1
|
Gonzalez LA, Zhang W, Bai H, Taniguchi R, Ramachandra AB, Jovin DG, Ohashi Y, Nguyen M, Thaxton C, Yatsula B, Vazquez-Padron RI, Humphrey JD, Martin KA, Kyriakides TR, Dardik A. Sustained tenascin-C expression drives neointimal hyperplasia and promotes aortocaval fistula failure. Am J Physiol Heart Circ Physiol 2025; 328:H1147-H1167. [PMID: 40247455 DOI: 10.1152/ajpheart.00661.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/15/2024] [Accepted: 03/08/2025] [Indexed: 04/19/2025]
Abstract
End-stage kidney disease (ESKD) impacts over 740,000 individuals in the United States, with many patients relying on arteriovenous fistulae (AVF) for hemodialysis due to superior patency and reduced infections. However, AVF patency is reduced by thrombosis and neointimal hyperplasia, yielding a 1-yr patency of only 40%-50%. We hypothesized that tenascin-C (TNC), a regulator of inflammation and immune responses after injury, also regulates venous remodeling during AVF maturation. AVF were created in wild-type (WT) and Tnc knockout (Tnc-/-) mice, and proteomic analyses were conducted to identify protein changes between sham and AVF WT tissue. Immunofluorescence and Western blot assays compared venous tissue from WT and Tnc-/- mice. In vitro studies using human umbilical vein endothelial cells and human umbilical vein smooth muscle cells examined TNC-siRNA effects on thrombomodulin (THBD) and NF-κB. Macrophages from WT and Tnc-/- mice were assessed for anti-inflammatory phenotype polarization and tissue factor expression. TNC expression was spatially and temporally regulated in WT mice with AVF, and TNC colocalized with matrix remodeling but not with THBD expression; TNC expression was downregulated in patent AVF but sustained in occluded AVF, both in WT mice and human AVF specimens. Tnc-/- mice had reduced AVF patency, less wall thickening, and increased thrombosis, with increased THBD expression. In vitro, TNC-siRNA increased THBD and reduced NF-κB activation. Macrophages from Tnc-/- mice showed increased anti-inflammatory macrophage polarization and tissue factor expression, facilitating thrombosis. Sustained TNC expression drives neointimal hyperplasia and AVF failure by promoting a prothrombotic, inflammatory microenvironment. Targeting TNC pathways may enhance AVF patency and improve dialysis outcomes.NEW & NOTEWORTHY This study identifies Tenascin-C (TNC) as a key regulator of arteriovenous fistula (AVF) patency. TNC is spatially and temporally regulated, driving neointimal hyperplasia and thrombosis by promoting a prothrombotic, inflammatory microenvironment. In Tnc-/- mice, reduced TNC expression increased thrombomodulin and anti-inflammatory macrophage polarization but impaired wall thickening and AVF patency. These findings link sustained TNC expression to AVF failure and suggest that targeting TNC pathways could enhance AVF outcomes in patients requiring hemodialysis.
Collapse
MESH Headings
- Animals
- Tenascin/genetics
- Tenascin/metabolism
- Hyperplasia
- Neointima/metabolism
- Neointima/pathology
- Humans
- Mice, Knockout
- Thrombomodulin/metabolism
- Thrombomodulin/genetics
- Macrophages/metabolism
- Macrophages/pathology
- Arteriovenous Shunt, Surgical/adverse effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Human Umbilical Vein Endothelial Cells/pathology
- Male
- Vascular Remodeling
- Mice
- Mice, Inbred C57BL
- NF-kappa B/metabolism
- Vascular Patency
- Disease Models, Animal
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Graft Occlusion, Vascular/metabolism
- Graft Occlusion, Vascular/pathology
- Graft Occlusion, Vascular/physiopathology
- Graft Occlusion, Vascular/genetics
- Graft Occlusion, Vascular/etiology
- Vena Cava, Inferior/metabolism
- Vena Cava, Inferior/surgery
- Vena Cava, Inferior/pathology
- Vena Cava, Inferior/physiopathology
Collapse
Affiliation(s)
- Luis A Gonzalez
- Yale School of Medicine, New Haven, Connecticut, United States
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States
| | - Weichang Zhang
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - Hualong Bai
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - Ryosuke Taniguchi
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
- Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Tokyo, Japan
- Department of Cardiovascular Surgery, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Abhay B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
| | - Daniel G Jovin
- Yale School of Medicine, New Haven, Connecticut, United States
| | - Yuichi Ohashi
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
- Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Mytien Nguyen
- Yale School of Medicine, New Haven, Connecticut, United States
| | - Carly Thaxton
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - Bogdan Yatsula
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Jay D Humphrey
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
| | - Kathleen A Martin
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Themis R Kyriakides
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
- Department of Pathology, Yale University, New Haven, Connecticut, United States
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
2
|
Zhang D, Cao Y, Liu D, Zhang J, Guo Y. The Etiology and Molecular Mechanism Underlying Smooth Muscle Phenotype Switching in Intimal Hyperplasia of Vein Graft and the Regulatory Role of microRNAs. Front Cardiovasc Med 2022; 9:935054. [PMID: 35966541 PMCID: PMC9365958 DOI: 10.3389/fcvm.2022.935054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Mounting evidence suggests that the phenotypic transformation of venous smooth muscle cells (SMCs) from differentiated (contractile) to dedifferentiated (proliferative and migratory) phenotypes causes excessive proliferation and further migration to the intima leading to intimal hyperplasia, which represents one of the key pathophysiological mechanisms of vein graft restenosis. In recent years, numerous miRNAs have been identified as specific phenotypic regulators of vascular SMCs (VSMCs), which play a vital role in intimal hyperplasia in vein grafts. The review sought to provide a comprehensive overview of the etiology of intimal hyperplasia, factors affecting the phenotypic transformation of VSMCs in vein graft, and molecular mechanisms of miRNAs involved in SMCs phenotypic modulation in intimal hyperplasia of vein graft reported in recent years.
