1
|
Baroudi M, Rezk A, Daher M, Balmaceno-Criss M, Gregoryczyk JG, Sharma Y, McDonald CL, Diebo BG, Daniels AH. Management of traumatic spinal cord injury: A current concepts review of contemporary and future treatment. Injury 2024; 55:111472. [PMID: 38460480 DOI: 10.1016/j.injury.2024.111472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/03/2024] [Accepted: 02/25/2024] [Indexed: 03/11/2024]
Abstract
Spinal Cord Injury (SCI) is a condition leading to inflammation, edema, and dysfunction of the spinal cord, most commonly due to trauma, tumor, infection, or vascular disturbance. Symptoms include sensory and motor loss starting at the level of injury; the extent of damage depends on injury severity as detailed in the ASIA score. In the acute setting, maintaining mean arterial pressure (MAP) higher than 85 mmHg for up to 7 days following injury is preferred; although caution must be exercised when using vasopressors such as phenylephrine due to serious side effects such as pulmonary edema and death. Decompression surgery (DS) may theoretically relieve edema and reduce intraspinal pressure, although timing of surgery remains a matter of debate. Methylprednisolone (MP) is currently used due to its ability to reduce inflammation but more recent studies question its clinical benefits, especially with inconsistency in recommending it nationally and internationally. The choice of MP is further complicated by conflicting evidence for optimal timing to initiate treatment, and by the reported observation that higher doses are correlated with increased risk of complications. Thyrotropin-releasing hormone may be beneficial in less severe injuries. Finally, this review discusses many options currently being researched and have shown promising pre-clinical results.
Collapse
Affiliation(s)
- Makeen Baroudi
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Anna Rezk
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Mohammad Daher
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Mariah Balmaceno-Criss
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Jerzy George Gregoryczyk
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Yatharth Sharma
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Christopher L McDonald
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Bassel G Diebo
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Alan H Daniels
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
2
|
Sunshine MD, Bindi VE, Nguyen BL, Doerr V, Boeno FP, Chandran V, Smuder AJ, Fuller DD. Oxygen therapy attenuates neuroinflammation after spinal cord injury. J Neuroinflammation 2023; 20:303. [PMID: 38110993 PMCID: PMC10729514 DOI: 10.1186/s12974-023-02985-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Acute hyperbaric O2 (HBO) therapy after spinal cord injury (SCI) can reduce inflammation and increase neuronal survival. To our knowledge, it is unknown if these benefits of HBO require hyperbaric vs. normobaric hyperoxia. We used a C4 lateralized contusion SCI in adult male and female rats to test the hypothesis that the combination of hyperbaria and 100% O2 (i.e. HBO) more effectively mitigates spinal inflammation and neuronal loss, and enhances respiratory recovery, as compared to normobaric 100% O2. Experimental groups included spinal intact, SCI no O2 therapy, and SCI + 100% O2 delivered at normobaric pressure (1 atmosphere, ATA), or at 2- or 3 ATA. O2 treatments lasted 1-h, commenced within 2-h of SCI, and were repeated for 10 days. The spinal inflammatory response was assessed with transcriptomics (RNAseq) and immunohistochemistry. Gene co-expression network analysis showed that the strong inflammatory response to SCI was dramatically diminished by both hyper- and normobaric O2 therapy. Similarly, both HBO and normobaric O2 treatments reduced the prevalence of immunohistological markers for astrocytes (glial fibrillary acidic protein) and microglia (ionized calcium binding adaptor molecule) in the injured spinal cord. However, HBO treatment also had unique impacts not detected in the normobaric group including upregulation of an anti-inflammatory cytokine (interleukin-4) in the plasma, and larger inspiratory tidal volumes at 10-days (whole body-plethysmography measurements). We conclude that normobaric O2 treatment can reduce the spinal inflammatory response after SCI, but pressured O2 (i.e., HBO) provides further benefit.
