1
|
Phanthunane C, Pongcharoen S, Pannarunothai S, Roboon J, Phanthunane P, Nontarak J. Precision medicine in Asia enhanced by next-generation sequencing: Implications for Thailand through a scoping review and interview study. Clin Transl Sci 2024; 17:e13868. [PMID: 38924657 PMCID: PMC11197108 DOI: 10.1111/cts.13868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Next-generation sequencing (NGS) significantly enhances precision medicine (PM) by offering personalized approaches to diagnosis, treatment, and prevention of unmet medical needs. Little is known about the current situation of PM in Asia. Thus, we aimed to conduct an overview of the progress and gaps in PM in Asia and enrich it with in-depth insight into the possibilities of future PM in Thailand. This scoping review focused on Asian countries starting with non-cancer studies, including rare and undiagnosed diseases (RUDs), non-communicable diseases (NCDs), infectious diseases (IDs), and pharmacogenomics, with a focus on NGS. Subsequent in-depth interviews with experts in Thailand were performed, and a thematic analysis served as the main qualitative methodology. Out of 2898 searched articles, 387 studies were included after the review. Although most of the studies focused on cancer, 89 (23.0%) studies were related to RUDs (17.1%), NCDs (2.8%), IDs (1.8%), and pharmacogenomics (1.3%). Apart from medicine and related sciences, the studies were mostly composed of PM (61.8%), followed by genetics medicine and bioinformatics. Interestingly, 28% of articles were conducted exclusively within the fields of medicine and related sciences, emphasizing interdisciplinary integration. The experts emphasized the need for sustainability-driven political will, nurturing collaboration, reinforcing computational infrastructure, and expanding the bioinformatic workforce. In Asia, developments of NGS have made remarkable progress in PM. Thailand has extended PM beyond cancer and focused on clinical implementation. We summarized the PM challenges, including equity and efficiency targeting, guided research funding, sufficient sample size, integrated collaboration, computational infrastructure, and sufficient trained human resources.
Collapse
Affiliation(s)
- Chumut Phanthunane
- Division of Medical OncologyChulabhorn Hospital, Chulabhorn Royal AcademyBangkokThailand
| | - Sutatip Pongcharoen
- Department of Medicine, Faculty of MedicineNaresuan UniversityPhitsanulokThailand
| | | | - Jureepon Roboon
- Department of Anatomy, Faculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
- Centre of Excellence in Medical BiotechnologyNaresuan UniversityPhitsanulokThailand
| | - Pudtan Phanthunane
- Department of Economics, Faculty of Business, Economics and CommunicationsNaresuan UniversityPhitsanulokThailand
| | - Jiraluck Nontarak
- Department of Epidemiology, Faculty of Public HealthMahidol UniversityBangkokThailand
| |
Collapse
|
2
|
Masucci M, Karlsson C, Blomqvist L, Ernberg I. Bridging the Divide: A Review on the Implementation of Personalized Cancer Medicine. J Pers Med 2024; 14:561. [PMID: 38929782 PMCID: PMC11204735 DOI: 10.3390/jpm14060561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/05/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The shift towards personalized cancer medicine (PCM) represents a significant transformation in cancer care, emphasizing tailored treatments based on the genetic understanding of cancer at the cellular level. This review draws on recent literature to explore key factors influencing PCM implementation, highlighting the role of innovative leadership, interdisciplinary collaboration, and coordinated funding and regulatory strategies. Success in PCM relies on overcoming challenges such as integrating diverse medical disciplines, securing sustainable investment for shared infrastructures, and navigating complex regulatory landscapes. Effective leadership is crucial for fostering a culture of innovation and teamwork, essential for translating complex biological insights into personalized treatment strategies. The transition to PCM necessitates not only organizational adaptation but also the development of new professional roles and training programs, underscoring the need for a multidisciplinary approach and the importance of team science in overcoming the limitations of traditional medical paradigms. The conclusion underscores that PCM's success hinges on creating collaborative environments that support innovation, adaptability, and shared vision among all stakeholders involved in cancer care.