Collapse
Affiliation(s)
- Dengshen Zhang
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yiran Cao
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Daxing Liu
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jian Zhang
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yingqiang Guo,
| |
Collapse
|
3
|
Zhang L, Wu JH, Otto JC, Gurley SB, Hauser ER, Shenoy SK, Nagi K, Brian L, Wertman V, Mattocks N, Lawson JH, Freedman NJ. Interleukin-9 mediates chronic kidney disease-dependent vein graft disease: a role for mast cells. Cardiovasc Res 2018; 113:1551-1559. [PMID: 29048463 DOI: 10.1093/cvr/cvx177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/29/2017] [Indexed: 12/18/2022] Open
Abstract
Aims Chronic kidney disease (CKD) is a powerful independent risk factor for cardiovascular events, including vein graft failure. Because CKD impairs the clearance of small proteins, we tested the hypothesis that CKD exacerbates vein graft disease by elevating serum levels of critical cytokines that promote vein graft neointimal hyperplasia. Methods and results We modelled CKD in C57BL/6 mice with 5/6ths nephrectomy, which reduced glomerular filtration rate by 60%, and we modelled vein grafting with inferior-vena-cava-to-carotid interposition grafting. CKD increased vein graft neointimal hyperplasia four-fold, decreased vein graft re-endothelialization two-fold, and increased serum levels of interleukin-9 (IL-9) five-fold. By quantitative immunofluorescence and histochemical staining, vein grafts from CKD mice demonstrated a ∼two-fold higher prevalence of mast cells, and a six-fold higher prevalence of activated mast cells. Concordantly, vein grafts from CKD mice showed higher levels of TNF and NFκB activation, as judged by phosphorylation of NFκB p65 on Ser536 and by expression of VCAM-1. Arteriovenous fistula veins from humans with CKD also showed up-regulation of mast cells and IL-9. Treating CKD mice with IL-9-neutralizing IgG reduced vein graft neointimal area four-fold, increased vein graft re-endothelialization ∼two-fold, and reduced vein graft total and activated mast cell levels two- and four-fold, respectively. Treating CKD mice with the mast cell stabilizer cromolyn reduced neointimal hyperplasia and increased re-endothelialization in vein grafts. In vitro, IL-9 promoted endothelial cell apoptosis but had no effect on smooth muscle cell proliferation. Conclusion CKD aggravates vein graft disease through mechanisms involving IL-9 and mast cell activation.
Collapse
Affiliation(s)
| | | | | | | | - Elizabeth R Hauser
- Biostatistics and Bioinformatics.,Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA.,Cooperative Studies Program Epidemiology Center Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Sudha K Shenoy
- Cardiology, Department of Medicine.,Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Karim Nagi
- Cardiology, Department of Medicine.,Cell Biology, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | - Neil J Freedman
- Cardiology, Department of Medicine.,Cell Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
4
|
de Vries MR, Quax PHA. Inflammation in Vein Graft Disease. Front Cardiovasc Med 2018; 5:3. [PMID: 29417051 PMCID: PMC5787541 DOI: 10.3389/fcvm.2018.00003] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
Bypass surgery is one of the most frequently used strategies to revascularize tissues downstream occlusive atherosclerotic lesions. For venous bypass surgery the great saphenous vein is the most commonly used vessel. Unfortunately, graft efficacy is low due to the development of vascular inflammation, intimal hyperplasia and accelerated atherosclerosis. Moreover, failure of grafts leads to significant adverse outcomes and even mortality. The last couple of decades not much has changed in the treatment of vein graft disease (VGD). However, insight is the cellular and molecular mechanisms of VGD has increased. In this review, we discuss the latest insights on VGD and the role of inflammation in this. We discuss vein graft pathophysiology including hemodynamic changes, the role of vessel wall constitutions and vascular remodeling. We show that profound systemic and local inflammatory responses, including inflammation of the perivascular fat, involve both the innate and adaptive immune system.
Collapse
Affiliation(s)
- Margreet R de Vries
- Department of Surgery, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Paul H A Quax
- Department of Surgery, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
5
|
Hu H, Patel S, Hanisch JJ, Santana JM, Hashimoto T, Bai H, Kudze T, Foster TR, Guo J, Yatsula B, Tsui J, Dardik A. Future research directions to improve fistula maturation and reduce access failure. Semin Vasc Surg 2016; 29:153-171. [PMID: 28779782 DOI: 10.1053/j.semvascsurg.2016.08.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
With the increasing prevalence of end-stage renal disease, there is a growing need for hemodialysis. Arteriovenous fistulae (AVF) are the preferred type of vascular access for hemodialysis, but maturation and failure continue to present significant barriers to successful fistula use. AVF maturation integrates outward remodeling with vessel wall thickening in response to drastic hemodynamic changes in the setting of uremia, systemic inflammation, oxidative stress, and pre-existent vascular pathology. AVF can fail due to both failure to mature adequately to support hemodialysis and development of neointimal hyperplasia that narrows the AVF lumen, typically near the fistula anastomosis. Failure due to neointimal hyperplasia involves vascular cell activation and migration and extracellular matrix remodeling with complex interactions of growth factors, adhesion molecules, inflammatory mediators, and chemokines, all of which result in maladaptive remodeling. Different strategies have been proposed to prevent and treat AVF failure based on current understanding of the modes and pathology of access failure; these approaches range from appropriate patient selection and use of alternative surgical strategies for fistula creation, to the use of novel interventional techniques or drugs to treat failing fistulae. Effective treatments to prevent or treat AVF failure require a multidisciplinary approach involving nephrologists, vascular surgeons, and interventional radiologists, careful patient selection, and the use of tailored systemic or localized interventions to improve patient-specific outcomes. This review provides contemporary information on the underlying mechanisms of AVF maturation and failure and discusses the broad spectrum of options that can be tailored for specific therapy.
Collapse
Affiliation(s)
- Haidi Hu
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Sandeep Patel
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT; Royal Free Hospital, University College London, London, UK
| | - Jesse J Hanisch
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Jeans M Santana
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Takuya Hashimoto
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Hualong Bai
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Tambudzai Kudze
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Trenton R Foster
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Jianming Guo
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Bogdan Yatsula
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Janice Tsui
- Royal Free Hospital, University College London, London, UK
| | - Alan Dardik
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT; VA Connecticut Healthcare System, West Haven, CT.
| |
Collapse
|
6
|
de Vries MR, Simons KH, Jukema JW, Braun J, Quax PHA. Vein graft failure: from pathophysiology to clinical outcomes. Nat Rev Cardiol 2016; 13:451-70. [PMID: 27194091 DOI: 10.1038/nrcardio.2016.76] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Occlusive arterial disease is a leading cause of morbidity and mortality worldwide. Aside from balloon angioplasty, bypass graft surgery is the most commonly performed revascularization technique for occlusive arterial disease. Coronary artery bypass graft surgery is performed in patients with left main coronary artery disease and three-vessel coronary disease, whereas peripheral artery bypass graft surgery is used to treat patients with late-stage peripheral artery occlusive disease. The great saphenous veins are commonly used conduits for surgical revascularization; however, they are associated with a high failure rate. Therefore, preservation of vein graft patency is essential for long-term surgical success. With the exception of 'no-touch' techniques and lipid-lowering and antiplatelet (aspirin) therapy, no intervention has hitherto unequivocally proven to be clinically effective in preventing vein graft failure. In this Review, we describe both preclinical and clinical studies evaluating the pathophysiology underlying vein graft failure, and the latest therapeutic options to improve patency for both coronary and peripheral grafts.
