1
|
Zhang L, Liang D, Tian Y, Liang J, Li X, Liu C, Liang J, Luo TR, Li X. Classical Swine Fever Virus Envelope Glycoproteins E rns, E1, and E2 Activate IL-10-STAT1-MX1/OAS1 Antiviral Pathway via Replacing Classical IFNα/β. Biomolecules 2025; 15:200. [PMID: 40001503 PMCID: PMC11853677 DOI: 10.3390/biom15020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Classical swine fever (CSF) is an acute and often fatal disease caused by CSF virus (CSFV) infection. In the present study, we investigated the transcriptional profiles of peripheral blood mononuclear cells (PBMCs) in pigs infected with CSFV. The results revealed that CSFV inhibits IFNα/β production, but up-regulates the expression of signal transducer and activator of transcription 1 (STAT1); this result was verified in vitro. Interestingly, STAT1 is typically a downstream target of IFNα/β, raising the question of how CSFV can inhibit IFNα/β expression, yet up-regulate STAT1 expression. To explore this further, we observed that UV-treated CSFV induced STAT1 expression. Our results demonstrated that CSFV Erns, E1, and E2 could up-regulate STAT1 expression within the host cell cytoplasm and facilitate its translocation into the nucleus. The Erns, E1, and E2 proteins also separately induced the up-regulation of interleukin (IL)-10; IL-10 acts as the communicator connecting Erns, E1, and E2 proteins to STAT1, leading to the subsequent up-regulation, phosphorylation, and nuclear translocation of STAT1. Silencing of IL-10 down-regulated STAT1 expression. Finally, MX1 and OAS1 were identified as downstream targets of the IL-10-STAT1 pathway. In summary, a novel IL-10-STAT1 pathway independent of IFNα/β induced by CSFV Erns, E1, and E2 was identified in this study.
Collapse
Affiliation(s)
- Liyuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Dongli Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Yu Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Jiaxin Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Xiaoquan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Cheng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Jingjing Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Ting Rong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Xiaoning Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (L.Z.); (D.L.); (Y.T.); (J.L.); (X.L.); (C.L.); (J.L.)
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| |
Collapse
|
2
|
Zhang X, Luo N, Ni H, Cheng A, Wang M, Chen S, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Yin Z, Jing B, Huang J, Tian B, Jia R. Anti-tembusu virus of capsid-targeted viral inactivation delivered by lentiviral vector in vivo. Vet Microbiol 2025; 300:110336. [PMID: 39644649 DOI: 10.1016/j.vetmic.2024.110336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Tembusu virus (TMUV) is a member of genus flavivirus, which mainly causes decrease in production in egg ducks and neurological symptom in meatducks, causing serious economic losses to the poultry industry. Recently, the commercialized TMUV vaccines are mainly the WF100 live vaccine and the attenuated live vaccine (FX2010-180P), so it is particularly important to find new methods to combat TMUV. The capsid-targeted viral inactivation (CTVI) strategy is based on a viral core protein and an exogenous factor that can destroy viral DNA or RNA. Lentivirus vectors are an effective tool for transferring the recombinant lentiviruses to target cells and are a promising system for efficient gene delivery. This study injected recombinant lentivirus carrying the Cap-SNase and Cap-Linker-SNase fusion proteins into duck early embryos at 109 TU/mL, achieving widespread expression of the fusion proteins in duck embryo tissues. After TMUV infection, the symptoms of the ducks in the Cap-SNase and Cap-Linker-SNase groups were significantly alleviated to the 1640 group. Pathological sections showed that compared with the 1640 group, the pathological damage in the Cap-SNase and Cap-Linker-SNase groups was greatly alleviated, and the virus loads in the feces, blood and tissues of Cap-SNase or Cap-Linker-SNase groups were significantly lower than those in the 1640 group. The results indicate that the Cap-SNase or Cap-Linker-SNase fusion proteins delivered by lentivirus have anti-TMUV effect. This study combines lentiviral vectors with CTVI strategy for the first time, which could be a simple and practical technology to treating human or animal diseases or biomedical animals.
