1
|
Jakimovski D, Poposki K, Dimzova M, Cvetanovska M, Cana F, Bogdan I, Cabezas-Cruz A, Zana B, Lanszki Z, Tauber Z, Görföl T, Bányai K, Ábrahám Á, Banović P, Kemenesi G. Two Human Infections with Diverse Europe-1 Crimean-Congo Hemorrhagic Fever Virus Strains, North Macedonia, 2024. Emerg Infect Dis 2025; 31:313-317. [PMID: 39983691 PMCID: PMC11845147 DOI: 10.3201/eid3102.241249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025] Open
Abstract
Until 2023, North Macedonia had not reported a Crimean-Congo hemorrhagic fever (CCHF) case for >50 years. In 2024, increased clinical vigilance identified and characterized 2 novel CCHF cases. Genetic analysis and the identification of possible reassortment indicate North Macedonia as an interaction zone between CCHF virus isolates from Turkey and Kosovo.
Collapse
|
2
|
D'Addiego J, Shah S, Pektaş AN, Bağci BNK, Öz M, Sebastianelli S, Elaldı N, Allen DJ, Hewson R. Development of targeted whole genome sequencing approaches for Crimean-Congo haemorrhagic fever virus (CCHFV). Virus Res 2024; 350:199464. [PMID: 39270938 PMCID: PMC11439567 DOI: 10.1016/j.virusres.2024.199464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Crimean-Congo haemorrhagic fever (CCHF) is the most prevalent human tick-borne viral disease, with a reported case fatality rate of 30 % or higher. The virus contains a tri-segmented, negative-sense RNA genome consisting of the small (S), medium (M) and large (L) segments encoding respectively the nucleoprotein (NP), the glycoproteins precursor (GPC) and the viral RNA-dependent RNA polymerase (RDRP). CCHFV is one of the most genetically diverse arboviruses, with seven distinct lineages named after the region they were first reported in and based on S segment phylogenetic analysis. Due to the high genetic divergence of the virus, a single targeted tiling PCR strategy to enrich for viral nucleic acids prior to sequencing is difficult to develop, and previously we have developed and validated a tiling PCR enrichment method for the Europe 1 genetic lineage. We have developed a targeted, probe hybridisation capture method and validated its performance on clinical as well as cell-cultured material of CCHFV from different genetic lineages, including Europe 1, Europe 2, Africa 2 and Africa 3. The method produced over 95 % reference coverages with at least 10x sequencing depth. While we were only able to recover a single complete genome sequence from the tested Europe 1 clinical samples with the capture hybridisation protocol, the data provides evidence of its applicability to different CCHFV genetic lineages. CCHFV is an important tick-borne human pathogen with wide geographical distribution. Environmental as well as anthropogenic factors are causing increased CCHFV transmission. Development of strategies to recover CCHFV sequences from genetically diverse lineages of the virus is of paramount importance to monitor the presence of the virus in new areas, and in public health responses for CCHFV molecular surveillance to rapidly detect, diagnose and characterise currently circulating strains.
Collapse
Affiliation(s)
- Jake D'Addiego
- London School of Hygiene and Tropical Medicine, Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London, UK; UK Health Security Agency, Virology and Pathogenesis Research Group, Salisbury, UK.
| | - Sonal Shah
- London School of Hygiene and Tropical Medicine, UK Public Health Rapid Support Team, Department of Infection Disease Epidemiology and Dynamics, Faculty of Epidemiology and Population Health, London, UK
| | - Ayşe Nur Pektaş
- Sivas Cumhuriyet University, Cumhuriyet University Advanced Technology Application and Research Center (CUTAM), Sivas, Türkiye
| | - Bi Nnur Köksal Bağci
- Sivas Cumhuriyet University, Department of Nutrition and Dietetics, Faculty of Health Sciences, Sivas, Türkiye
| | - Murtaza Öz
- Sivas Numune Hospital, Clinic of Infectious Diseases and Clinical Microbiology, Sivas, Türkiye
| | - Sasha Sebastianelli
- London School of Hygiene and Tropical Medicine, Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London, UK
| | - Nazif Elaldı
- Sivas Cumhuriyet University, Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Sivas, Türkiye
| | - David J Allen
- London School of Hygiene and Tropical Medicine, Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London, UK; Department of Comparative Biomedical Sciences, Section Infection and Immunity, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Roger Hewson
- London School of Hygiene and Tropical Medicine, Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London, UK; UK Health Security Agency, Virology and Pathogenesis Research Group, Salisbury, UK
| |
Collapse
|
3
|
Sekee TR, Bubuluma R, van Jaarsveldt D, Bester PA, Burt FJ. Multiplex PCR method for MinION sequencing of Bagaza virus isolated from wild caught mosquitoes in South Africa. J Virol Methods 2024; 327:114917. [PMID: 38503367 DOI: 10.1016/j.jviromet.2024.114917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/22/2024] [Accepted: 03/16/2024] [Indexed: 03/21/2024]
Abstract