Collapse
Affiliation(s)
- Margreet R de Vries
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Karin H Simons
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - J Wouter Jukema
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands.,Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Jerry Braun
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| |
Collapse
|
7
|
Li Y, Wang W, Jia X, Zhai S, Wang X, Wang Y, Dang S. A Targeted Multiple Antigenic Peptide Vaccine Augments the Immune Response to Self TGF-β1 and Suppresses Ongoing Hepatic Fibrosis. Arch Immunol Ther Exp (Warsz) 2015; 63:305-315. [PMID: 25740471 DOI: 10.1007/s00005-015-0333-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/05/2015] [Indexed: 01/18/2023]
Abstract
Transforming growth factor (TGF)-β1 expression is induced upon liver injury, and plays a critical role in hepatic fibrosis. Antibodies against TGF-β1 represent a novel approach in the treatment of hepatic fibrosis. However, TGF-β1 is not a suitable antigen due to immunological tolerance. In the current study, we synthesized a multiple antigenic peptide (MAP) vaccine against the dominant B-cell epitope of TGF-β1. The immunogenicity and potential therapeutic effects of this vaccine were examined using a rat model of hepatic fibrosis. Dominant B-cell epitopes of TGF-β1 were identified using bioinformatic program. An MAP vaccine corresponding to the 90-98 amino acid domain of TGF-β1 and containing four dendritic arms was synthesized using a 9-fluorenylmethoxycarbonyl solid phase method. Hepatic fibrosis which was induced in male Sprague-Dawley rats received a high-fat diet and ethanol (1.8 g/kg). Starting from the third week, rats were exposed to 40 % carbon tetrachloride (CCl4; 150 μl/100 g body weight twice weekly, initially 200 μl/100 g) treatment for a duration of 8 weeks. Rats received the MAP vaccine (100 μg) or Freund's adjuvant at weeks 1, 3, 5. A group of rats receiving the fibrosis-inducing regimen alone and a group of healthy rats (receiving an olive oil vehicle alone) were included as controls. At the conclusion of the experiment, serum titre of TGF-β1 antibody was measured using ELISA and a standard liver functional test panel was examined. The extent of hepatic fibrosis was determined by measuring hydroxyproline content in the liver as well as hematoxylin-eosin (HE) and van Gieson (VG) staining. The expression of TGF-β1 and alpha-smooth muscle actin (α-SMA) was examined using immunohistochemistry, and presented as positive staining cells. The MAP purity was >90 % upon reverse phase high-performance liquid chromatography, with apparent molecular weight at 4.77 kDa. Serum TGF-β1 antibody titre was 1:256. The fibrosis-inducing treatment produced significant liver damage, as reflected by increases in liver functional test, HE and VG staining. The MAP vaccine attenuated such damage, as reflected by decreased alanine aminotransferase, aspartate aminotransferase, total bilirubin, and hepatic hydroxyproline (116.78 ± 23.76 vs. 282.71 ± 136.94 IU/L; 319.78 ± 82.48 vs. 495.29 ± 137.13 IU/L; 2.02 ± 0.27 vs. 4.01 ± 0.52 μmol/L; 263.67 ± 41.18 vs. 439.14 ± 43.29 μg/g vs. in model rats, respectively; p < 0.01), as well as fibrosis extent by HE and VG staining. The MAP vaccine reduced TGF-β1 and α-SMA expression in rats (0.325 ± 0.059 vs. 0.507 ± 0.044 IOD/area; 0.318 ± 0.058 vs. 0.489 ± 0.029 IOD/area vs. model rats, respectively; p < 0.05). The TGF-β1 MAP vaccine could generate sufficient antibody that suppresses the development of hepatic fibrosis.
Collapse
Affiliation(s)
- Yaping Li
- Department of Infectious Diseases, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Shi X, Guo LW, Seedial SM, Si Y, Wang B, Takayama T, Suwanabol PA, Ghosh S, DiRenzo D, Liu B, Kent KC. TGF-β/Smad3 inhibit vascular smooth muscle cell apoptosis through an autocrine signaling mechanism involving VEGF-A. Cell Death Dis 2014; 5:e1317. [PMID: 25010983 PMCID: PMC4123076 DOI: 10.1038/cddis.2014.282] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 12/27/2022]
Abstract
We have previously shown that in the presence of elevated Smad3, transforming growth factor-β (TGF-β) transforms from an inhibitor to a stimulant of vascular smooth muscle cell (SMC) proliferation and intimal hyperplasia (IH). Here we identify a novel mechanism through which TGF-β/Smad3 also exacerbates IH by inhibiting SMC apoptosis. We found that TGF-β treatment led to inhibition of apoptosis in rat SMCs following viral expression of Smad3. Conditioned media from these cells when applied to naive SMCs recapitulated this effect, suggesting an autocrine pathway through a secreted factor. Gene array of TGF-β/Smad3-treated cells revealed enhanced expression of vascular endothelial growth factor (VEGF), a known inhibitor of endothelial cell apoptosis. We then evaluated whether VEGF is the secreted mediator responsible for TGF-β/Smad3 inhibition of SMC apoptosis. In TGF-β/Smad3-treated cells, VEGF mRNA and protein as well as VEGF secretion were increased. Moreover, recombinant VEGF-A inhibited SMC apoptosis and a VEGF-A-neutralizing antibody reversed the inhibitory effect of conditioned media on SMC apoptosis. Stimulation of SMCs with TGF-β led to the formation of a complex of Smad3 and hypoxia-inducible factor-1α (HIF-1α) that in turn activated the VEGF-A promoter and transcription. In rat carotid arteries following arterial injury, Smad3 and VEGF-A expression were upregulated. Moreover, Smad3 gene transfer further enhanced VEGF expression as well as inhibited SMC apoptosis. Finally, blocking either the VEGF receptor or Smad3 signaling in injured carotid arteries abrogated the inhibitory effect of Smad3 on vascular SMC apoptosis. Taken together, our study reveals that following angioplasty, elevation of both TGF-β and Smad3 leads to SMC secretion of VEGF-A that functions as an autocrine inhibitor of SMC apoptosis. This novel pathway provides further insights into the role of TGF-β in the development of IH.
