1
|
Ono M, Kageyama S, O’Leary N, El-Kurdi MS, Reinöhl J, Solien E, Bianco RW, Doss M, Meuris B, Virmani R, Cox M, Onuma Y, Serruys PW. 1-Year Patency of Biorestorative Polymeric Coronary Artery Bypass Grafts in an Ovine Model. JACC. BASIC TO TRANSLATIONAL SCIENCE 2022; 8:19-34. [PMID: 36777172 PMCID: PMC9911320 DOI: 10.1016/j.jacbts.2022.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022]
Abstract
Many attempts have been made to inhibit or counteract saphenous vein graft (SVG) failure modes; however, only external support for SVGs has gained momentum in clinical utility. This study revealed the feasibility of implantation, and showed good patency out to 12 months of the novel biorestorative graft, in a challenging ovine coronary artery bypass graft model. This finding could trigger the first-in-man trial of using the novel material instead of SVG. We believe that, eventually, this novel biorestorative bypass graft can be one of the options for coronary artery bypass graft patients who have difficulty harvesting SVG.
Collapse
Key Words
- CABG, coronary artery bypass grafting
- CPB, cardiopulmonary bypass
- IH, intimal hyperplasia
- LAD, left anterior descending artery
- OCT, optical coherence tomography
- QCA, quantitative coronary angiography
- QFR, quantitative flow ratio
- RVG, restorative vascular graft
- SVG, saphenous vein graft
- coronary artery bypass graft
- coronary artery disease
- coronary revascularization
- ePTFE, expanded polytetrafluoroethylene
- polymeric bypass graft
- preclinical model
- quantitative flow ratio
- restorative vascular graft
Collapse
Affiliation(s)
- Masafumi Ono
- Amsterdam Universitair Medische Centra, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Shigetaka Kageyama
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Neil O’Leary
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | | | | | - Eric Solien
- American Preclinical Services, LLC, Minneapolis, Minnesota, USA
| | - Richard W. Bianco
- Experimental Surgical Services, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mirko Doss
- Department of Cardiac Surgery, Helios Clinic, Siegburg, Germany
| | - Bart Meuris
- Department of Cardiac Surgery, University Hospital Leuven, Leuven, Belgium
| | - Renu Virmani
- CVPath Institute, Inc, Gaithersburg, Maryland, USA
| | | | - Yoshinobu Onuma
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Patrick W. Serruys
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
- NHLI, Imperial College London, London, United Kingdom
- Address for correspondence: Dr Patrick W. Serruys, National University of Ireland, Galway (NUIG), University Road, Galway H91 TK33, Ireland.
| |
Collapse
|
2
|
Van Hoof L, Verbrugghe P, Jones EAV, Humphrey JD, Janssens S, Famaey N, Rega F. Understanding Pulmonary Autograft Remodeling After the Ross Procedure: Stick to the Facts. Front Cardiovasc Med 2022; 9:829120. [PMID: 35224059 PMCID: PMC8865563 DOI: 10.3389/fcvm.2022.829120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
The Ross, or pulmonary autograft, procedure presents a fascinating mechanobiological scenario. Due to the common embryological origin of the aortic and pulmonary root, the conotruncus, several authors have hypothesized that a pulmonary autograft has the innate potential to remodel into an aortic phenotype once exposed to systemic conditions. Most of our understanding of pulmonary autograft mechanobiology stems from the remodeling observed in the arterial wall, rather than the valve, simply because there have been many opportunities to study the walls of dilated autografts explanted at reoperation. While previous histological studies provided important clues on autograft adaptation, a comprehensive understanding of its determinants and underlying mechanisms is needed so that the Ross procedure can become a widely accepted aortic valve substitute in select patients. It is clear that protecting the autograft during the early adaptation phase is crucial to avoid initiating a sequence of pathological remodeling. External support in the freestanding Ross procedure should aim to prevent dilatation while simultaneously promoting remodeling, rather than preventing dilatation at the cost of vascular atrophy. To define the optimal mechanical properties and geometry for external support, the ideal conditions for autograft remodeling and the timeline of mechanical adaptation must be determined. We aimed to rigorously review pulmonary autograft remodeling after the Ross procedure. Starting from the developmental, microstructural and biomechanical differences between the pulmonary artery and aorta, we review autograft mechanobiology in relation to distinct clinical failure mechanisms while aiming to identify unmet clinical needs, gaps in current knowledge and areas for further research. By correlating clinical and experimental observations of autograft remodeling with established principles in cardiovascular mechanobiology, we aim to present an up-to-date overview of all factors involved in extracellular matrix remodeling, their interactions and potential underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lucas Van Hoof
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Peter Verbrugghe
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | | | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Stefan Janssens
- Department of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | - Nele Famaey
- Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Filip Rega
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
3
|
El-Kurdi M, Soletti L, McGrath J, Linhares S, Rousselle S, Greisler H, Edelman E, Schoen FJ. Functional remodeling of an electrospun polydimethylsiloxane-based polyether urethane external vein graft support device in an ovine model. J Biomed Mater Res A 2019; 107:2135-2149. [PMID: 31094084 PMCID: PMC6689261 DOI: 10.1002/jbm.a.36724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/13/2019] [Accepted: 05/07/2019] [Indexed: 11/07/2022]
Abstract
Saphenous vein graft (SVG) failure rates are unacceptably high, and external mechanical support may improve patency. We studied the histologic remodeling of a conformal, electrospun, polydimethylsiloxane-based polyether urethane external support device for SVGs and evaluated graft structural evolution in adult sheep to 2 years. All sheep (N = 19) survived to their intended timepoints, and angiography showed device-treated SVG geometric stability over time (30, 90, 180, 365, or 730 days), with an aggregated graft patency rate of 92%. There was minimal inflammation associated with the device material at all timepoints. By 180 days, treated SVG remodeling was characterized by minimal/nonprogressive intimal hyperplasia; polymer fragmentation and integration; as well as the development of a neointima, and a confluent endothelium. By 1-year, the graft developed a media-like layer by remodeling the neointima, and elastic fibers formed well-defined structures that subtended the neo-medial layer of the remodeled SVG. Immunohistochemistry showed that this neo-media was populated with smooth muscle cells, and the intima was lined with endothelial cells. These data suggest that treated SVGs were structurally remodeled by 180 days, and developed arterial-like features by 1 year, which continued to mature to 2 years. Device-treated SVGs remodeled into arterial-like conduits with stable long-term performance as arterial grafts in adult sheep.
