1
|
Li Y, Chen J, Wei J, Liu X, Yu L, Yu L, Ding D, Yang Y. Metallic nanoplatforms for COVID-19 diagnostics: versatile applications in the pandemic and post-pandemic era. J Nanobiotechnology 2023; 21:255. [PMID: 37542245 PMCID: PMC10403867 DOI: 10.1186/s12951-023-01981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/03/2023] [Indexed: 08/06/2023] Open
Abstract
The COVID-19 pandemic, which originated in Hubei, China, in December 2019, has had a profound impact on global public health. With the elucidation of the SARS-CoV-2 virus structure, genome type, and routes of infection, a variety of diagnostic methods have been developed for COVID-19 detection and surveillance. Although the pandemic has been declared over, we are still significantly affected by it in our daily lives in the post-pandemic era. Among the various diagnostic methods, nanomaterials, especially metallic nanomaterials, have shown great potential in the field of bioanalysis due to their unique physical and chemical properties. This review highlights the important role of metallic nanosensors in achieving accurate and efficient detection of COVID-19 during the pandemic outbreak and spread. The sensing mechanisms of each diagnostic device capable of analyzing a range of targets, including viral nucleic acids and various proteins, are described. Since SARS-CoV-2 is constantly mutating, strategies for dealing with new variants are also suggested. In addition, we discuss the analytical tools needed to detect SARS-CoV-2 variants in the current post-pandemic era, with a focus on achieving rapid and accurate detection. Finally, we address the challenges and future directions of metallic nanomaterial-based COVID-19 detection, which may inspire researchers to develop advanced biosensors for COVID-19 monitoring and rapid response to other virus-induced pandemics based on our current achievements.
Collapse
Affiliation(s)
- Yuqing Li
- Institute of Molecular Medicine (IMM), School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Mate-Rials & Devices, Soochow University, Suzhou, 215123, China
| | - Jingqi Chen
- Institute of Molecular Medicine (IMM), School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xueliang Liu
- Institute of Molecular Medicine (IMM), School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lu Yu
- Institute of Molecular Medicine (IMM), School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Linqi Yu
- Department of Immunization Program, Jing'an District Center for Disease Control and Prevention, Shanghai, 200072, China.
| | - Ding Ding
- Institute of Molecular Medicine (IMM), School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yu Yang
- Institute of Molecular Medicine (IMM), School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
2
|
Yuan X, Lv J, Lin X, Zhang C, Deng J, Wang C, Fan X, Wang Y, Xu H, Wu S. Multiplex detection of six swine viruses on an integrated centrifugal disk using loop-mediated isothermal amplification. J Vet Diagn Invest 2019; 31:415-425. [PMID: 30947641 DOI: 10.1177/1040638719841096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Advances in molecular testing and microfluidic technologies have opened new avenues for rapid detection of animal viruses. We used a centrifugal microfluidic disk (CMFD) to detect 6 important swine viruses, including foot-and-mouth disease virus, classical swine fever virus, porcine reproductive and respiratory swine virus-North American genotype, porcine circovirus 2, pseudorabies virus, and porcine parvovirus. Through integrating the loop-mediated isothermal amplification (LAMP) method and microfluidic chip technology, the CMFD could be successfully performed at 62℃ in 60 min. The detection limit of the CMFD was 3.2 × 102 copies per reaction, close to the sensitivity of tube-type LAMP turbidity methods (1 × 102 copies per reaction). In addition, the CMFD was highly specific in detecting the targeted viruses with no cross-reaction with other viruses, including porcine epidemic diarrhea virus, transmissible gastroenteritis virus, and porcine rotavirus. The coincidence rate of CMFD and conventional PCR was ~94%; the CMFD was more sensitive than conventional PCR for detecting mixed viral infections. The positive detection rate of 6 viruses in clinical samples by CMFD was 44.0% (102 of 232), whereas PCR was 40.1% (93 of 232). Thirty-six clinical samples were determined to be coinfected with 2 or more viruses. CMFD can be used for rapid, sensitive, and accurate detection of 6 swine viruses, offering a reliable assay for monitoring these pathogens, especially for detecting viruses in widespread mixed-infection clinical samples.