Collapse
Affiliation(s)
- X Shi
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, WIMR Building, Madison, WI 53705, USA
| | - L-W Guo
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, WIMR Building, Madison, WI 53705, USA
| | - S M Seedial
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, WIMR Building, Madison, WI 53705, USA
| | - Y Si
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, WIMR Building, Madison, WI 53705, USA
| | - B Wang
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, WIMR Building, Madison, WI 53705, USA
| | - T Takayama
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, WIMR Building, Madison, WI 53705, USA
| | - P A Suwanabol
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, WIMR Building, Madison, WI 53705, USA
| | - S Ghosh
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, WIMR Building, Madison, WI 53705, USA
| | - D DiRenzo
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, WIMR Building, Madison, WI 53705, USA
| | - B Liu
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, WIMR Building, Madison, WI 53705, USA
| | - K C Kent
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, WIMR Building, Madison, WI 53705, USA
| |
Collapse
|
9
|
Yu X, Takayama T, Goel SA, Shi X, Zhou Y, Kent KC, Murphy WL, Guo LW. A rapamycin-releasing perivascular polymeric sheath produces highly effective inhibition of intimal hyperplasia. J Control Release 2014; 191:47-53. [PMID: 24852098 DOI: 10.1016/j.jconrel.2014.05.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/30/2014] [Accepted: 05/08/2014] [Indexed: 01/02/2023]
Abstract
Intimal hyperplasia produces restenosis (re-narrowing) of the vessel lumen following vascular intervention. Drugs that inhibit intimal hyperplasia have been developed, however there is currently no clinical method of perivascular drug-delivery to prevent restenosis following open surgical procedures. Here we report a poly(ε-caprolactone) (PCL) sheath that is highly effective in preventing intimal hyperplasia through perivascular delivery of rapamycin. We first screened a series of bioresorbable polymers, i.e., poly(lactide-co-glycolide) (PLGA), poly(lactic acid) (PLLA), PCL, and their blends, to identify desired release kinetics and sheath physical properties. Both PLGA and PLLA sheaths produced minimal (<30%) rapamycin release within 50days in PBS buffer. In contrast, PCL sheaths exhibited more rapid and near-linear release kinetics, as well as durable integrity (>90days) as evidenced in both scanning electron microscopy and subcutaneous embedding experiments. Moreover, a PCL sheath deployed around balloon-injured rat carotid arteries was associated with a minimum rate of thrombosis compared to PLGA and PLLA. Morphometric analysis and immunohistochemistry revealed that rapamycin-loaded perivascular PCL sheaths produced pronounced (85%) inhibition of intimal hyperplasia (0.15±0.05 vs 1.01±0.16), without impairment of the luminal endothelium, the vessel's anti-thrombotic layer. Our data collectively show that a rapamycin-loaded PCL delivery system produces substantial mitigation of neointima, likely due to its favorable physical properties leading to a stable yet flexible perivascular sheath and steady and prolonged release kinetics. Thus, a PCL sheath may provide useful scaffolding for devising effective perivascular drug delivery particularly suited for preventing restenosis following open vascular surgery.
Collapse
Affiliation(s)
- Xiaohua Yu
- Department of Biomedical Engineering, University of Wisconsin, 5009 Wisconsin Institute of Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Toshio Takayama
- Department of Surgery, University of Wisconsin, 5151 Wisconsin Institute of Medical Research, 1111 Highland Ave, Madison, WI 53705, USA
| | - Shakti A Goel
- Department of Surgery, University of Wisconsin, 5151 Wisconsin Institute of Medical Research, 1111 Highland Ave, Madison, WI 53705, USA
| | - Xudong Shi
- Department of Surgery, University of Wisconsin, 5151 Wisconsin Institute of Medical Research, 1111 Highland Ave, Madison, WI 53705, USA
| | - Yifan Zhou
- Department of Surgery, University of Wisconsin, 5151 Wisconsin Institute of Medical Research, 1111 Highland Ave, Madison, WI 53705, USA
| | - K Craig Kent
- Department of Surgery, University of Wisconsin, 5151 Wisconsin Institute of Medical Research, 1111 Highland Ave, Madison, WI 53705, USA; Department of Surgery, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin, 5009 Wisconsin Institute of Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA.
| | - Lian-Wang Guo
- Department of Surgery, University of Wisconsin, 5151 Wisconsin Institute of Medical Research, 1111 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
10
|
Lu DY, Chen EY, Wong DJ, Yamamoto K, Protack CD, Williams WT, Assi R, Hall MR, Sadaghianloo N, Dardik A. Vein graft adaptation and fistula maturation in the arterial environment. J Surg Res 2014; 188:162-73. [PMID: 24582063 DOI: 10.1016/j.jss.2014.01.042] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/25/2013] [Accepted: 01/24/2014] [Indexed: 12/21/2022]
Abstract
Veins are exposed to the arterial environment during two common surgical procedures, creation of vein grafts and arteriovenous fistulae (AVF). In both cases, veins adapt to the arterial environment that is characterized by different hemodynamic conditions and increased oxygen tension compared with the venous environment. Successful venous adaptation to the arterial environment is critical for long-term success of the vein graft or AVF and, in both cases, is generally characterized by venous dilation and wall thickening. However, AVF are exposed to a high flow, high shear stress, low-pressure arterial environment and adapt mainly via outward dilation with less intimal thickening. Vein grafts are exposed to a moderate flow, moderate shear stress, high-pressure arterial environment and adapt mainly via increased wall thickening with less outward dilation. We review the data that describe these differences, as well as the underlying molecular mechanisms that mediate these processes. Despite extensive research, there are few differences in the molecular pathways that regulate cell proliferation and migration or matrix synthesis, secretion, or degradation currently identified between vein graft adaptation and AVF maturation that account for the different types of venous adaptation to arterial environments.
Collapse
Affiliation(s)
- Daniel Y Lu
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Elizabeth Y Chen
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Daniel J Wong
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Kota Yamamoto
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut; VA Connecticut Healthcare System, West Haven, Connecticut
| | - Clinton D Protack
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Willis T Williams
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Roland Assi
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Michael R Hall
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Nirvana Sadaghianloo
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut; Department of Vascular Surgery, University Hospital of Nice, Nice, France
| | - Alan Dardik
- Yale University Vascular Biology and Therapeutics Program, New Haven, Connecticut; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut; VA Connecticut Healthcare System, West Haven, Connecticut.