Collapse
Affiliation(s)
- Michael D Sunshine
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Victoria E Bindi
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Branden L Nguyen
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Vivian Doerr
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Franccesco P Boeno
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | | | - Ashley J Smuder
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA.
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Chen F, Wang D, Jiang Y, Ma H, Li X, Wang H. Dexmedetomidine postconditioning alleviates spinal cord ischemia-reperfusion injury in rats via inhibiting neutrophil infiltration, microglia activation, reactive gliosis and CXCL13/CXCR5 axis activation. Int J Neurosci 2023; 133:1-12. [PMID: 33499703 DOI: 10.1080/00207454.2021.1881089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE Spinal cord ischemia-reperfusion (I/R) injury is an unresolved complication and its mechanisms are still not completely understood. Here, we studied the neuroprotective effects of dexmedetomidine (DEX) postconditioning against spinal cord I/R injury in rats and explored the possible mechanisms. MATERIALS AND METHODS In the study, rats were randomly divided into five groups: sham group, I/R group, DEX0.5 group, DEX2.5 group, and DEX5 group. I/R injury was induced in experimental rats; 0.5 μg/kg, 2.5 μg/kg, 5 μg/kg DEX were intravenously injected upon reperfusion respectively. Neurological function, histological assessment, and the disruption of blood-spinal cord barrier (BSCB) were evaluated via the BBB scoring, hematoxylin and eosin staining, Evans Blue (EB) extravasation and spinal cord edema, respectively. Neutrophil infiltration was evaluated via Myeloperoxidase (MPO) activity. Microglia activation and reactive gliosis was evaluated via ionized calcium-binding adapter molecule-1(IBA-1) and glial fibrillary acidic protein (GFAP) immunofluorescence, respectively. The expression of C-X-C motif ligand 13 (CXCL13), C-X-C chemokine receptor type 5(CXCR5), caspase-3 was determined by western blotting. The expression levels of interleukin 6(IL-6), tumor necrosis factor-α(TNF-α), IL-1β were determined by ELISA assay. RESULTS DEX postconditioning preserved neurological assessment scores, improved histological assessment scores, attenuated BSCB leakage after spinal cord I/R injury. Neutrophil infiltration, microglia activation and reactive gliosis were also inhibited by DEX postconditioning. The expression of CXCL13, CXCR5, caspase-3, IL-6, TNF-α, IL-1β were reduced by DEX postconditioning. CONCLUSIONS DEX postconditioning alleviated spinal cord I/R injury, which might be mediated via inhibition of neutrophil infiltration, microglia activation, reactive gliosis and CXCL13/CXCR5 axis activation.
Collapse
Affiliation(s)
- Fengshou Chen
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Dan Wang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yanhua Jiang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hong Ma
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiaoqian Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - He Wang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
4
|
Turner S, Sunshine MD, Chandran V, Smuder AJ, Fuller DD. Hyperbaric oxygen therapy after mid-cervical spinal contusion injury. J Neurotrauma 2022; 39:715-723. [PMID: 35152735 PMCID: PMC9081027 DOI: 10.1089/neu.2021.0412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hyperbaric oxygen (HBO) therapy is frequently used to treat peripheral wounds or decompression sickness. Evidence suggests that HBO therapy can provide neuroprotection and has an anti-inflammatory impact after neurological injury, including spinal cord injury (SCI). Our primary purpose was to conduct a genome-wide screening of mRNA expression changes in the injured spinal cord after HBO therapy. An mRNA gene array was used to evaluate samples taken from the contused region of the spinal cord following a lateralized mid-cervical contusion injury in adult female rats. HBO therapy consisted of daily, 1-h sessions (3.0 ATA, 100% O2) initiated on the day of SCI and continued for 10 days. Gene set enrichment analyses indicated that HBO upregulated genes in pathways associated with electron transport, mitochondrial function, and oxidative phosphorylation, and downregulated genes in pathways associated with inflammation (including cytokines and nuclear factor kappa B [NF-κB]) and apoptotic signaling. In a separate cohort, spinal cord histology was performed to verify whether the HBO treatment impacted neuronal cell counts or inflammatory markers. Compared with untreated rats, there were increased NeuN positive cells in the spinal cord of HBO-treated rats (p = 0.004). We conclude that HBO therapy, initiated shortly after SCI and continued for 10 days, can alter the molecular signature of the lesioned spinal cord in a manner consistent with a neuroprotective impact.