Collapse
Affiliation(s)
- Michele Masucci
- Department of Learning, Informatics, Management and Ethics (LIME), Karolinska Institutet, Tomtebodavägen 18B, 171 65 Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Claes Karlsson
- Department of Oncology-Pathology (Onc-Pat), Karolinska Institutet, Anna Steckséns gata 30A, D2:04, 171 65 Solna, Sweden;
| | - Lennart Blomqvist
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institutet, Anna Steckséns gata 53, 171 65 Solna, Sweden;
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| |
Collapse
|
3
|
Lajmi N, Alves-Vasconcelos S, Tsiachristas A, Haworth A, Woods K, Crichton C, Noble T, Salih H, Várnai KA, Branford-White H, Orrell L, Osman A, Bradley KM, Bonney L, McGowan DR, Davies J, Prime MS, Hassan AB. Challenges and solutions to system-wide use of precision oncology as the standard of care paradigm. CAMBRIDGE PRISMS. PRECISION MEDICINE 2024; 2:e4. [PMID: 38699518 PMCID: PMC11062796 DOI: 10.1017/pcm.2024.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/02/2024] [Accepted: 03/12/2024] [Indexed: 05/05/2024]
Abstract
The personalised oncology paradigm remains challenging to deliver despite technological advances in genomics-based identification of actionable variants combined with the increasing focus of drug development on these specific targets. To ensure we continue to build concerted momentum to improve outcomes across all cancer types, financial, technological and operational barriers need to be addressed. For example, complete integration and certification of the 'molecular tumour board' into 'standard of care' ensures a unified clinical decision pathway that both counteracts fragmentation and is the cornerstone of evidence-based delivery inside and outside of a research setting. Generally, integrated delivery has been restricted to specific (common) cancer types either within major cancer centres or small regional networks. Here, we focus on solutions in real-world integration of genomics, pathology, surgery, oncological treatments, data from clinical source systems and analysis of whole-body imaging as digital data that can facilitate cost-effectiveness analysis, clinical trial recruitment, and outcome assessment. This urgent imperative for cancer also extends across the early diagnosis and adjuvant treatment interventions, individualised cancer vaccines, immune cell therapies, personalised synthetic lethal therapeutics and cancer screening and prevention. Oncology care systems worldwide require proactive step-changes in solutions that include inter-operative digital working that can solve patient centred challenges to ensure inclusive, quality, sustainable, fair and cost-effective adoption and efficient delivery. Here we highlight workforce, technical, clinical, regulatory and economic challenges that prevent the implementation of precision oncology at scale, and offer a systematic roadmap of integrated solutions for standard of care based on minimal essential digital tools. These include unified decision support tools, quality control, data flows within an ethical and legal data framework, training and certification, monitoring and feedback. Bridging the technical, operational, regulatory and economic gaps demands the joint actions from public and industry stakeholders across national and global boundaries.
Collapse
Affiliation(s)
- Nesrine Lajmi
- Diagnostics Division, Roche Information Solutions, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Sofia Alves-Vasconcelos
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Apostolos Tsiachristas
- Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, Oxford, UK
| | - Andrew Haworth
- Diagnostics Division, Roche Information Solutions, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Kerrie Woods
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Theresa Noble
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Hizni Salih
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Kinga A. Várnai
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Liam Orrell
- Diagnostics Division, Roche Information Solutions, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Andrew Osman
- Roche Healthcare Consulting, Roche Diagnostics Limited, West Sussex, UK
| | - Kevin M. Bradley
- Wales Research and Diagnostic PET Imaging Centre, University Hospital of Wales, Cardiff, UK
| | - Lara Bonney
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Jim Davies
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, UK
| | - Matthew S. Prime
- Diagnostics Division, Roche Information Solutions, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Andrew Bassim Hassan
- Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
4
|
Kostadinov K, Marinova Y, Dimitrov K, Hristova-Atanasova E, Iskrov G, Stefanov R. Navigating Gene Therapy Access: The Case of Bulgaria in the Context of the EU Regulatory Landscape. Healthcare (Basel) 2024; 12:458. [PMID: 38391833 PMCID: PMC10888421 DOI: 10.3390/healthcare12040458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Gene therapies (GTs) have recently emerged as revolutionary personalized therapeutic options. Despite their promising potential, challenges such as uncertainty regarding long-term health benefits and safety, along with extreme price tags, pose significant obstacles to patient access. Within the EU, the European Medicines Agency plays a pivotal role with regards to GT market authorization. However, national authorities are responsible for pricing and reimbursement, which results in fragment patient access within the EU. This study aimed to provide an overview of the complex landscape of post-market authorization accessibility for GT products in Bulgaria, comparing it with neighboring EU countries. We applied a mixed-methods approach, including desk research, public data requests, and list price comparisons. As of 1 April 2023, 14 GTs had a valid market authorization at the EU level. In Bulgaria, Kymriah® was the only GT included in the Positive Drug List (PDL), with an official list price of EUR 335,636.94. Similar results were found in Romania, whereas five GTs were included in Greece's PDL. Additionally, Zolgensma® was found accessible in Bulgaria through an alternative individual access scheme at an estimated price of EUR 1,945,000.00. In conclusion, this study emphasized targeted policy interventions to address health inequalities and to ensure timely access to GTs within the EU.