| |
Collapse
|
11
|
Bhardwaj S, Roy H, Ylä-Herttuala S. Gene therapy to prevent occlusion of venous bypass grafts. Expert Rev Cardiovasc Ther 2014; 6:641-52. [DOI: 10.1586/14779072.6.5.641] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Lei J, Vodovotz Y, Tzeng E, Billiar TR. Nitric oxide, a protective molecule in the cardiovascular system. Nitric Oxide 2013; 35:175-85. [DOI: 10.1016/j.niox.2013.09.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 09/02/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022]
|
13
|
Affiliation(s)
- Xiao-Wen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital; Chongqing Medical University; Chongqing, P.R. China
| | - Xing-Ji Zhao
- Department of Surgery; Chongqing Emergency Medical Center; Chongqing, P.R. China
| | - Xiao-Yong Xiang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital; Chongqing Medical University; Chongqing, P.R. China
| |
Collapse
|
14
|
Zhang T, Zhang X, Yu W, Chen J, Li Q, Jiao Y, He P, Shen C. Effects of chemokine-like factor 1 on vascular smooth muscle cell migration and proliferation in vascular inflammation. Atherosclerosis 2013; 226:49-57. [PMID: 23102782 DOI: 10.1016/j.atherosclerosis.2012.09.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 09/11/2012] [Accepted: 09/19/2012] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Vascular smooth muscle cell (VSMC) migration and proliferation are key components of vascular inflammation that may lead to atherosclerosis and restenosis, in which cytokines are considered as pivotal factors regarding recruitment of VSMC. A member of recently described family of chemokines, chemokine-like factor 1 (CKLF1), displays a wide spectrum of chemotaxis. This study investigated the role of CKLF1 in VSMC migration and proliferation during the process of vascular inflammation. METHODS AND RESULTS : The effects of CKLF1 on migration, proliferation and neointimal formation were investigated in cultured VSMCs, rat balloon injured arteries and human atherosclerotic plaques. CKLF1 overexpression greatly enhanced, whereas shRNA knockdown markedly retarded, VSMC migration and proliferation in vitro. In addition, CKLF1 protein accumulated preferentially in neointima of the injured rat arteries in vivo. CKLF1 overexpression resulted in a 2.5-fold increase in intimal thickness. In contrast, shRNA-mediated CKLF1 knockdown significantly suppressed neointima formation by 70% compared that in control group. Intriguingly, besides animal model, higher level of CKLF1 was observed in human atherosclerotic plaques than that in normal arteries. CONCLUSION CKLF1 plays an essential role in migration and proliferation of VSMCs, which in turn facilitated neointimal hyperplasia and atherosclerosis. Inhibition of CKLF1 activity provides a potential target for the prevention of atherosclerosis and restenosis.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Vascular Surgery, Peking University People's Hospital, No. 11 Xizhimen South Street, West District, Beijing 100044, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Antagonistic effect of C19 on migration of vascular smooth muscle cells and intimal hyperplasia induced by chemokine-like factor 1. Mol Biol Rep 2012. [PMID: 23203409 DOI: 10.1007/s11033-012-2309-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A chemokine-like factor 1 (CKLF1) is a recently discovered chemokine with broad-spectrum biological functions in inflammation and autoimmune diseases. C19 as a CKLF1's C-terminal peptide has been reported to exert inhibitory effects in a variety of diseases. However, the roles of CKLF1 and C19 on vascular smooth muscle cell (VSMC) migration and neointima formation still remain elusive. The effects of CKLF1 and C19 on VSMC migration and neointimal formation were investigated in cultured VSMCs and balloon-injured rat carotid arteries based on techniques including adenovirus-induced CKLF1 overexpression, gel based perivascular administration of C19, Boyden chamber, scratch-wound assay, real-time PCR, western blot and immunohistochemical analysis. CKLF1 was noticed to accumulate preferentially in neointima after the injury and colocalize with VSMCs. Luminal delivery of CKLF1 adenovirus to arteries exacerbated intimal thickening while perivascular administration of C19 to injured arteries attenuated this problem. In cultured primary VSMCs, CKLF1 overexpression up-regulated VSMC migration, which was down-regulated by C19. These data suggest that CKLF1 has a pivotal role in intimal hyperplasia by mediating VSMC migration. C19 was demonstrated to inhibit CKLF1-mediatated chemotaxis and restenosis. Thus further studies on C19 may provide a new treatment perspective for atherosclerosis and post-angioplasty restenosis.
Collapse
|
16
|
Gene therapy for cardiovascular disease: perspectives and potential. Vascul Pharmacol 2012; 58:174-81. [PMID: 23142171 DOI: 10.1016/j.vph.2012.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/24/2012] [Accepted: 10/29/2012] [Indexed: 01/01/2023]
Abstract
Cardiovascular disease is the most frequent cause of mortality in the western world, accounting for over 800,000 premature deaths per year in the EU alone. Cardiovascular disease is the second most common application for gene therapy clinical trials, which most frequently employ adenovirus serotype 5 (Ad5)-based vectors as delivery vehicles. Although interactions of Ad5 vectors with circulating proteins and cells can limit their efficacy after systemic administration, local gene delivery strategies show great potential in the cardiovascular setting, notably in the context of vascular delivery. Here we review the pathogenesis of bypass graft failure and in-stent restenosis, identifying potential therapeutic targets and discussing recent advances in the field of adenovirus biology and retargeting that, in concert, will potentially translate in coming years to more effective gene therapies for cardiovascular applications.
Collapse
|
17
|
Fu C, Yu P, Tao M, Gupta T, Moldawer LL, Berceli SA, Jiang Z. Monocyte chemoattractant protein-1/CCR2 axis promotes vein graft neointimal hyperplasia through its signaling in graft-extrinsic cell populations. Arterioscler Thromb Vasc Biol 2012; 32:2418-26. [PMID: 22904274 DOI: 10.1161/atvbaha.112.255786] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To evaluate direct versus indirect monocyte chemoattractant protein (MCP)-1/CCR2 signaling and to identify the cellular producers and effectors for MCP-1 during neointimal hyperplasia (NIH) development in vein grafts. METHODS AND RESULTS Genomic analysis revealed an overrepresentation of 13 inflammatory pathways in wild-type vein grafts compared with CCR2 knockout vein grafts. Further investigation with various vein graft-host combinations of MCP-1- and CCR2-deficient mice was used to modify the genotype of cells both inside (graft-intrinsic group) and outside (graft-extrinsic group) the vein wall. CCR2 deficiency inhibited NIH only when present in cells extrinsic to the graft wall, and MCP-1 deficiency required its effectiveness in cells both intrinsic and extrinsic to the graft wall to suppress NIH. Deletion of either MCP-1 or CCR2 was equally effective in inhibiting NIH. CCR2 deficiency in the predominant neointimal cell population had no impact on NIH. Direct MCP-1 stimulation of primary neointimal smooth muscle cells had minimal influence on cell proliferation and matrix turnover, confirming an indirect mechanism of action. CONCLUSIONS MCP-1/CCR2 axis accelerates NIH via its signaling in graft-extrinsic cells, particularly circulating inflammatory cells, with cells both intrinsic and extrinsic to the graft wall being critical MCP-1 producers. These findings underscore the importance of systemic treatment for anti-MCP-1/CCR2 therapies.