Collapse
Affiliation(s)
- Sara Turner
- University of Florida, Physical Therapy, Gainesville, Florida, United States
| | - Michael D. Sunshine
- University of Florida, 3463, Physical Therapy, 1149 South Newell Drive, L1-168, Gainesville, Florida, United States, 32601
- University of Florida
| | | | - Ashley J Smuder
- University of Florida, Applied Physiology and Kinesiology, Gainesville, Florida, United States
| | - David D Fuller
- University of Florida, Physical Therapy, 100 S. Newell Dr., PO Box 100154, Gainesville, Florida, United States, 32610
| |
Collapse
|
5
|
Protective Effect of Mild Hypothermia on Spinal Cord Ischemia-Induced Delayed Paralysis and Spinal Cord Injury. Neurochem Res 2022; 47:1212-1225. [PMID: 34993705 DOI: 10.1007/s11064-021-03515-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/22/2021] [Accepted: 12/21/2021] [Indexed: 01/09/2023]
Abstract
To explore the mechanism regarding the regulation of spinal cord ischemia (SCI) in rats by mild hypothermia. A SCI rat model was established through aorta occlusion, and in some cases, the rats were intervened with mild hypothermia, after which motor function, microglia activation, and M1/M2 polarization in rats were measured. Also, the expression of inflammatory cytokines (IL-1β, IL-6 and TNF-α) and neuronal apoptosis were examined. Lipopolysaccharide (LPS)-induced M1 microglia and IL-4-induced M2 microglia were intrathecally injected into rats to evaluate the effect of microglial polarization on SCI. In in vitro experiments, primary microglial cells were treated under hypothermic condition, in which M1/M2 polarization and microglia apoptosis, the levels of iNOS, CD86, CD206, Arg-1 and inflammatory cytokines were assessed. Western blot analysis detected the activation of the TLR4/NF-κB pathway to investigate the role of this pathway in M1/M2 polarization. SCI treatment impaired motor function, induced higher M1 microglia proportion, and increased the levels of pro-inflammatory cytokines in rats, and mild hypothermic treatment attenuated these trends. Moreover, injection of M1 microglia increased M1 microglia proportion and increased the levels of pro-inflammatory cytokines, while injection of M2 microglia induced the reverse results, i.e. decreased M1 microglia proportion and reduced pro-inflammatory cytokine levels. In LPS-induced microglial cells, mild hypothermia treatment increased M2 microglia proportion and decreased pro-inflammatory cytokine levels, relative to normothermia. Mild hypothermia inactivated the TLR4/NF-κB pathway in LPS-treated microglia. TLR4 overexpression reversed the function of mild hypothermia in LPS-stimulated microglia, and under normal condition, TLR4/NF-κB pathway suppressed microglial M2 polarization. Mild hypothermia inhibits TLR4/NF-κB pathway and promotes microglial M2 polarization, thus attenuating SCI-induced injury and inflammation.