Collapse
Affiliation(s)
- Xingcui Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Ning Luo
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Hui Ni
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| |
Collapse
|
3
|
Zhang X, Zhang Y, Jia R, Wang M, Yin Z, Cheng A. Structure and function of capsid protein in flavivirus infection and its applications in the development of vaccines and therapeutics. Vet Res 2021; 52:98. [PMID: 34193256 PMCID: PMC8247181 DOI: 10.1186/s13567-021-00966-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023] Open
Abstract
Flaviviruses are enveloped single positive-stranded RNA viruses. The capsid (C), a structural protein of flavivirus, is dimeric and alpha-helical, with several special structural and functional features. The functions of the C protein go far beyond a structural role in virions. It is not only responsible for encapsidation to protect the viral RNA but also able to interact with various host proteins to promote virus proliferation. Therefore, the C protein plays an important role in infected host cells and the viral life cycle. Flaviviruses have been shown to affect the health of humans and animals. Thus, there is an urgent need to effectively control flavivirus infections. The structure of the flavivirus virion has been determined, but there is relatively little information about the function of the C protein. Hence, a greater understanding of the role of the C protein in viral infections will help to discover novel antiviral strategies and provide a promising starting point for the further development of flavivirus vaccines or therapeutics.
Collapse
Affiliation(s)
- Xingcui Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Yanting Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China.
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
4
|
Fan J, Liao Y, Zhang M, Liu C, Li Z, Li Y, Li X, Wu K, Yi L, Ding H, Zhao M, Fan S, Chen J. Anti-Classical Swine Fever Virus Strategies. Microorganisms 2021; 9:microorganisms9040761. [PMID: 33917361 PMCID: PMC8067343 DOI: 10.3390/microorganisms9040761] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 12/23/2022] Open
Abstract
Classical swine fever (CSF), caused by CSF virus (CSFV), is a highly contagious swine disease with high morbidity and mortality, which has caused significant economic losses to the pig industry worldwide. Biosecurity measures and vaccination are the main methods for prevention and control of CSF since no specific drug is available for the effective treatment of CSF. Although a series of biosecurity and vaccination strategies have been developed to curb the outbreak events, it is still difficult to eliminate CSF in CSF-endemic and re-emerging areas. Thus, in addition to implementing enhanced biosecurity measures and exploring more effective CSF vaccines, other strategies are also needed for effectively controlling CSF. Currently, more and more research about anti-CSFV strategies was carried out by scientists, because of the great prospects and value of anti-CSFV strategies in the prevention and control of CSF. Additionally, studies on anti-CSFV strategies could be used as a reference for other viruses in the Flaviviridae family, such as hepatitis C virus, dengue virus, and Zika virus. In this review, we aim to summarize the research on anti-CSFV strategies. In detail, host proteins affecting CSFV replication, drug candidates with anti-CSFV effects, and RNA interference (RNAi) targeting CSFV viral genes were mentioned and the possible mechanisms related to anti-CSFV effects were also summarized.
Collapse
Affiliation(s)
- Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yingxin Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mengru Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Chenchen Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (S.F.); (J.C.); Tel.: +86-20-8528-8017 (J.C.)
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (S.F.); (J.C.); Tel.: +86-20-8528-8017 (J.C.)
| |
Collapse
|
5
|
Kang D, Gao S, Tian Z, Huang D, Guan G, Liu G, Luo J, Du J, Yin H. Ovine viperin inhibits bluetongue virus replication. Mol Immunol 2020; 126:87-94. [PMID: 32784101 DOI: 10.1016/j.molimm.2020.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/08/2020] [Accepted: 07/19/2020] [Indexed: 12/21/2022]
Abstract
Viral infections can lead to interferon production, which achieves its antiviral function primarily by activating the JAK/STAT pathway and inducing multiple interferon-stimulated genes (ISGs). Although considerable ISGs have been identified in antiviral researches, little is known about ISGs in bluetongue virus (BTV) infection. Viperin is the most highly induced ISG following BTV infection, which suggests that it may play a critical role in the anti-BTV immune response. The aim of this study was to characterize ovine Viperin (oViperin) and explore whether it can inhibit BTV replication. We cloned the coding sequences (CDS) of sheep Viperin, and the sequence analysis showed that oViperin displayed a high similarity with other species. oViperin has a leucine zipper in the N-terminal, a CxxxCxxC motif in the SAM domain, and a conservative C-terminus. We found that oViperin mRNA expression was significantly up-regulated in a time- and multiplicity of infection (MOI)-dependent manner following BTV infection. oViperin overexpression resulted in a significant inhibition in BTV replication, whereas an oViperin knockdown in MDOK cells increased BTV replication. This study shows for the first time, that oViperin has antiviral activity towards BTV infection and provides important information to research the interaction between BTV and oViperin.