Collapse
Affiliation(s)
- Kostadin Kostadinov
- Department of Social Medicine and Public Health, Faculty of Public Health, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Yuliyana Marinova
- Department of Social Medicine and Public Health, Faculty of Public Health, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Kostadin Dimitrov
- Department of Social Medicine and Public Health, Faculty of Public Health, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Institute for Rare Diseases, 4023 Plovdiv, Bulgaria
| | - Eleonora Hristova-Atanasova
- Department of Social Medicine and Public Health, Faculty of Public Health, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Georgi Iskrov
- Department of Social Medicine and Public Health, Faculty of Public Health, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Institute for Rare Diseases, 4023 Plovdiv, Bulgaria
| | - Rumen Stefanov
- Department of Social Medicine and Public Health, Faculty of Public Health, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Institute for Rare Diseases, 4023 Plovdiv, Bulgaria
| |
Collapse
|
5
|
Farooq A, Hassan M, Loya A, Asghar K. Community Outreach and Engagement in Cancer Research Through a Biobank Clinic at Shaukat Khanum Memorial Cancer Hospital and Research Centre, Pakistan. Cureus 2024; 16:e55179. [PMID: 38558595 PMCID: PMC10980601 DOI: 10.7759/cureus.55179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
INTRODUCTION Cancer's increasing prevalence across the globe emphasizes the urgency for continued research, prevention, and accessible healthcare to mitigate its impact on individuals and communities. While there have been significant advances made towards controlling cancer morbidity and mortality in recent decades, Pakistan continues to experience a markedly elevated burden of the disease. With this study, we aim to raise awareness about biobank research within the cancer patient community, fostering participation and collaboration to advance the fight against cancer through vital research contributions. METHODS In October 2022, we initiated the biobank clinic at Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC). Here, patients underwent screening and received invitations to voluntarily participate in biobank research. During these interactions, we engaged patients in discussions about the significance of biobank research, addressed their concerns, and encouraged their participation in advancing our research endeavors. Two-sample independent t-tests were performed to compare the mean number of participants in pre-clinic and post-clinic cohorts. RESULTS This research involved a total of 958 participants, with 312 participants enrolled before the clinic and 646 participants enrolled after the clinic. We have observed a noticeable increase in the participation of cancer patients in our research endeavors since the inception of the biobank clinic (p-value<0.001). Over an 11-month time frame, we scheduled appointments for 759 patients, and out of those, 656 patients availed themselves to visit the clinic. Impressively, we achieved the enrollment of 646 patients into the clinic, reflecting an exceptional consent rate of 98.47% for their active involvement in our research initiatives. This underscores our commitment to conducting comprehensive discussions and providing thorough explanations regarding the ethical and procedural aspects of our research. CONCLUSION Biobank clinic plays a pivotal role in raising cancer awareness and fostering research participation, especially in regions with limited healthcare infrastructure and lower literacy rates. It emerges as a community-engagement model that aligns research with local needs, ensuring its relevance and benefit to the population.
Collapse
Affiliation(s)
- Asim Farooq
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, PAK
| | - Muhammad Hassan
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, PAK
| | - Asif Loya
- Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, PAK
| | - Kashif Asghar
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, PAK
| |
Collapse
|
6
|
Richard G, Ruggiero N, Steinberg GD, Martin WD, De Groot AS. Neoadjuvant personalized cancer vaccines: the final frontier? Expert Rev Vaccines 2024; 23:205-212. [PMID: 38189107 DOI: 10.1080/14760584.2024.2303015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
INTRODUCTION Clinical trials of personalized cancer vaccines have shown that on-demand therapies that are manufactured for each patient, result in activated T cell responses against individual tumor neoantigens. However, their use has been traditionally restricted to adjuvant settings and late-stage cancer therapy. There is growing support for the implementation of PCV earlier in the cancer therapy timeline, for reasons that will be discussed in this review. AREAS COVERED The efficacy of cancer vaccines may be to some extent dependent on treatment(s) given prior to vaccine administration. Tumors can undergo radical immunoediting following treatment with immunotherapies, such as checkpoint inhibitors, which may affect the presence of the very mutations targeted by cancer vaccines. This review will cover the topics of neoantigen cancer vaccines, tumor immunoediting, and therapy timing. EXPERT OPINION Therapy timing remains a critical topic to address in optimizing the efficacy of personalized cancer vaccines. Most personalized cancer vaccines are being evaluated in late-stage cancer patients and after treatment with checkpoint inhibitors, but they may offer a greater benefit to the patient if administered in earlier clinical settings, such as the neoadjuvant setting, where patients are not facing T cell exhaustion and/or a further compromised immune system.