Bagaza virus (BAGV) is a mosquito-borne orthoflavivirus known to occur in regions of southern Europe, Africa, India and the Middle East. The virus has been associated with neurological disease and fatalities in various wild bird species. Association with human disease is not confirmed although limited serological evidence has suggested human infection. Surveillance programs for screening mosquitoes for evidence of arbovirus infection play an important role in providing information regarding the circulation and spread of viruses in specific regions. BAGV was detected in a mosquito pool during surveillance of mosquitoes collected in central South Africa between November 2019 and March 2023. Homogenized mosquito pools were screened for flaviviral RNA using conventional RT-PCR and virus isolation was attempted on positive samples. BAGV was detected and subsequently isolated using cell culture. A multiplex tiling PCR method for targeted enrichment using a PCR based or amplicon sequencing approach of the complete genome of BAGV was developed and optimized. Primers were designed using alignment of complete genome sequence data retrieved from GenBank to identify suitable primer sites that would generate overlapping fragments spanning the complete genome. Six forward primers and eight reverse primers were identified that target the complete genome and amplified nine overlapping fragments, that ranged in length from 1954 to 2039 with an overlap ranging from 71 to 711 base pairs. The design strategy included multiple forward and reverse primer pairs for the 5' and 3' ends. Phylogenetic analysis with other isolates was performed and BAGV isolate VBD 74/23/3 was shown to share high similarity with previous BAGV isolates from all regions, with genetic distance ranging from 0.026 to 0.083. VBD 74/23/3 was most closely related to previous isolates from southern Africa, ZRU96/16/2 isolated from a post-mortem sample from a pheasant in 2016 and MP-314-NA-2018 isolated from mosquitoes in northwestern Namibia with genetic distance 0.0085 and 0.016 respectively. Currently there is limited complete genome sequence data available for many of the arboviruses circulating in Africa. The multiplex tiling method provided a simple and cost-effective method for obtaining complete genome sequence. This method can be readily applied to other viruses using sequence data from publicly available databases and would have important application facilitating genomic surveillance of arboviruses in low resource countries.
Collapse
Affiliation(s)
- T R Sekee
- Pathogen Research Laboratory, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - R Bubuluma
- Pathogen Research Laboratory, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - D van Jaarsveldt
- Pathogen Research Laboratory, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - P A Bester
- Pathogen Research Laboratory, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa; Division of Virology, National Health Laboratory Service, Bloemfontein, South Africa
| | - F J Burt
- Pathogen Research Laboratory, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa; Division of Virology, National Health Laboratory Service, Bloemfontein, South Africa.
| |
Collapse
|
4
|
Le HD, Thai TN, Kim JK, Song HS, Her M, Tran XT, Kim JY, Kim HR. An Amplicon-Based Application for the Whole-Genome Sequencing of GI-19 Lineage Infectious Bronchitis Virus Directly from Clinical Samples. Viruses 2024; 16:515. [PMID: 38675858 PMCID: PMC11054852 DOI: 10.3390/v16040515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Infectious bronchitis virus (IBV) causes a highly contagious respiratory disease in chickens, leading to significant economic losses in the poultry industry worldwide. IBV exhibits a high mutation rate, resulting in the continuous emergence of new variants and strains. A complete genome analysis of IBV is crucial for understanding its characteristics. However, it is challenging to obtain whole-genome sequences from IBV-infected clinical samples due to the low abundance of IBV relative to the host genome. Here, we present a novel approach employing next-generation sequencing (NGS) to directly sequence the complete genome of IBV. Through in silico analysis, six primer pairs were designed to match various genotypes, including the GI-19 lineage of IBV. The primer sets successfully amplified six overlapping fragments by long-range PCR and the size of the amplicons ranged from 3.7 to 6.4 kb, resulting in full coverage of the IBV genome. Furthermore, utilizing Illumina sequencing, we obtained the complete genome sequences of two strains belonging to the GI-19 lineage (QX genotype) from clinical samples, with 100% coverage rates, over 1000 × mean depth coverage, and a high percentage of mapped reads to the reference genomes (96.63% and 97.66%). The reported method significantly improves the whole-genome sequencing of IBVs from clinical samples; thus, it can improve understanding of the epidemiology and evolution of IBVs.
Collapse
Affiliation(s)
- Hoang Duc Le
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea; (H.D.L.); (T.N.T.); (J.-K.K.); (H.-S.S.); (M.H.)
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi 11300, Vietnam;
| | - Tuyet Ngan Thai
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea; (H.D.L.); (T.N.T.); (J.-K.K.); (H.-S.S.); (M.H.)
| | - Jae-Kyeom Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea; (H.D.L.); (T.N.T.); (J.-K.K.); (H.-S.S.); (M.H.)
| | - Hye-Soon Song
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea; (H.D.L.); (T.N.T.); (J.-K.K.); (H.-S.S.); (M.H.)
| | - Moon Her
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea; (H.D.L.); (T.N.T.); (J.-K.K.); (H.-S.S.); (M.H.)
| | - Xuan Thach Tran
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi 11300, Vietnam;
| | - Ji-Ye Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea; (H.D.L.); (T.N.T.); (J.-K.K.); (H.-S.S.); (M.H.)
| | - Hye-Ryoung Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea; (H.D.L.); (T.N.T.); (J.-K.K.); (H.-S.S.); (M.H.)
| |
Collapse
|