Collapse
Affiliation(s)
- Di Kang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Shandian Gao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Zhancheng Tian
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Dexuan Huang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Junzheng Du
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
6
|
Therapeutic effects of duck Tembusu virus capsid protein fused with staphylococcal nuclease protein to target Tembusu infection in vitro. Vet Microbiol 2019; 235:295-300. [PMID: 31383316 DOI: 10.1016/j.vetmic.2019.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022]
Abstract
Tembusu virus (TMUV), a member of the genus flavivirus, primarily causes egg-drop syndrome in ducks and is associated with low disease mortality but high morbidity. The commercially available live vaccines for treating TMUV currently include the main WF100, HB, and FX2010-180P strains, and efficient treatment and/or preventative measures are still urgently needed. Capsid-targeted viral inactivation (CTVI) is a conceptually powerful new antiviral strategy that is based on two proteins from the capsid protein of a virus and a crucial effector molecule. The effector molecule can destroy the viral DNA/RNA or interfere with the proper folding of key viral proteins, while the capsid protein mainly plays a role in viral integration and assembly; the fusion proteins are incorporated into virions during packaging. This study aimed to explore the potential use of this strategy in duck TMUV. Our results revealed that these fusion proteins can be expressed in susceptible BHK21 cells without cytotoxicity and possess excellent Ca2+-dependent nuclease activity, and their expression is also detectable in DF-1 cells. Compared to those in the negative controls (BHK21 and BHK21/pcDNA3.1(+) cells), the numbers of viral RNA copies in TMUV-infected BHK21/Cap-SNase and BHK21/Cap-Linker-SNase cells were reduced by 48 h, and the effect of Cap-Linker-SNase was superior to that of Cap-SNase. As anticipated, these results suggest that these fusion proteins contribute to viral resistance to treatment. Thus, CTVI might be applicable for TMUV inhibition as a novel antiviral therapeutic candidate during viral infection.
Collapse
|
7
|
Zhou B. Classical Swine Fever in China-An Update Minireview. Front Vet Sci 2019; 6:187. [PMID: 31249837 PMCID: PMC6584753 DOI: 10.3389/fvets.2019.00187] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/28/2019] [Indexed: 11/17/2022] Open
Abstract
Classical swine fever (CSF) remains one of the most economically important viral diseases of domestic pigs and wild boar worldwide. The causative agent is CSF virus, it is highly contagious, with high morbidity and mortality rates; as such, it is an OIE-listed disease. Owing to a nationwide policy of vaccinations of pigs, CSF is well-controlled in China, with large-scale outbreaks rarely seen. Sporadic outbreaks are however still reported every year. In order to cope with future crises and to eradicate CSF, China should strengthen and support biosecurity measures such as the timely reporting of suspected disease, technologies for reliable diagnoses, culling infected herds, and tracing possible contacts, as well as continued vaccination and support of research into drug and genetic therapies. This mini-review summarizes the epidemiology of and control strategies for CSF in China.
Collapse
Affiliation(s)
- Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Li W, Mao L, Cao Y, Zhou B, Yang L, Han L, Hao F, Lin T, Zhang W, Jiang J. Porcine Viperin protein inhibits the replication of classical swine fever virus (CSFV) in vitro. Virol J 2017; 14:202. [PMID: 29061156 PMCID: PMC5654138 DOI: 10.1186/s12985-017-0868-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023] Open
Abstract
Background Classical swine fever virus (CSFV) is the causative pathogen of Classical swine fever (CSF), a highly contagious disease of swine. Viperin is one of the hundreds of interferon-stimulated genes (ISGs), and possesses a wide range of antiviral activities. The aim of this study was to explore whether porcine Viperin has the anti-CSFV activity. Method The influences of CSFV infection on Viperin expression and Newcastle disease virus (NDV)/Pseudorabies virus (PRV)-induced Viperin expression were examined in 3D4/21 cells and porcine peripheral blood mononuclear cells (PBMCs). Porcine Viperin gene was amplified to generate cell line PK-Vi over-expressing Viperin. CSFV was inoculated in the cell lines and viral load was detected by qRT-PCR, virus titration and Western blot. The influence of Viperin expression on CSFV binding, entry and release in the cells was also examined. The co-localization of Viperin with CSFV and its proteins (E2, NS5B) was determined by confocal laser scanning microscopy test. Co-IP assay was performed to check the interaction of Viperin with CSFV proteins. Results CSFV infection could not induce Viperin expression in vitro while significantly inhibiting NDV/PRV-induced Viperin expression at 12, 24 and 48 h post infection (hpi; P < 0.05). The proliferation of CSFV in PK-Vi was significantly inhibited at 24, 48 and 72 hpi (P < 0.05), comparing with control cells (PK-C1 expressing EGFP). Virus in both cell culture supernatants and cell pellets were reduced equally. CSFV binding and entry in the cells were not interfered by Viperin expression. These results indicated its anti-CSFV function occurred during the genome and/or protein synthesis step. Confocal laser scanning microscopy test showed the Viperin-EGFP protein co-localized with CSFV E2 protein in CSFV infected PK-Vi cells. Further experiments indicated that Viperin protein co-localized with E2 and NS5B proteins of CSFV in the transfected 293 T cells. Furthermore, Co-IP assay confirmed the interaction of Viperin with E2 protein, but not NS5B. Conclusion Porcine Viperin effectively inhibited CSFV replication in vitro, potentially via the interaction of Viperin with CSFV E2 protein in cytoplasm. The results provided foundation for further studies of the interaction of Viperin with CSFV and other viruses.
