1
|
Shi C, Wang Q, Liu Y, Wang S, Zhang Y, Liu C, Hu Y, Zheng D, Sun C, Song F, Yu X, Zhao Y, Bao J, Wang Z. Generation of High-Quality African Swine Fever Virus Complete Genome from Field Samples by Next-Generation Sequencing. Viruses 2024; 16:312. [PMID: 38400087 PMCID: PMC10891787 DOI: 10.3390/v16020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
African swine fever (ASF) is a lethal contagious viral disease of domestic pigs and wild boars caused by the African swine fever virus (ASFV). The pandemic spread of ASF has caused severe effects on the global pig industry. Whole-genome sequencing provides crucial information for virus strain characterization, epidemiology analysis and vaccine development. Here, we evaluated the performance of next-generation sequencing (NGS) in generating ASFV genome sequences from clinical samples. Thirty-four ASFV-positive field samples including spleen, lymph node, lung, liver and blood with a range of Ct values from 14.73 to 25.95 were sequenced. For different tissue samples collected from the same sick pigs, the proportion of ASFV reads obtained from the spleen samples was 3.69-9.86 times higher than other tissues. For the high-viral-load spleen samples (Ct < 20), a minimum of a 99.8% breadth of ≥10× coverage was revealed for all the samples. For the spleen samples with Ct ≥ 20, 6/12 samples had a minimum of a 99.8% breadth of ≥10× coverage. A high average depth of sequencing coverage was also achieved from the blood samples. According to our results, high-quality ASFV whole-genome sequences could be obtained from the spleen or blood samples with Ct < 20. The high-quality ASFV genome sequence generated in this study was further used for the high-resolution phylogenetic analysis of the ASFV genomes in the early stage of the ASF epidemic in China. Our study demonstrates that NGS may act as a useful tool for efficient ASFV genome characterization, providing valuable information for disease control.
Collapse
Affiliation(s)
- Chuan Shi
- China Animal Health and Epidemiology Center, Qingdao 266032, China (Y.L.); (C.L.); (D.Z.); (C.S.)
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 518083, China
| | - Qinghua Wang
- China Animal Health and Epidemiology Center, Qingdao 266032, China (Y.L.); (C.L.); (D.Z.); (C.S.)
| | - Yutian Liu
- China Animal Health and Epidemiology Center, Qingdao 266032, China (Y.L.); (C.L.); (D.Z.); (C.S.)
| | - Shujuan Wang
- China Animal Health and Epidemiology Center, Qingdao 266032, China (Y.L.); (C.L.); (D.Z.); (C.S.)
| | - Yongqiang Zhang
- China Animal Health and Epidemiology Center, Qingdao 266032, China (Y.L.); (C.L.); (D.Z.); (C.S.)
| | - Chunju Liu
- China Animal Health and Epidemiology Center, Qingdao 266032, China (Y.L.); (C.L.); (D.Z.); (C.S.)
| | - Yongxin Hu
- China Animal Health and Epidemiology Center, Qingdao 266032, China (Y.L.); (C.L.); (D.Z.); (C.S.)
| | - Dongxia Zheng
- China Animal Health and Epidemiology Center, Qingdao 266032, China (Y.L.); (C.L.); (D.Z.); (C.S.)
| | - Chengyou Sun
- China Animal Health and Epidemiology Center, Qingdao 266032, China (Y.L.); (C.L.); (D.Z.); (C.S.)
| | - Fangfang Song
- China Animal Health and Epidemiology Center, Qingdao 266032, China (Y.L.); (C.L.); (D.Z.); (C.S.)
| | - Xiaojing Yu
- China Animal Health and Epidemiology Center, Qingdao 266032, China (Y.L.); (C.L.); (D.Z.); (C.S.)
| | - Yunling Zhao
- China Animal Health and Epidemiology Center, Qingdao 266032, China (Y.L.); (C.L.); (D.Z.); (C.S.)
| | - Jingyue Bao
- China Animal Health and Epidemiology Center, Qingdao 266032, China (Y.L.); (C.L.); (D.Z.); (C.S.)
| | - Zhiliang Wang
- China Animal Health and Epidemiology Center, Qingdao 266032, China (Y.L.); (C.L.); (D.Z.); (C.S.)
| |
Collapse
|
2
|
Zhang C, Cheng T, Li D, Yu X, Chen F, He Q. Low-host double MDA workflow for uncultured ASFV positive blood and serum sample sequencing. Front Vet Sci 2022; 9:936781. [PMID: 36204298 PMCID: PMC9531595 DOI: 10.3389/fvets.2022.936781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
African swine fever (ASF) is a highly lethal and contagious disease caused by African swine fever virus (ASFV). Whole-genome sequencing of ASFV is necessary to study its mutation, recombination, and trace its transmission. Uncultured samples have a considerable amount of background DNA, which causes waste of sequencing throughput, storage space, and computing resources. Sequencing methods attempted for uncultured samples have various drawbacks. In this study, we improved C18 spacer MDA (Multiple Displacement Amplification)-combined host DNA exhaustion strategy to remove background DNA and fit NGS and TGS sequencing. Using this workflow, we successfully sequenced two uncultured ASFV positive samples. The results show that this method can significantly reduce the percentage of background DNA. We also developed software that can perform real-time base call and analyses in set intervals of ASFV TGS sequencing reads on a cloud server.
Collapse
Affiliation(s)
- Chengjun Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tangyu Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dongfan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Xuexiang Yu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Fangzhou Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Fangzhou Chen
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- Qigai He
| |
Collapse
|
3
|
Pereira De Oliveira R, Vial L, Le Potier MF. Quantification of ASFV DNA and RNA in Ornithodoros Soft Ticks. Methods Mol Biol 2022; 2503:105-118. [PMID: 35575889 DOI: 10.1007/978-1-0716-2333-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular biology methods are highly sensitive to detect the genome of pathogens and to study their biology. Polymerase chain reaction (PCR) and reverse transcription followed by a polymerase chain reaction (RT-PCR) permit the detection of the presence and the replication of African swine fever virus in soft ticks. Here, we described our techniques to detect and quantify DNA and RNA of African swine fever virus in soft ticks including a housekeeping gene of soft ticks as internal control.
Collapse
Affiliation(s)
- Rémi Pereira De Oliveira
- UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE-Université de Montpellier, Montpellier, France.
- Laboratoire de Ploufragan/Plouzané/Niort, ANSES, Ploufragan, France.
| | - Laurence Vial
- UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE-Université de Montpellier, Montpellier, France
| | | |
Collapse
|