Collapse
Affiliation(s)
- Xiangfen Yuan
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China (Yuan, Deng, C Wang, Lv, Lin, Wu).,CapitalBio Technology, Beijing, China (Zhang, Fan, Y Wang, Xu)
| | - Jizhou Lv
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China (Yuan, Deng, C Wang, Lv, Lin, Wu).,CapitalBio Technology, Beijing, China (Zhang, Fan, Y Wang, Xu)
| | - Xiangmei Lin
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China (Yuan, Deng, C Wang, Lv, Lin, Wu).,CapitalBio Technology, Beijing, China (Zhang, Fan, Y Wang, Xu)
| | - Chunyan Zhang
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China (Yuan, Deng, C Wang, Lv, Lin, Wu).,CapitalBio Technology, Beijing, China (Zhang, Fan, Y Wang, Xu)
| | - Junhua Deng
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China (Yuan, Deng, C Wang, Lv, Lin, Wu).,CapitalBio Technology, Beijing, China (Zhang, Fan, Y Wang, Xu)
| | - Caixia Wang
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China (Yuan, Deng, C Wang, Lv, Lin, Wu).,CapitalBio Technology, Beijing, China (Zhang, Fan, Y Wang, Xu)
| | - Xiaopan Fan
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China (Yuan, Deng, C Wang, Lv, Lin, Wu).,CapitalBio Technology, Beijing, China (Zhang, Fan, Y Wang, Xu)
| | - Yonggui Wang
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China (Yuan, Deng, C Wang, Lv, Lin, Wu).,CapitalBio Technology, Beijing, China (Zhang, Fan, Y Wang, Xu)
| | - Hui Xu
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China (Yuan, Deng, C Wang, Lv, Lin, Wu).,CapitalBio Technology, Beijing, China (Zhang, Fan, Y Wang, Xu)
| | - Shaoqiang Wu
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China (Yuan, Deng, C Wang, Lv, Lin, Wu).,CapitalBio Technology, Beijing, China (Zhang, Fan, Y Wang, Xu)
| |
Collapse
|
3
|
Wen G, Zhang T, Yang J, Luo Q, Liao Y, Hu Z, Zhang R, Wang H, Ai D, Luo L, Song N, Shao H. Evaluation of a real-time RT-PCR assay using minor groove binding probe for specific detection of Chinese wild-type classical swine fever virus. J Virol Methods 2011; 176:96-102. [DOI: 10.1016/j.jviromet.2011.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 01/09/2023]
|
4
|
Development and validation of a novel SYBR Green real-time RT-PCR assay for the detection of classical swine fever virus evaluated on different real-time PCR platforms. J Virol Methods 2011; 174:53-9. [DOI: 10.1016/j.jviromet.2011.03.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 03/16/2011] [Accepted: 03/23/2011] [Indexed: 11/19/2022]
|
5
|
Penrith ML, Vosloo W, Mather C. Classical swine fever (hog cholera): review of aspects relevant to control. Transbound Emerg Dis 2011; 58:187-96. [PMID: 21303492 DOI: 10.1111/j.1865-1682.2011.01205.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Classical swine fever (CSF) has the ability to spread over large distances when human intervention such as illegal swill feeding facilitates its movement. This was apparent during 2005 when CSF appeared in South Africa (SA) after an absence of 87 years. In this review, various newly published developments in terms of the diagnosis of the disease and vaccination are described and applied to situations similar to SA. The role of wildlife such as feral pigs and European wild boar in the dissemination and maintenance of CSF virus are discussed, and the dearth of knowledge on the potential of other wild pig species prevalent on southern Africa noted. The modes of spread and control measures to prevent introduction as well as during outbreaks are discussed.