Collapse
Affiliation(s)
- Wenliang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China.
| | - Li Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Yongguo Cao
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Bin Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Leilei Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Linxiao Han
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Hao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Tao Lin
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, 57007, USA
| | - Wenwen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Jieyuan Jiang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China.
| |
Collapse
|
9
|
Zhang X, Jia R, Zhou J, Wang M, Yin Z, Cheng A. Capsid-Targeted Viral Inactivation: A Novel Tactic for Inhibiting Replication in Viral Infections. Viruses 2016; 8:E258. [PMID: 27657114 PMCID: PMC5035972 DOI: 10.3390/v8090258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/08/2016] [Accepted: 09/15/2016] [Indexed: 12/18/2022] Open
Abstract
Capsid-targeted viral inactivation (CTVI), a conceptually powerful new antiviral strategy, is attracting increasing attention from researchers. Specifically, this strategy is based on fusion between the capsid protein of a virus and a crucial effector molecule, such as a nuclease (e.g., staphylococcal nuclease, Barrase, RNase HI), lipase, protease, or single-chain antibody (scAb). In general, capsid proteins have a major role in viral integration and assembly, and the effector molecule used in CTVI functions to degrade viral DNA/RNA or interfere with proper folding of viral key proteins, thereby affecting the infectivity of progeny viruses. Interestingly, such a capsid-enzyme fusion protein is incorporated into virions during packaging. CTVI is more efficient compared to other antiviral methods, and this approach is promising for antiviral prophylaxis and therapy. This review summarizes the mechanism and utility of CTVI and provides some successful applications of this strategy, with the ultimate goal of widely implementing CTVI in antiviral research.
Collapse
Affiliation(s)
- Xingcui Zhang
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Jiakun Zhou
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| |
Collapse
|
10
|
Zhang X, Jing J, Li W, Liu K, Shi B, Xu Q, Ma Z, Zhou B, Chen P. Porcine Mx1 fused to HIV Tat protein transduction domain (PTD) inhibits classical swine fever virus infection in vitro and in vivo. BMC Vet Res 2015; 11:264. [PMID: 26472464 PMCID: PMC4608112 DOI: 10.1186/s12917-015-0577-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 10/08/2015] [Indexed: 12/23/2022] Open
Abstract
Background Classical swine fever (CSF) caused by CSF virus (CSFV) is highly contagious andcauses significant economic losses in the pig industry throughout the world. Previously we demonstrated that porcine Mx1 (poMx1), when fused to HIV Tat protein transduction domain (PTD), inhibits CSFV propagation in PK-15 cells, but it is unknown whether PTD-poMx1 exhibits antiviral activity in other porcine lines and it is efficacious for controlling CSFV infection in pigs in China. Methods Two porcine cell lines, ST and 3D4/21, were used to investigate in vitro antiviral activity of PTD-poMx1 against CSFV using confocal microscopy, western blot, flow cytometry, and real-time RT-PCR. Furthermore, in vivo antiviral activity of PTD-poMx1 was assessed by means of rectal temperature, clinical score, pathological lesion, white blood cell count, viral load, etc. Results PTD-poMx1 entered both cell lines within 3 h and maintained for 16 h, but did not affect CSFV binding and uptake. Viral titers and qRT-PCR data showed that PTD-poMx1 inhibited CSFV replication in both cell lines, showing significant antiviral activity after infection. Injection of PTD-poMx1 into CSFV-challenged pigs attenuated CSFV symptoms and viremia in dose-dependent manner but did not completely block virus replication within 14 days post challenge, suggesting that PTD-poMx1 confers partial protection against a lethal challenge. Conclusion We demonstrated the anti-CSFV activity of PTD-poMx1 in vitro and in vivo. The results have shown that treatment with PTD-poMx1 alleviated symptoms and viral load in infected pigs. The results support our previous in vitro studies and suggest that PTD-poMx1 could be promising in reducing the clinical signs caused by CSFV.