Collapse
|
6
|
Chio JCT, Xu KJ, Popovich P, David S, Fehlings MG. Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives. Exp Neurol 2021; 341:113704. [PMID: 33745920 DOI: 10.1016/j.expneurol.2021.113704] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) has a complex pathophysiology. Following the initial physical trauma to the spinal cord, which may cause vascular disruption, hemorrhage, mechanical injury to neural structures and necrosis, a series of biomolecular cascades is triggered to evoke secondary injury. Neuroinflammation plays a major role in the secondary injury after traumatic SCI. To date, the administration of systemic immunosuppressive medications, in particular methylprednisolone sodium succinate, has been the primary pharmacological treatment. This medication is given as a complement to surgical decompression of the spinal cord and maintenance of spinal cord perfusion through hemodynamic augmentation. However, the impact of neuroinflammation is complex with harmful and beneficial effects. The use of systemic immunosuppressants is further complicated by the natural onset of post-injury immunosuppression, which many patients with SCI develop. It has been hypothesized that immunomodulation to attenuate detrimental aspects of neuroinflammation after SCI, while avoiding systemic immunosuppression, may be a superior approach. To accomplish this, a detailed understanding of neuroinflammation and the systemic immune responses after SCI is required. Our review will strive to achieve this goal by first giving an overview of SCI from a clinical and basic science context. The role that neuroinflammation plays in the pathophysiology of SCI will be discussed. Next, the positive and negative attributes of the innate and adaptive immune systems in neuroinflammation after SCI will be described. With this background established, the currently existing immunosuppressive and immunomodulatory therapies for treating SCI will be explored. We will conclude with a summary of topics that can be explored by neuroimmunology research. These concepts will be complemented by points to be considered by neuroscientists developing therapies for SCI and other injuries to the central nervous system.
Collapse
Affiliation(s)
- Jonathon Chon Teng Chio
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| | - Katherine Jiaxi Xu
- Human Biology Program, University of Toronto, Wetmore Hall, 300 Huron St., Room 105, Toronto, Ontario M5S 3J6, Canada.
| | - Phillip Popovich
- Department of Neuroscience, Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Neurological Institute, The Ohio State University, Wexner Medical Center, 410 W. 10(th) Ave., Columbus 43210, USA.
| | - Samuel David
- Centre for Research in Neuroscience and BRaIN Program, The Research Institute of the McGill University Health Centre, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, Canada.
| | - Michael G Fehlings
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Wang D, Chen F, Fang B, Zhang Z, Dong Y, Tong X, Ma H. MiR-128-3p Alleviates Spinal Cord Ischemia/Reperfusion Injury Associated Neuroinflammation and Cellular Apoptosis via SP1 Suppression in Rat. Front Neurosci 2020; 14:609613. [PMID: 33424542 PMCID: PMC7785963 DOI: 10.3389/fnins.2020.609613] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/04/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Neuroinflammation and cellular apoptosis caused by spinal cord ischemia/reperfusion (I/R) injury result in neurological dysfunction. MicroRNAs (miRs) have crucial functions in spinal cord I/R injury pathogenesis according to previous evidences. Herein, whether miR-128-3p contributes to spinal cord I/R injury by regulating specificity protein 1 (SP1) was assessed. METHODS A rat model of spinal cord I/R injury was established by occluding the aortic arch for 14 min. Then, miR-128-3p's interaction with SP1 was detected by dual-luciferase reporter assays. Next, miR-128-3p mimic and inhibitor, as well as adenovirus-delivered shRNA specific for SP1 were injected intrathecally for assessing the effects of miR-128-3p and SP1 on rats with spinal cord I/R injury. SP1, Bax and Bcl-2 expression levels in I/R injured spinal cord tissues were evaluated by Western blotting, while IL-1β, TNF-α, and IL-6 were quantitated by ELISA. Tarlov scores were obtained to detect hind-limb motor function. Evans blue (EB) dye extravasation was utilized to examine blood-spinal cord barrier (BSCB) permeability. Terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining was performed for neuronal apoptosis assessment. RESULTS MiR-128-3p expression was decreased, while SP1 amounts were increased in rat spinal cord tissue specimens following I/R. SP1 was identified as a miR-128-3p target and downregulated by miR-128-3p. MiR-128-3p overexpression or SP1 silencing alleviated I/R-induced neuroinflammation and cell apoptosis, and improved Tarlov scores, whereas pretreatment with miR-128-3p inhibitor aggravated the above injuries. CONCLUSION Overexpression of miR-128-3p protects neurons from neuroinflammation and apoptosis during spinal cord I/R injury partially by downregulating SP1.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Ma