Collapse
Affiliation(s)
- M-L Penrith
- TAD Scientific C.C., Menlo Park, South Africa.
| | | | | |
Collapse
|
6
|
Zhang XJ, Xia H, Everett H, Sosan O, Crooke H, Belák S, Widén F, Qiu HJ, Liu L. Evaluation of a primer-probe energy transfer real-time PCR assay for detection of classical swine fever virus. J Virol Methods 2010; 168:259-61. [PMID: 20471428 DOI: 10.1016/j.jviromet.2010.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/28/2010] [Accepted: 05/05/2010] [Indexed: 11/15/2022]
Abstract
This study describes evaluation of a real-time PCR assay based on primer-probe energy transfer (PriProET) technology for detection of classical swine fever virus (CSFV). The PriProET technology allows melting curve analysis following PCR amplification and thus provides a higher specificity. The assay was compared with a TaqMan assay by testing a total of 203 samples including 175 clinical specimens and 28 batches of Hog Cholera Lapinized Virus (HCLV) vaccine. The two assays gave the same results for 184 (91%) samples. Compared with the TaqMan assay, 19 additional samples were found to be positive for CSFV using the PriProET assay. In an RNA mixture of both wild type CSFV and C-strain vaccine, the melting curves displayed only one curve: either a wild type-like or a vaccine-like depending on the dominating RNA. The PriProET assay can be a routine molecular tool or a confirmative tool for diagnosis of classical swine fever (CSF), especially in the case of samples that yield an inconclusive result by the TaqMan assay.
Collapse
Affiliation(s)
- Xing-Juan Zhang
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 150001 Harbin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
A one-step real-time reverse transcription-polymerase chain reaction detection of classical swine fever virus using a minor groove binding probe. Vet Res Commun 2010; 34:359-69. [PMID: 20411415 DOI: 10.1007/s11259-010-9363-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2010] [Indexed: 10/19/2022]
Abstract
The aim of this study was to develop a one-step real-time reverse transcription-polymerase chain reaction assay using the minor groove binding probe (MGB rRT-PCR) for rapid and quantitative detection of classical swine fever virus (CSFV). The method, which targets the 5'-nontranslated region (5'NTR) of the viral genome, detected all CSFV isolate tested, but not heterologous pathogens. Using an in vitro transcript of the 5'NTR as a quantitative standard for the CSFV genome copy number, the assay had a detection limit of 10 copies/reaction, and the standard curve had a linear range from 10 to 10(7) copies/reaction, with good reproducibility. As determined by an end-point dilution comparison, in most case, the sensitivity of the MGB rRT-PCR was approximately 10-fold higher than that of virus isolation and the rRT-PCR using the standard Taqman probe (standard rRT-PCR). The agreement between the MGB rRT-PCR and standard rRT-PCR, or virus isolation was 93.3% and 76.7%, respectively, when detecting 261 field samples. Due to its rapidity, high specificity and sensitivity, the MGB rRT-PCR assay provides a valuable tool for diagnosis and molecular studies of CSFV biology.
Collapse
|
8
|
Liu L, Hoffmann B, Baule C, Beer M, Belák S, Widén F. Two real-time RT-PCR assays of classical swine fever virus, developed for the genetic differentiation of naturally infected from vaccinated wild boars. J Virol Methods 2009; 159:131-3. [DOI: 10.1016/j.jviromet.2009.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 03/02/2009] [Accepted: 03/09/2009] [Indexed: 10/21/2022]
|
9
|
Díaz de Arce H, Pérez LJ, Frías MT, Rosell R, Tarradas J, Núñez JI, Ganges L. A multiplex RT-PCR assay for the rapid and differential diagnosis of classical swine fever and other pestivirus infections. Vet Microbiol 2009; 139:245-52. [PMID: 19577384 DOI: 10.1016/j.vetmic.2009.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 05/25/2009] [Accepted: 06/03/2009] [Indexed: 11/26/2022]
Abstract
Classical swine fever is a highly contagious viral disease causing severe economic losses in pig production almost worldwide. All pestivirus species can infect pigs, therefore accurate and rapid pestivirus detection and differentiation is of great importance to assure control measures in swine farming. Here we describe the development and evaluation of a novel multiplex, highly sensitive and specific RT-PCR for the simultaneous detection and rapid differentiation between CSFV and other pestivirus infections in swine. The universal and differential detection was based on primers designed to amplify a fragment of the 5' non-coding genome region for the detection of pestiviruses and a fragment of the NS5B gene for the detection of classical swine fever virus. The assay proved to be specific when different pestivirus strains from swine and ruminants were evaluated. The analytical sensitivity was estimated to be as little as 0.89TCID(50). The assay analysis of 30 tissue homogenate samples from naturally infected and non-CSF infected animals and 40 standard serum samples evaluated as part of two European Inter-laboratory Comparison Tests conducted by the European Community Reference Laboratory, Hanover, Germany proved that the multiplex RT-PCR method provides a rapid, highly sensitive, and cost-effective laboratory diagnosis for classical swine fever and other pestivirus infections in swine.