Collapse
Affiliation(s)
- Chunhua Fu
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Inhibition of transforming growth factor-β restores endothelial thromboresistance in vein grafts. J Vasc Surg 2011; 54:1117-1123.e1. [PMID: 21803524 DOI: 10.1016/j.jvs.2011.04.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 04/08/2011] [Accepted: 04/14/2011] [Indexed: 11/20/2022]
Abstract
BACKGROUND Thrombosis is a major cause of the early failure of vein grafts (VGs) implanted during peripheral and coronary arterial bypass surgeries. Endothelial expression of thrombomodulin (TM), a key constituent of the protein C anticoagulant pathway, is markedly suppressed in VGs after implantation and contributes to local thrombus formation. While stretch-induced paracrine release of transforming growth factor-β (TGF-β) is known to negatively regulate TM expression in heart tissue, its role in regulating TM expression in VGs remains unknown. METHODS Changes in relative mRNA expression of major TGF-β isoforms were measured by quantitative polymerase chain reaction (qPCR) in cultured human saphenous vein smooth muscle cells (HSVSMCs) subjected to cyclic stretch. To determine the effects of paracrine release of TGF-β on endothelial TM mRNA expression, human saphenous vein endothelial cells (HSVECs) were co-cultured with stretched HSVSMCs in the presence of 1D11, a pan-neutralizing TGF-β antibody, or 13C4, an isotype-control antibody. Groups of rabbits were then administered 1D11 or 13C4 and underwent interpositional grafting of jugular vein segments into the carotid circulation. The effect of TGF-β inhibition on TM gene expression was measured by qPCR; protein C activating capacity and local thrombus formation were measured by in situ chromogenic substrate assays; and VG remodeling was assessed by digital morphometry. RESULTS Cyclic stretch induced TGF-β(1) expression in HSVSMCs by 1.9 ± 0.2-fold (P < .001) without significant change in the expressions of TGF-β(2) and TGF-β(3). Paracrine release of TGF-β(1) by stretched HSVSMCs inhibited TM expression in stationary HSVECs placed in co-culture by 57 ± 12% (P = .03), an effect that was abolished in the presence of 1D11. Similarly, TGF-β(1) was the predominant isoform induced in rabbit VGs 7 days after implantation (3.5 ± 0.4-fold induction; P < .001). TGF-β(1) protein expression localized predominantly to the developing neointima and coincided with marked suppression of endothelial TM expression (16% ± 2% of vein controls; P < .03), a reduction in situ activated protein C (APC)-generating capacity (53% ± 9% of vein controls; P = .001) and increased local thrombus formation (3.7 ± 0.8-fold increase over vein controls; P < .01). External stenting of VGs to limit vessel distension significantly reduced TGF-β(1) induction and TM downregulation. Systemic administration of 1D11 also effectively prevented TM downregulation, preserved APC-generating capacity, and reduced local thrombus in rabbit VGs without observable effect on neointima formation and other morphometric parameters 6 weeks after implantation. CONCLUSION TM downregulation in VGs is mediated by paracrine release of TGF-β(1) caused by pressure-induced vessel stretch. Systemic administration of an anti-TGF-β antibody effectively prevented TM downregulation and preserved local thromboresistance without negative effect on VG remodeling.
Collapse
|
19
|
Wada K, Kamisaki Y. Molecular dissection of Porphyromonas gingivalis-related arteriosclerosis: a novel mechanism of vascular disease. Periodontol 2000 2010; 54:222-34. [PMID: 20712642 DOI: 10.1111/j.1600-0757.2009.00336.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Carroll GT, McGloughlin TM, O’Keeffe LM, Callanan A, Walsh MT. Realistic Temporal Variations of Shear Stress Modulate MMP-2 and MCP-1 Expression in Arteriovenous Vascular Access. Cell Mol Bioeng 2009. [DOI: 10.1007/s12195-009-0089-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
21
|
Jiang Z, Tao M, Omalley KA, Wang D, Ozaki CK, Berceli SA. Established neointimal hyperplasia in vein grafts expands via TGF-beta-mediated progressive fibrosis. Am J Physiol Heart Circ Physiol 2009; 297:H1200-7. [PMID: 19617405 DOI: 10.1152/ajpheart.00268.2009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In weeks to months following implantation, neointimal hyperplasia (NIH) in vein grafts (VGs) transitions from a cellularized to a decellularized phenotype. The inhibition of early cellular proliferation failed to improve long-term VG patency. We have previously demonstrated that transforming growth factor-beta(1) (TGF-beta(1))/connective tissue growth factor (CTGF) pathways mediate a conversion of fibroblasts to myofibroblasts in the early VG (<2 wk). We hypothesize that these similar pathways drive fibrosis observed in the late VG lesion. Within rabbit VGs, real-time RT-PCR, Western blot analysis, ELISA, and immunohistochemistry were used to examine TGF-beta/CTGF pathways in late (1-6 mo) NIH. All VGs exhibited a steady NIH growth (P = 0.006) with significant reduction in cellularity (P = 0.01) over time. Substantial TGF-beta profibrotic activities, as evidenced by enhanced TGF-beta(1) activation, TGF-beta receptor types I (activin receptor-like kinase 5)-to-II receptor ratio, SMAD2/3 phosphorylation, and CTGF production, persisted throughout the observation period. An increased matrix synthesis was accompanied by a temporal reduction of matrix metalloproteinase-2 (P = 0.001) and -9 (P < 0.001) activity. VG NIH is characterized by a conversion from a proproliferative to a profibrotic morphology. An enhanced signaling via TGF-beta/CTGF coupled with reduced matrix metalloproteinase activities promotes progressive fibrotic NIH expansion. The modulation of late TGF-beta/CTGF signaling may offer a novel therapeutic strategy to improve the long-term VG durability.
Collapse
Affiliation(s)
- Zhihua Jiang
- Malcom Randall Veterans Affairs Medical Center, University of Florida College of Medicine, Gainesville, Florida, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Adenovirus-mediated gene transfer of fibromodulin inhibits neointimal hyperplasia in an organ culture model of human saphenous vein graft disease. Gene Ther 2009; 16:1154-62. [PMID: 19474808 DOI: 10.1038/gt.2009.63] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Poor long-term graft patency remains a major limitation of coronary artery bypass grafting using saphenous vein aortocoronary grafts. Neointimal hyperplasia (NIH) represents the principal mechanism of graft failure; a substantial body of evidence implicates transforming growth factor-beta1 (TGF-beta1) in the pathogenesis of NIH. The small leucine-rich proteoglycans decorin and fibromodulin possess TGF-beta-antagonist activity to differing extents and with differing avidities for the isoforms of TGF-beta. We compared their ability to inhibit NIH in an ex vivo model of human saphenous vein organ culture following adenovirus-mediated gene transfer. Surgically prepared human saphenous vein segments received adenovirus expressing fibromodulin (Ad5-Fmod), decorin (Ad5-Dcn), beta-galactosidase (Ad5-lacZ) or vehicle-only. Computerized morphometry 14 days after infection revealed significantly reduced neointimal area, neointimal thickness and intima/media ratio in Ad5-Fmod- and Ad5-Dcn-infected veins. Each parameter was significantly smaller in Ad5-Fmod- than in Ad5-Dcn-exposed segments. Fibrillar collagen content and levels of biologically active TGF-beta were lower in vessels receiving Ad5-Fmod or Ad5-Dcn than in those receiving Ad5-lacZ or vehicle-only. Fibromodulin is a more potent inhibitor of NIH in cultured human saphenous vein than decorin and offers potential therapeutic benefits in saphenous vein graft failure (and possibly in other forms of accelerated atherosclerosis) by reduction of associated neointima formation.