Collapse
Affiliation(s)
| | | | - Gary D Steinberg
- EpiVax Therapeutics, Inc., Providence, RI, USA
- RUSH University, Chicago, IL, USA
| | | | - Anne S De Groot
- EpiVax, Inc., Providence, RI, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| |
Collapse
|
7
|
Muharremi G, Meçani R, Muka T. The Buzz Surrounding Precision Medicine: The Imperative of Incorporating It into Evidence-Based Medical Practice. J Pers Med 2023; 14:53. [PMID: 38248754 PMCID: PMC10820165 DOI: 10.3390/jpm14010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Precision medicine (PM), through the integration of omics and environmental data, aims to provide a more precise prevention, diagnosis, and treatment of disease. Currently, PM is one of the emerging approaches in modern healthcare and public health, with wide implications for health care delivery, public health policy making formulation, and entrepreneurial endeavors. In spite of its growing popularity and the buzz surrounding it, PM is still in its nascent phase, facing considerable challenges that need to be addressed and resolved for it to attain the acclaim for which it strives. In this article, we discuss some of the current methodological pitfalls of PM, including the use of big data, and provide a perspective on how these challenges can be overcome by bringing PM closer to evidence-based medicine (EBM). Furthermore, to maximize the potential of PM, we present real-world illustrations of how EBM principles can be integrated into a PM approach.
Collapse
Affiliation(s)
| | - Renald Meçani
- Epistudia, 3008 Bern, Switzerland; (G.M.); (R.M.)
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Taulant Muka
- Epistudia, 3008 Bern, Switzerland; (G.M.); (R.M.)
| |
Collapse
|
8
|
Chen W, Wong NCB, Wang Y, Zemlyanska Y, Butani D, Virabhak S, Matchar DB, Prapinvanich T, Teerawattananon Y. Mapping the value for money of precision medicine: a systematic literature review and meta-analysis. Front Public Health 2023; 11:1151504. [PMID: 38074712 PMCID: PMC10704154 DOI: 10.3389/fpubh.2023.1151504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 10/04/2023] [Indexed: 12/18/2023] Open
Abstract
Objective This study aimed to quantify heterogeneity in the value for money of precision medicine (PM) by application types across contexts and conditions and to quantify sources of heterogeneity to areas of particular promises or concerns as the field of PM moves forward. Methods A systemic search was performed in Embase, Medline, EconLit, and CRD databases for studies published between 2011 and 2021 on cost-effectiveness analysis (CEA) of PM interventions. Based on a willingness-to-pay threshold of one-time GDP per capita of each study country, the net monetary benefit (NMB) of PM was pooled using random-effects meta-analyses. Sources of heterogeneity and study biases were examined using random-effects meta-regressions, jackknife sensitivity analysis, and the biases in economic studies checklist. Results Among the 275 unique CEAs of PM, publicly sponsored studies found neither genetic testing nor gene therapy cost-effective in general, which was contradictory to studies funded by commercial entities and early stage evaluations. Evidence of PM being cost-effective was concentrated in a genetic test for screening, diagnosis, or as companion diagnostics (pooled NMBs, $48,152, $8,869, $5,693, p < 0.001), in the form of multigene panel testing (pooled NMBs = $31,026, p < 0.001), which only applied to a few disease areas such as cancer and high-income countries. Incremental effectiveness was an essential value driver for varied genetic tests but not gene therapy. Conclusion Precision medicine's value for money across application types and contexts was difficult to conclude from published studies, which might be subject to systematic bias. The conducting and reporting of CEA of PM should be locally based and standardized for meaningful comparisons.