Collapse
|
10
|
Hoffmann B, Beer M, Reid SM, Mertens P, Oura CAL, van Rijn PA, Slomka MJ, Banks J, Brown IH, Alexander DJ, King DP. A review of RT-PCR technologies used in veterinary virology and disease control: sensitive and specific diagnosis of five livestock diseases notifiable to the World Organisation for Animal Health. Vet Microbiol 2009; 139:1-23. [PMID: 19497689 DOI: 10.1016/j.vetmic.2009.04.034] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 04/15/2009] [Accepted: 04/28/2009] [Indexed: 12/31/2022]
Abstract
Real-time, reverse transcription polymerase chain reaction (rRT-PCR) has become one of the most widely used methods in the field of molecular diagnostics and research. The potential of this format to provide sensitive, specific and swift detection and quantification of viral RNAs has made it an indispensable tool for state-of-the-art diagnostics of important human and animal viral pathogens. Integration of these assays into automated liquid handling platforms for nucleic acid extraction increases the rate and standardisation of sample throughput and decreases the potential for cross-contamination. The reliability of these assays can be further enhanced by using internal controls to validate test results. Based on these advantageous characteristics, numerous robust rRT-PCRs systems have been developed and validated for important epizootic diseases of livestock. Here, we review the rRT-PCR assays that have been developed for the detection of five RNA viruses that cause diseases that are notifiable to the World Organisation for Animal Health (OIE), namely: foot-and-mouth disease, classical swine fever, bluetongue disease, avian influenza and Newcastle disease. The performance of these tests for viral diagnostics and disease control and prospects for improved strategies in the future are discussed.
Collapse
Affiliation(s)
- Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu L, Xia H, Belák S, Widén F. Development of a primer-probe energy transfer real-time PCR assay for improved detection of classical swine fever virus. J Virol Methods 2009; 160:69-73. [PMID: 19406164 DOI: 10.1016/j.jviromet.2009.04.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 04/02/2009] [Accepted: 04/21/2009] [Indexed: 11/25/2022]
Abstract
Classical swine fever (CSF) is a contagious and devastating disease, causing serious losses in the pig industry worldwide. Vaccination of pigs with the conventional C-strain vaccine has been practised in different regions of the world in order to prevent the disease. In the control programmes of CSF, rapid detection and identification of the causing agent, classical swine fever virus (CSFV) is a crucial step. This study describes a novel real-time PCR assay based on primer-probe energy transfer (PriProET) technology for improved detection of CSFV. The assay is able to detect 20 copies of viral cDNA per reaction, showing a high sensitivity. The specificity has been evaluated by testing 57 pestiviruses, representing all species and unclassified pestiviruses. The assay has been found to be highly reproducible. Following PCR amplification, melting curve analysis allows confirmation of specific amplicons, and differentiation between wild-type CSFV and certain C-strain vaccines. This study provides a new tool for the diagnosis of CSF.