Collapse
|
23
|
de Mel A, Bolvin C, Edirisinghe M, Hamilton G, Seifalian AM. Development of cardiovascular bypass grafts: endothelialization and applications of nanotechnology. Expert Rev Cardiovasc Ther 2009; 6:1259-77. [PMID: 18939913 DOI: 10.1586/14779072.6.9.1259] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is a critical clinical need for small-diameter bypass grafts, with applications involved in the coronary artery and lower limb. Commercially available materials give rise to unfavorable responses when in contact with blood and subjected to low-flow hemodynamics and, thus, are nonideal as small-diameter bypass grafts. Optimizing the mechanical properties to match both the native artery and the graft surfaces has received keen attention. Endothelialization of bypass grafts is considered a protective mechanism where the biochemicals produced from endothelial cells exert a range of favorable responses, including antithrombotic, noninflammatory responses and inhibition of intimal hyperplasia. In situ endothelialization is most desirable. Nanotechnology approaches facilitate all aspects of endothelialization, including endothelial progenitor cell mobilization, migration, adhesion, proliferation and differentiation. 'Surface nanoarchitecturing mechanisms', which mimic the natural extracellular matrix to optimize endothelial progenitor cell interaction and controlled delivery of various factors in the form of nanoparticles, which can be combined with gene therapy, are of keen interest. This article discusses the development of bypass grafts, focusing on the optimization of the biological properties of mechanically suitable grafts.
Collapse
Affiliation(s)
- Achala de Mel
- Centre of Nanotechnology, Biomaterial and Tissue Engineering, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | | | | | | | | |
Collapse
|
24
|
Fu K, Corbley MJ, Sun L, Friedman JE, Shan F, Papadatos JL, Costa D, Lutterodt F, Sweigard H, Bowes S, Choi M, Boriack-Sjodin PA, Arduini RM, Sun D, Newman MN, Zhang X, Mead JN, Chuaqui CE, Cheung HK, Zhang X, Cornebise M, Carter MB, Josiah S, Singh J, Lee WC, Gill A, Ling LE. SM16, an orally active TGF-beta type I receptor inhibitor prevents myofibroblast induction and vascular fibrosis in the rat carotid injury model. Arterioscler Thromb Vasc Biol 2008; 28:665-71. [PMID: 18202322 DOI: 10.1161/atvbaha.107.158030] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE TGF-beta plays a significant role in vascular injury-induced stenosis. This study evaluates the efficacy of a novel, small molecule inhibitor of ALK5/ALK4 kinase, in the rat carotid injury model of vascular fibrosis. METHODS AND RESULTS The small molecule, SM16, was shown to bind with high affinity to ALK5 kinase ATP binding site using a competitive binding assay and biacore analysis. SM16 blocked TGF-beta and activin-induced Smad2/3 phosphorylation and TGF-beta-induced plasminogen activator inhibitor (PAI)-luciferase activity in cells. Good overall selectivity was demonstrated in a large panel of kinase assays, but SM16 also showed nanomolar inhibition of ALK4 and weak (micromolar) inhibition of Raf and p38. In the rat carotid injury model, SM16 dosed once daily orally at 15 or 30 mg/kg SM16 for 14 days caused significant inhibition of neointimal thickening and lumenal narrowing. SM16 also prevented induction of adventitial smooth muscle alpha-actin-positive myofibroblasts and the production of intimal collagen, but did not decrease the percentage of proliferative cells. CONCLUSIONS These results are the first to demonstrate the efficacy of an orally active, small-molecule ALK5/ALK4 inhibitor in a vascular fibrosis model and suggest the potential therapeutic application of these inhibitors in vascular fibrosis.
Collapse
Affiliation(s)
- Kai Fu
- Department of Pharmacology, Biogen Idec, 14 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Thomas KR, Thomas SP, Hewan-Lowe KO, Pestaner JP. Fibromuscular dysplasia in association with intrauterine cocaine exposure. Cardiovasc Pathol 2007; 16:313-6. [PMID: 17868884 DOI: 10.1016/j.carpath.2006.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 11/14/2006] [Accepted: 12/29/2006] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Fibromuscular dysplasia (FMD) is an idiopathic disease of small- and medium-sized arteries, involving one or more vascular beds. Patients may present with a range of symptoms, which may not readily lead to a diagnosis of FMD. While maternal cocaine abuse during pregnancy has previously been associated with vascular alterations in the fetus, an association specifically with FMD has not previously been described. METHODS/RESULTS In this case report, a 21-month-old male presented with a 3-week history of daily vomiting, with temporary improvement of symptoms, then relapse followed by loss of consciousness. His medical history was significant only for maternal cocaine use. Clinical evaluation revealed dilated cardiomyopathy, and a presumptive diagnosis of myocarditis was rendered. Respiratory arrest and death occurred 2 days after admission. Postmortem examination demonstrated intimal-type multivessel FMD, which was determined to be the cause of the clinical presentation. CONCLUSION Without a postmortem examination, it is unlikely that a diagnosis of intimal fibroplasia, a rare variant of FMD (5% of cases), would have been made. This case thus illustrates the continuing utility of the classic postmortem examination. More intriguingly, the case suggests a possible relationship between in utero cocaine exposure and the development of fibromuscular dysplasia in the child.
Collapse
Affiliation(s)
- Kevin R Thomas
- Department of Pathology, Brody School of Medicine at East Carolina University and Pitt County Memorial Hospital, Greenville, NC 27858, USA.
| | | | | | | |
Collapse
|
26
|
Wallitt EJW, Jevon M, Hornick PI. Therapeutics of vein graft intimal hyperplasia: 100 years on. Ann Thorac Surg 2007; 84:317-23. [PMID: 17588453 DOI: 10.1016/j.athoracsur.2007.02.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 02/13/2007] [Accepted: 02/15/2007] [Indexed: 11/26/2022]
Abstract
Intimal hyperplasia is central to the pathology of vein graft re-stenosis, and despite considerable advances in our understanding of vascular biology since it was first described 100 years ago, it is still a significant clinical problem. Recent decades have seen the development of many new therapeutic agents aimed at treating this condition, but the successes of laboratory studies have not been replicated in the clinic yet. This review discusses these therapeutic agents, how their modes of action relate to the pathogenesis of vein graft intimal hyperplasia, and considerations of ways in which such therapy may be improved in the future.
Collapse
Affiliation(s)
- Edward J W Wallitt
- Department of Cardiothoracic Surgery, Imperial College, London, United Kingdom
| | | | | |
Collapse
|
27
|
Gaffney MM, Hynes SO, Barry F, O'Brien T. Cardiovascular gene therapy: current status and therapeutic potential. Br J Pharmacol 2007; 152:175-88. [PMID: 17558439 PMCID: PMC1978263 DOI: 10.1038/sj.bjp.0707315] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Gene therapy is emerging as a potential treatment option in patients suffering from a wide spectrum of cardiovascular diseases including coronary artery disease, peripheral vascular disease, vein graft failure and in-stent restenosis. Thus far preclinical studies have shown promise for a wide variety of genes, in particular the delivery of genes encoding growth factors such as vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) to treat ischaemic vascular disease both peripherally and in coronary artery disease. VEGF as well as other genes such as TIMPs have been used to target the development of neointimal hyperplasia to successfully prevent vein graft failure and in-stent restenosis in animal models. Subsequent phase I trials to examine safety of these therapies have been successful with low levels of serious adverse effects, and albeit in the absence of a placebo group some suggestion of efficacy. Phase 2 studies, which have incorporated a placebo group, have not confirmed this early promise of efficacy. In the next generation of clinical gene therapy trials for cardiovascular disease, many parameters will need to be adjusted in the search for an effective therapy, including the identification of a suitable vector, appropriate gene or genes and an effective vector delivery system for a specific disease target. Here we review the current status of cardiovascular gene therapy and the potential for this approach to become a viable treatment option.