Collapse
Affiliation(s)
- Xiaomin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiao Jing
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wenliang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 200241, China.
| | - Baojun Shi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qianqian Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 200241, China.
| | - Bin Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Puyan Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
11
|
He DN, Zhang XM, Liu K, Pang R, Zhao J, Zhou B, Chen PY. In vitro inhibition of the replication of classical swine fever virus by porcine Mx1 protein. Antiviral Res 2014; 104:128-35. [PMID: 24500530 DOI: 10.1016/j.antiviral.2014.01.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 12/01/2013] [Accepted: 01/24/2014] [Indexed: 12/16/2022]
Abstract
Classical swine fever virus (CSFV) is the causative pathogen of classical swine fever (CSF), a highly contagious disease of swine. Mx proteins are interferon-induced dynamin-like GTPases present in all vertebrates with a wide range of antiviral activities. Although Zhao et al. (2011) have reported that human MxA can inhibit CSFV replication, whether porcine Mx1 (poMx1) has anti-CSFV activity remains unknown. In this study, we generated a cell line designated PK-15/EGFP-poMx1 which expressed porcine Mx1 protein constitutively, and we observed that the proliferation of progeny virus in this cell line was significantly inhibited as measured by virus titration, indirect immune fluorescence assay, Q-PCR and Western blot. Furthermore, when PTD-poMx1 fusion protein expressed in Escherichia coli (Zhang et al., 2013) was used to treat CSFV-infected PK-15 cells, the results showed that PTD-poMx1 inhibited CSFV replication in a dose-dependent manner. Additionally, the proliferation of progeny virus was inhibited as measured by virus titration and Q-PCR. Overall, the results demonstrated that poMx1 effectively inhibited CSFV replication, suggesting that poMx1 may be a valuable therapeutic agent against CSFV infection.
Collapse
Affiliation(s)
- Dan-ni He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-min Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ke Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ran Pang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Zhao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Pu-yan Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Newcomer BW, Givens MD. Approved and experimental countermeasures against pestiviral diseases: Bovine viral diarrhea, classical swine fever and border disease. Antiviral Res 2013; 100:133-50. [DOI: 10.1016/j.antiviral.2013.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/01/2013] [Accepted: 07/27/2013] [Indexed: 01/13/2023]
|
13
|
In vitro inhibition of Japanese encephalitis virus replication by capsid-targeted virus inactivation. Antiviral Res 2013; 97:369-75. [DOI: 10.1016/j.antiviral.2012.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/10/2012] [Accepted: 12/31/2012] [Indexed: 01/01/2023]
|
14
|
Zhou B, Liu K, Jiang Y, Wei JC, Chen PY. Multiple linear B-cell epitopes of classical swine fever virus glycoprotein E2 expressed in E.coli as multiple epitope vaccine induces a protective immune response. Virol J 2011; 8:378. [PMID: 21801433 PMCID: PMC3163558 DOI: 10.1186/1743-422x-8-378] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 07/30/2011] [Indexed: 01/24/2023] Open
Abstract
Classical swine fever is a highly contagious disease of swine caused by classical swine fever virus, an OIE list A pathogen. Epitope-based vaccines is one of the current focuses in the development of new vaccines against classical swine fever virus (CSFV). Two B-cell linear epitopes rE2-ba from the E2 glycoprotein of CSFV, rE2-a (CFRREKPFPHRMDCVTTTVENED, aa844-865) and rE2-b (CKEDYRYAISSTNEIGLLGAGGLT, aa693-716), were constructed and heterologously expressed in Escherichia coli as multiple epitope vaccine. Fifteen 6-week-old specified-pathogen-free (SPF) piglets were intramuscularly immunized with epitopes twice at 2-week intervals. All epitope-vaccinated pigs could mount an anamnestic response after booster vaccination with neutralizing antibody titers ranging from 1:16 to 1:256. At this time, the pigs were subjected to challenge infection with a dose of 1 × 106 TCID50 virulent CSFV strain. After challenge infection, all of the rE2-ba-immunized pigs were alive and without symptoms or signs of CSF. In contrast, the control pigs continuously exhibited signs of CSF and had to be euthanized because of severe clinical symptoms at 5 days post challenge infection. The data from in vivo experiments shown that the multiple epitope rE2-ba shown a greater protection (similar to that of HCLV vaccine) than that of mono-epitope peptide(rE2-a or rE2-b). Therefore, The results demonstrated that this multiple epitope peptide expressed in a prokaryotic system can be used as a potential DIVA (differentiating infected from vaccinated animals) vaccine. The E.coli-expressed E2 multiple B-cell linear epitopes retains correct immunogenicity and is able to induce a protective immune response against CSFV infection.
Collapse
Affiliation(s)
- Bin Zhou
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | |
Collapse
|