Collapse
Affiliation(s)
| | | | | | | | | | - Howard Greisler
- Loyola University, Maywood, IL and Hines VA Hospital, Hines, IL
| | - Elazer Edelman
- Massachusetts Institute of Technology, Cambridge, MA, Harvard Medical School, Boston, MA, Brigham and Women’s Hospital, Boston, MA
| | - Frederick J. Schoen
- Brigham and Women’s Hospital, Boston, MA, and Harvard Medical School, Boston, MA
| |
Collapse
|
4
|
Scavenger receptor class A member 5 (SCARA5) and suprabasin (SBSN) are hub genes of coexpression network modules associated with peripheral vein graft patency. J Vasc Surg 2015; 64:202-209.e6. [PMID: 25935274 DOI: 10.1016/j.jvs.2014.12.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/18/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Approximately 30% of autogenous vein grafts develop luminal narrowing and fail because of intimal hyperplasia or negative remodeling. We previously found that vein graft cells from patients who later develop stenosis proliferate more in vitro in response to growth factors than cells from patients who maintain patent grafts. To discover novel determinants of vein graft outcome, we have analyzed gene expression profiles of these cells using a systems biology approach to cluster the genes into modules by their coexpression patterns and to correlate the results with growth data from our prior study and with new studies of migration and matrix remodeling. METHODS RNA from 4-hour serum- or platelet-derived growth factor (PDGF)-BB-stimulated human saphenous vein cells obtained from the outer vein wall (20 cell lines) was used for microarray analysis of gene expression, followed by weighted gene coexpression network analysis. Cell migration in microchemotaxis chambers in response to PDGF-BB and cell-mediated collagen gel contraction in response to serum were also determined. Gene function was determined using short-interfering RNA to inhibit gene expression before subjecting cells to growth or collagen gel contraction assays. These cells were derived from samples of the vein grafts obtained at surgery, and the long-term fate of these bypass grafts was known. RESULTS Neither migration nor cell-mediated collagen gel contraction showed a correlation with graft outcome. Although 1188 and 1340 genes were differentially expressed in response to treatment with serum and PDGF, respectively, no single gene was differentially expressed in cells isolated from patients whose grafts stenosed compared with those that remained patent. Network analysis revealed four unique groups of genes, which we term modules, associated with PDGF responses, and 20 unique modules associated with serum responses. The "yellow" and "skyblue" modules, from PDGF and serum analyses, respectively, correlated with later graft stenosis (P = .005 and P = .02, respectively). In response to PDGF, yellow was also associated with increased cell growth. For serum, skyblue was also associated with inhibition of collagen gel contraction. The hub genes for yellow and skyblue (ie, the gene most connected to other genes in the module), scavenger receptor class A member 5 (SCARA5) and suprabasin (SBSN), respectively, were tested for effects on proliferation and collagen contraction. Knockdown of SCARA5 increased proliferation by 29.9% ± 7.8% (P < .01), whereas knockdown of SBSN had no effect. Knockdown of SBSN increased collagen gel contraction by 24.2% ± 8.6% (P < .05), whereas knockdown of SCARA5 had no effect. CONCLUSIONS Using weighted gene coexpression network analysis of cultured vein graft cell gene expression, we have discovered two small gene modules, which comprise 42 genes, that are associated with vein graft failure. Further experiments are needed to delineate the venous cells that express these genes in vivo and the roles these genes play in vein graft healing, starting with the module hub genes SCARA5 and SBSN, which have been shown to have modest effects on cell proliferation or collagen gel contraction.