Collapse
Affiliation(s)
- M M Gaffney
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Ireland
- Department of Medicine, Galway and University College Hospital, National University of Ireland Galway, Ireland
| | - S O Hynes
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Ireland
- Department of Medicine, Galway and University College Hospital, National University of Ireland Galway, Ireland
| | - F Barry
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Ireland
- Department of Medicine, Galway and University College Hospital, National University of Ireland Galway, Ireland
| | - T O'Brien
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Ireland
- Department of Medicine, Galway and University College Hospital, National University of Ireland Galway, Ireland
- Author for correspondence:
| |
Collapse
|
28
|
Banno H, Takei Y, Muramatsu T, Komori K, Kadomatsu K. Controlled release of small interfering RNA targeting midkine attenuates intimal hyperplasia in vein grafts. J Vasc Surg 2006; 44:633-41. [PMID: 16950446 DOI: 10.1016/j.jvs.2006.04.044] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 04/24/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Intimal hyperplasia is a major obstacle to patency after vein grafting. Despite of a diverse array of trials to prevent it, a satisfactory therapeutic strategy for clinical use has not been established. However, sufficient inhibition of early stages of intimal hyperplasia may prevent this long-term progressive disease. Midkine (MK) is a heparin-binding growth factor that was originally discovered as the product of a retinoic acid-responsive gene. We previously demonstrated that MK-deficient mice exhibit a striking reduction of neointima formation in a restenosis model, which is reversed on systemic MK administration. In this study, we evaluated a strategy of using small interfering RNA (siRNA) targeting MK as a therapy for vein graft failure. METHODS We first made a highly effective siRNA to rabbit MK. Jugular vein-to-carotid artery interposition vein grafts, which are applied to a low flow condition, were made in Japanese white rabbits. Small interfering RNA mixed with atelocollagen was administrated to the external wall of grafted veins. Cy3-conjugated stabilized siRNA was used to confirm its stability and successful transfer into the vein graft wall. Neointimal hyperplasia was evaluated 4 weeks after the operation. The proliferation index and leukocyte infiltration were determined. RESULTS MK expression was induced and reached the maximum level 7 days after operation. Fluorescence of Cy3-labeled siRNA could be detected in the graft wall even 7 days after operation. Knockdown of the gradually increasing expression was achieved by perivascular application of siRNA using atelocollagen. The intima-media ratio and the intima thickness at 28 days after grafting were both reduced >90% by this treatment compared with controls. This phenomenon was preceded by significant reductions of inflammatory cell recruitment to the vessel walls and subsequent cell proliferation in MK siRNA-treated grafts. CONCLUSIONS These results suggest that midkine is a candidate molecular target for preventing vein graft failure. Furthermore, for clinical applications of siRNA, a single intraoperative atelocollagen-based nonviral delivery method could be a reliable approach to achieve maximal function of siRNA in vivo. This strategy may be a useful and practical form of gene therapy against human vein graft failure.
Collapse
Affiliation(s)
- Hiroshi Banno
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | |
Collapse
|
29
|
Wolff RA, Malinowski RL, Heaton NS, Hullett DA, Hoch JR. Transforming growth factor-beta1 antisense treatment of rat vein grafts reduces the accumulation of collagen and increases the accumulation of h-caldesmon. J Vasc Surg 2006; 43:1028-36. [PMID: 16678700 DOI: 10.1016/j.jvs.2006.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND The main cause of occlusion and vein graft failure after peripheral and coronary arterial reconstruction is intimal hyperplasia. Transforming growth factor beta-1 (TGF-beta1) is a pleiotropic cytokine known to have powerful effects on cell growth, apoptosis, cell differentiation, and extracellular matrix synthesis. METHODS To investigate the role of TGF-beta1 in intimal hyperplasia, we used adenovirus to deliver to superficial epigastric vein messenger RNA (mRNA) antisense to TGF-beta1 (Ad-AST) or the sequence encoding the bioactive form of TGF-beta1 (Ad-BAT). Infection with "empty" virus was used as a control (Ad-CMVpLpA). The treated vein was then used for an interposition graft into rat femoral artery. Grafts were harvested at 1, 2, 4, and 12 weeks and formalin-fixed for histologic studies or placed in liquid nitrogen for mRNA studies. RESULTS Ad-AST treatment resulted in an overall reduction of TGF-beta1 expression (P = .001), and Ad-BAT treatment resulted in an overall increase in TGF-beta1 expression (P = .007). Histologic analysis showed Ad-AST caused reduced collagen build up in the neointima at 12 weeks (P = .0001). Immunohistochemical staining for h-caldesmon at 12 weeks indicated Ad-AST increased smooth muscle cells throughout the vessel wall compared with Ad-CMVpLpA (P = .0024) or Ad-BAT (P = .04). Ad-AST also resulted in reduced CD68-positive cells in the media/adventitia (P = .005 vs Ad-CMVpLpA, P = .01 vs Ad-BAT). To further understand how Ad-AST was influencing the build up of collagen, we performed quantitative polymerase chain reaction on complimentary DNA (cDNA) from homogenates of the vein grafts. Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) was increased at 1 week by Ad-BAT (P = .048 vs Ad-CMVpLpA) and decreased by Ad-AST at all time points (P </= .038). The mRNA for collagen-1 alpha-1 was decreased by Ad-AST at 2, 4, and 12 weeks (P < or = .05) and increased by Ad-BAT at 1 week (P = .01). CONCLUSIONS TGF-beta1 antisense treatment of vein grafts prevents the accumulation of collagen in the neointima in part by (1) changing the proportions of the cell types populating the vein graft wall, (2) reducing the mRNA for TIMPs, and (3) reducing the amount of collagen mRNA. With the Ad-AST and Ad-BAT treatments, we have been able to tip the maturation of the vein graft toward positive remodeling (artery-like phenotype) or toward negative remodeling (fibroproliferation and stenosis), respectively.
Collapse
Affiliation(s)
- Randal A Wolff
- William S. Middleton Memorial Veterans Hospital and University of Wisconsin Medical School, Madison, Wisconsin 53792-3236, USA.
| | | | | | | | | |
Collapse
|
30
|
González JM, Andrés V. Cytostatic gene therapy for occlusive vascular disease. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.4.507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|