, DRF, BIG, Laboratoire de Biologie à Grande Echelle, 17 rue des martyrs, Grenoble F-38054, France.,Inserm U1038 , 17, rue des Martyrs, Grenoble F-38054, France.,Université de Grenoble , Grenoble F-38054, France
| | - Marlene Marcellin
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Loren Méar
- Protim, Inserm U1085, Irset, Campus de Beaulieu, Rennes 35042, France
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Thibault Robin
- Proteome Informatics Group, Centre Universitaire d'Informatique , Route de Drize 7, 1227 Carouge, CH, Switzerland
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, Université de Strasbourg, CNRS UMR7178, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Myriam Ferro
- CEA, DRF, BIG, Laboratoire de Biologie à Grande Echelle, 17 rue des martyrs, Grenoble F-38054, France.,Inserm U1038 , 17, rue des Martyrs, Grenoble F-38054, France.,Université de Grenoble , Grenoble F-38054, France
| | - Thomas Fréour
- Service de Médecine de la Reproduction, CHU de Nantes , 38 boulevard Jean Monnet, 44093 Nantes cedex, France.,INSERM UMR1064 , Nantes 44093, France
| | - Cecilia Lindskog
- CEA, DRF, BIG, Laboratoire de Biologie à Grande Echelle, 17 rue des martyrs, Grenoble F-38054, France.,Inserm U1038 , 17, rue des Martyrs, Grenoble F-38054, France
| | - Jérôme Garin
- CEA, DRF, BIG, Laboratoire de Biologie à Grande Echelle, 17 rue des martyrs, Grenoble F-38054, France.,Inserm U1038 , 17, rue des Martyrs, Grenoble F-38054, France.,Université de Grenoble , Grenoble F-38054, France
| | - Charles Pineau
- Protim, Inserm U1085, Irset, Campus de Beaulieu, Rennes 35042, France
| |
Collapse
|
31
|
Parthipan S, Selvaraju S, Somashekar L, Kolte AP, Arangasamy A, Ravindra JP. Spermatozoa input concentrations and RNA isolation methods on RNA yield and quality in bull (Bos taurus). Anal Biochem 2015; 482:32-9. [DOI: 10.1016/j.ab.2015.03.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/14/2015] [Accepted: 03/19/2015] [Indexed: 11/15/2022]
|