Collapse
Affiliation(s)
- Lihong Liu
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | |
Collapse
|
12
|
Development of a magnetic bead microarray for simultaneous and simple detection of four pestiviruses. J Virol Methods 2009; 155:1-9. [DOI: 10.1016/j.jviromet.2008.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 04/04/2008] [Accepted: 04/08/2008] [Indexed: 11/22/2022]
|
13
|
Li Y, Zhao JJ, Li N, Shi Z, Cheng D, Zhu QH, Tu C, Tong GZ, Qiu HJ. A multiplex nested RT-PCR for the detection and differentiation of wild-type viruses from C-strain vaccine of classical swine fever virus. J Virol Methods 2007; 143:16-22. [PMID: 17346808 DOI: 10.1016/j.jviromet.2007.01.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 01/29/2007] [Accepted: 01/31/2007] [Indexed: 10/23/2022]
Abstract
A multiplex nested RT-PCR (RT-nPCR) was developed for the detection and differentiation of classical swine fever virus (CSFV). A fragment of 447 or 343 bp was amplified from the genomic RNA of C-strain or virulent Shimen strain, respectively, and two fragments of 447 and 343 bp were simultaneously amplified from the mixed samples of C-strain and Shimen. When detecting several wild-type isolates representative of different subgroups (1.1, 2.1, 2.2, and 2.3) circulating in Mainland China and samples from pigs experimentally infected with Shimen strain, the RT-nPCR resulted in an amplification pattern similar to Shimen. No amplification was achieved for uninfected cells, or cells infected with bovine viral diarrhea virus (BVDV), and other viruses of porcine origin. The RT-nPCR was able to detect as little as 0.04 pg of CSFV RNA. The restrictive fragment length polymorphism (RFLP) demonstrated unique patterns of wild-type viruses and C-strain. Among the 133 field samples, 42 were tested to contain wild-type viruses and 18 showing presence of C-strain. The RT-nPCR can be used to detect and differentiate pigs infected with wild-type CSFV from those vaccinated with C-strain vaccine, thus minimizing the risk of culling vaccinates during outbreaks.
Collapse
Affiliation(s)
- Yan Li
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, Heilongjiang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhao JJ, Cheng D, Li N, Sun Y, Shi Z, Zhu QH, Tu C, Tong GZ, Qiu HJ. Evaluation of a multiplex real-time RT-PCR for quantitative and differential detection of wild-type viruses and C-strain vaccine of Classical swine fever virus. Vet Microbiol 2007; 126:1-10. [PMID: 17658704 DOI: 10.1016/j.vetmic.2007.04.046] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 04/18/2007] [Accepted: 04/25/2007] [Indexed: 11/23/2022]
Abstract
Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), one of OIE listed diseases. Most of the currently available detection methods do not allow discrimination between wild-type CSF viruses and the vaccine strains. This study was designed to develop a multiplex real-time RT-PCR for the quantitative and differential detection of wild-type viruses and C-strain vaccine widely used in China. CSFV specific primers and two differently labeled TaqMan probes for the differentiation of wild-type viruses from C-strain vaccine were designed in the 5'-untranslated region of the viral genome of CSFV. The two TaqMan probes specifically hybridize wild-type viruses of different subgroups and C-strain vaccine, respectively, in the multiplex real-time RT-PCR, with no cross-reaction to a number of non-CSFV porcine viruses. The sensitivity of the assay for detecting wild-type and C-strain-type vaccine viruses was determined to be 41.8 and 81.5copies/microL viral RNA, respectively. Completely correct differentiation of wild-type viruses from C-strain vaccine was achieved when testing reference strains and characterized field isolates of CSFV in China. The multiplex real-time RT-PCR was able to detect the viral RNA in the whole blood samples of experimentally infected pigs as early as 2 days post-infection, 3 to 4 days prior to the onset of clinical signs in co-housed pigs. The agreements between the multiplex real-time RT-PCR and a multiplex RT-nested PCR for detection of wild-type and C-strain-type viruses were 96.9% and 100%, respectively, when detecting 106 different field samples. There is a positive correlation between the titers of C-strain vaccines titrated in rabbits and RNA copies quantitated by the multiplex real-time RT-PCR. The novel assay described here is rapid and sensitive, and is useful for differentiating field strains and C-strain of CSFV in China.
Collapse
Affiliation(s)
- Jian-Jun Zhao
- Division of Swine Infectious Diseases, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, Heilongjiang, China
| | | | | | | | | | | | | | | | | |
Collapse
|