Collapse
|
5
|
Kenagy RD, Min SK, Mulvihill E, Clowes AW. A link between smooth muscle cell death and extracellular matrix degradation during vascular atrophy. J Vasc Surg 2011; 54:182-191.e24. [PMID: 21493032 PMCID: PMC3129478 DOI: 10.1016/j.jvs.2010.12.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 12/07/2010] [Accepted: 12/11/2010] [Indexed: 12/12/2022]
Abstract
OBJECTIVE High blood flow induces neointimal atrophy in polytetrafluoroethylene (PTFE) aortoiliac grafts and a tight external PTFE wrap of the iliac artery induces medial atrophy. In both nonhuman primate models, atrophy with loss of smooth muscle cells and extracellular matrix (ECM) begins at ≤4 days. We hypothesized that matrix loss would be linked to cell death, but the factors and mechanisms involved are not known. The purpose of this study was to determine commonly regulated genes in these two models, which we hypothesized would be a small set of genes that might be key regulators of vascular atrophy. METHODS DNA microarray analysis (Sentrix Human Ref 8; Illumina, San Diego, Calif; ∼23,000 genes) was performed on arterial tissue from the wrap model (n = 9) and graft neointima from the graft model (n = 5) 1 day after wrapping or the switch to high flow, respectively. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was also performed. Expression of this vascular atrophy gene set was also studied after Fas ligand-induced cell death in cultured smooth muscle cells and organ cultured arteries. RESULTS Microarray analysis showed 15 genes were regulated in the same direction in both atrophy models: 9 upregulated and 6 downregulated. Seven of nine upregulated genes were confirmed by qRT-PCR in both models. Upregulated genes included the ECM-degrading enzymes ADAMTS4, tissue plasminogen activator (PLAT), and hyaluronidase 2; possible growth regulatory factors, including chromosome 8 open reading frame 4 and leucine-rich repeat family containing 8; a differentiation regulatory factor (musculoskeletal embryonic nuclear protein 1); a dead cell removal factor (ficolin 3); and a prostaglandin transporter (solute carrier organic anion transporter family member 2A1). Five downregulated genes were confirmed but only in one or the other model. Of the seven upregulated genes, ADAMTS4, PLAT, hyaluronidase 2, solute carrier organic anion transporter family member 2A1, leucine-rich repeat family containing 8, and chromosome 8 open reading frame 4 were also upregulated in vitro in cultured smooth muscle cells or cultured iliac artery by treatment with FasL, which causes cell death. However, blockade of caspase activity with Z-VAD inhibited FasL-mediated cell death, but not gene induction. CONCLUSION Seven gene products were upregulated in two distinctly different in vivo nonhuman primate vascular atrophy models. Induction of cell death by FasL in vitro induced six of these genes, including the ECM-degrading factors ADAMTS4, hyaluronidase 2, and PLAT, suggesting a mechanism by which the program of tissue atrophy coordinately removes extracellular matrix as cells die. These genes may be key regulators of vascular atrophy.
Collapse
MESH Headings
- Animals
- Apoptosis
- Arteriovenous Shunt, Surgical/adverse effects
- Atrophy
- Blood Vessel Prosthesis Implantation/adverse effects
- Cells, Cultured
- Disease Models, Animal
- Extracellular Matrix/metabolism
- Fas Ligand Protein/metabolism
- Femoral Artery/metabolism
- Femoral Artery/pathology
- Femoral Artery/surgery
- Femoral Vein/metabolism
- Femoral Vein/pathology
- Femoral Vein/surgery
- Gene Expression Profiling/methods
- Gene Expression Regulation
- Iliac Artery/metabolism
- Iliac Artery/pathology
- Iliac Artery/surgery
- Male
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/surgery
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Oligonucleotide Array Sequence Analysis
- Papio
- Postoperative Complications/etiology
- Postoperative Complications/genetics
- Postoperative Complications/metabolism
- Postoperative Complications/pathology
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
Collapse
Affiliation(s)
- Richard D Kenagy
- Department of Surgery, University of Washington, Seattle, WA 98195-6410, USA
| | | | | | | |
Collapse
|
6
|
Byrom MJ, Bannon PG, White GH, Ng MKC. Animal models for the assessment of novel vascular conduits. J Vasc Surg 2010; 52:176-95. [PMID: 20299181 DOI: 10.1016/j.jvs.2009.10.080] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/25/2009] [Accepted: 10/04/2010] [Indexed: 11/19/2022]
Abstract
The development of an ideal small-diameter conduit for use in vascular bypass surgery has yet to be achieved. The ongoing innovation in biomaterial design generates novel conduits that require preclinical assessment in vivo, and a number of animal models have been used for this purpose. This article examines the rationale behind animal models used in the assessment of small-diameter vascular conduits encompassing the commonly used species: baboons, sheep, pigs, dogs, rabbits, and rodents. Studies on the comparative hematology for these species relative to humans are summarized, and the hydrodynamic values for common implant locations are also compared. The large- and small-animal models are then explored, highlighting the characteristics of each that determine their relative utility in the assessment of vascular conduits. Where possible, the performance of expanded polytetrafluoroethylene is given in each animal and in each location to allow direct comparisons between species. New challenges in animal modeling are outlined for the assessment of tissue-engineered graft designs. Finally, recommendations are given for the selection of animal models for the assessment of future vascular conduits.
Collapse
|