Collapse
Affiliation(s)
- Wenjia Chen
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Nigel Chong Boon Wong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Yi Wang
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Yaroslava Zemlyanska
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Dimple Butani
- Health Intervention and Technology Assessment Program (HITAP), Ministry of Public Health, Bangkok, Thailand
| | - Suchin Virabhak
- Precision Health Research, Singapore (PRECISE), Singapore, Singapore
| | - David Bruce Matchar
- Precision Health Research, Singapore (PRECISE), Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | | | - Yot Teerawattananon
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Health Intervention and Technology Assessment Program (HITAP), Ministry of Public Health, Bangkok, Thailand
| |
Collapse
|
9
|
Koleva-Kolarova R, Szilberhorn L, Zelei T, Vellekoop H, Nagy B, Huygens S, Versteegh M, Mölken MRV, Wordsworth S, Tsiachristas A. Financial incentives to promote personalized medicine in Europe: an overview and guidance for implementation. Per Med 2023; 20:305-319. [PMID: 37623911 DOI: 10.2217/pme-2022-0145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The implementation of adequate financing and reimbursement of personalized medicine (PM) in Europe is still turbulent. The views and experience of stakeholders about barriers in financing and reimbursing PM and potential solutions were elicited and supplemented with literature findings to draft a set of recommendations. Key recommendations to overcome the barriers for adequately financing and reimbursing PM in different healthcare systems in Europe included the provision of legal foundations and establishment of large pan-European databases, use of financial-based agreements and regulation of transparency of prices and reimbursement, and creating a business-friendly environment and attractive market for innovation. The recommendations could be used by health authorities for designing a sequence of policy steps to ensure the timely access to beneficial PM.
Collapse
Affiliation(s)
| | - László Szilberhorn
- Syreon Research Institute, Budapest, Hungary
- Faculty of Social Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Zelei
- Syreon Research Institute, Budapest, Hungary
| | - Heleen Vellekoop
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Balázs Nagy
- Syreon Research Institute, Budapest, Hungary
| | - Simone Huygens
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Matthijs Versteegh
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Maureen Rutten-van Mölken
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Sarah Wordsworth
- Health Economics Research Centre, University of Oxford, Oxford, UK
| | | |
Collapse
|
10
|
Rutten-van Mölken M, Versteegh M, Nagy B, Wordsworth S. HEcoPerMed, personalized medicine from a health economic perspective: lessons learned and potential opportunities ahead. Per Med 2023; 20:299-303. [PMID: 37736874 DOI: 10.2217/pme-2022-0074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Affiliation(s)
- Maureen Rutten-van Mölken
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA, Rotterdam, The Netherlands
| | - Matthijs Versteegh
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA, Rotterdam, The Netherlands
| | - Balázs Nagy
- Syreon Research Institute, Mexikoi street 65/A, 1142 Budapest, Hungary
- Center for Health Technology Assessment, Semmelweis University, Üllői út 25, 1091 Budapest, Hungary
| | - Sarah Wordsworth
- Health Economics Research Centre, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
| |
Collapse
|
11
|
Michalek DA, Onengut-Gumuscu S, Repaske DR, Rich SS. Precision Medicine in Type 1 Diabetes. J Indian Inst Sci 2023; 103:335-351. [PMID: 37538198 PMCID: PMC10393845 DOI: 10.1007/s41745-023-00356-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/04/2023] [Indexed: 03/09/2023]
Abstract
Type 1 diabetes is a complex, chronic disease in which the insulin-producing beta cells in the pancreas are sufficiently altered or impaired to result in requirement of exogenous insulin for survival. The development of type 1 diabetes is thought to be an autoimmune process, in which an environmental (unknown) trigger initiates a T cell-mediated immune response in genetically susceptible individuals. The presence of islet autoantibodies in the blood are signs of type 1 diabetes development, and risk of progressing to clinical type 1 diabetes is correlated with the presence of multiple islet autoantibodies. Currently, a "staging" model of type 1 diabetes proposes discrete components consisting of normal blood glucose but at least two islet autoantibodies (Stage 1), abnormal blood glucose with at least two islet autoantibodies (Stage 2), and clinical diagnosis (Stage 3). While these stages may, in fact, not be discrete and vary by individual, the format suggests important applications of precision medicine to diagnosis, prevention, prognosis, treatment and monitoring. In this paper, applications of precision medicine in type 1 diabetes are discussed, with both opportunities and barriers to global implementation highlighted. Several groups have implemented components of precision medicine, yet the integration of the necessary steps to achieve both short- and long-term solutions will need to involve researchers, patients, families, and healthcare providers to fully impact and reduce the burden of type 1 diabetes.
Collapse
Affiliation(s)
- Dominika A. Michalek
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA USA
| | - David R. Repaske
- Division of Endocrinology, Department of Pediatrics, University of Virginia, Charlottesville, VA USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA USA
| |
Collapse
|
12
|
Hofmarcher T, Malmberg C, Lindgren P. A global analysis of the value of precision medicine in oncology - The case of non-small cell lung cancer. Front Med (Lausanne) 2023; 10:1119506. [PMID: 36891190 PMCID: PMC9986274 DOI: 10.3389/fmed.2023.1119506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Objectives Biomarker testing is indispensable for the implementation of precision medicine (PM) in oncology. The aim of this study was to assess the value of biomarker testing from a holistic perspective based on the example of advanced non-small cell lung cancer (aNSCLC). Materials and methods A partitioned survival model was populated with data from pivotal clinical trials of first-line treatments in aNSCLC. Three testing scenarios were considered; "no biomarker testing" encompassing chemotherapy treatment, "sequential testing" for EGFR and ALK encompassing treatment with targeted- or chemotherapy, and "multigene testing" covering EGFR, ALK, ROS1, BRAF, NTRK, MET, RET and encompassing treatment with targeted- or immuno(chemo)therapy. Analyses of health outcomes and costs were run for nine countries (Australia, Brazil, China, Germany, Japan, Poland, South Africa, Turkey, United States). A 1-year and 5-year time horizon was applied. Information on test accuracy was combined with country-specific information on epidemiology and unit costs. Results Compared to the no-testing scenario, survival improved and treatment-related adverse events decreased with increased testing. Five-year survival increased from 2% to 5-7% and to 13-19% with sequential testing and multigene testing, respectively. The highest survival gains were observed in East Asia due to a higher local prevalence of targetable mutations. Overall costs increased with increased testing in all countries. Although costs for testing and medicines increased, costs for treatment of adverse events and end-of-life care decreased throughout all years. Non-health care costs (sick leave and disability pension payments) decreased during the first year but increased over a 5-year horizon. Conclusion The broad use of biomarker testing and PM in aNSCLC leads to more efficient treatment assignment and improves health outcomes for patients globally, in particular prolonged progression-free disease phase and overall survival. These health gains require investment in biomarker testing and medicines. While costs for testing and medicines would initially increase, cost decreases for other medical services and non-health care costs may partly offset the cost increases.
Collapse
Affiliation(s)
| | - Chiara Malmberg
- IHE–The Swedish Institute for Health Economics, Lund, Sweden
| | - Peter Lindgren
- IHE–The Swedish Institute for Health Economics, Lund, Sweden
- Karolinska Institutet, Solna, Sweden
| |
Collapse
|
13
|
Xu X, Du H, Lian Z. Discussion on regression analysis with small determination coefficient in human-environment researches. INDOOR AIR 2022; 32:e13117. [PMID: 36305070 DOI: 10.1111/ina.13117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/19/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
As the main indicator for assessing the explanatory strength of regression model, there is no denying that a bigger value of determination coefficient (R-squared, R2 ) is the consistent pursuit of researchers in human-environment field, but whether to abandon or apply the model with a small value of R2 is an ongoing argument. This paper summarizes three characteristics of human-environment researches (large number of various variables, large mathematical sample size, and polynomial regression model). Based on the mathematical mechanism of regression analysis, theoretical analysis and case study are combined to point out the misconceptions that are easy to step into and the corresponding suggested methods from three perspectives: selection of determination coefficients, consideration of independent variables, and application of regression models. An extraordinary important point is, if the regression model passes the significance test, even with a small coefficient of determination, it can still quantitatively explain the impact extent of independent variables on dependent variables, but cannot comprehensively and accurately predict the specific value of dependent variable based on existing independent variables; moreover, the larger the sample size, the closer the interpretation of dependent variables in local model to ideal model. It is expected that these cases and lessons could help researchers to better apply regression analysis in human-environment researches, and that the small value of R2 would not be an excessive restriction affecting the development of scientific research in this field.
Collapse
Affiliation(s)
- Xinbo Xu
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Heng Du
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Lian
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|