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Preventive hypothermia as a neuroprotective strategy for paclitaxel-induced peripheral neuropathy. Pain 2020; 160:1505-1521. [PMID: 30839425 DOI: 10.1097/j.pain.0000000000001547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe adverse effect that occurs secondary to anticancer treatments and has no known preventive or therapeutic strategy. Therapeutic hypothermia has been shown to be effective in protecting against central and peripheral nervous system injuries. However, the effects of therapeutic hypothermia on CIPN have rarely been explored. We induced lower back hypothermia (LBH) in an established paclitaxel-induced CIPN rat model and found that the paclitaxel-induced impairments observed in behavioral, electrophysiological, and histological impairments were inhibited by LBH when applied at an optimal setting of 24°C to the sciatic nerve and initiated 90 minutes before paclitaxel infusion. Lower back hypothermia also inhibited the paclitaxel-induced activation of astroglia and microglia in the spinal cord and macrophage infiltration into and neuronal injury in the dorsal root ganglia and sciatic nerves. Furthermore, LBH decreased the local blood flow and local tissue concentrations of paclitaxel. Finally, in NOD/SCID mice inoculated with cancer cells, the antiproliferative effect of paclitaxel was not affected by the distal application of LBH. In conclusion, our findings indicate that early exposure to regional hypothermia alleviates paclitaxel-induced peripheral neuropathy. Therapeutic hypothermia may therefore represent an economical and nonpharmaceutical preventive strategy for CIPN in patients with localized solid tumors.
Collapse
|
9
|
Yin J, Yin Z, Wang B, Zhu C, Sun C, Liu X, Gong G. Angiopoietin-1 Protects Spinal Cord Ischemia and Reperfusion Injury by Inhibiting Autophagy in Rats. Neurochem Res 2019; 44:2746-2754. [PMID: 31630316 DOI: 10.1007/s11064-019-02893-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
Spinal cord ischemia and reperfusion (SCIR) injury can induce autophagy, which is involved in the survival of neurons. However, whether autophagy plays a neuroprotective or a detrimental role in SCIR injury remains controversial. Angiopoietin-1 (Ang-1), an endothelial growth factor, has been shown to have neuroprotective effects. The present study aimed to explore the neuroprotective mechanisms of Ang-1 in neuronal cells in a rat model of SCIR injury in vivo. Ang-1 protein and rapamycin were injected intrathecally. Basso Beattie Bresnahan (BBB) scoring and hematoxylin and eosin staining were used to assess the degree of SCIR injury. Proteins that reflected the level of autophagy expression, such as Beclin-1 and LC3, were evaluated by western blotting. The results indicated that SCIR injury resulted in loss in lower limb motor function. Ang-1 protein inhibited the expression of Beclin-1 and LC3, which improved the BBB score and alleviated spinal cord injury. In contrast, rapamycin, an autophagy activator, caused the opposite effect. This study provides evidence that Ang-1 plays a neuroprotective role by inhibiting of autophagy expression in SCIR injury. Overall, findings could be useful for the treatment of SCIR injury.
Collapse
Affiliation(s)
- Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, People's Republic of China
| | - Zhaoyang Yin
- Department of Orthopedics, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, 222000, People's Republic of China
| | - Bin Wang
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, People's Republic of China
| | - Chao Zhu
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, People's Republic of China
| | - Chao Sun
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, People's Republic of China
| | - Xinhui Liu
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, People's Republic of China.
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, 211002, Nanjing, People's Republic of China.
| |
Collapse
|
10
|
Jorge A, Fish EJ, Dixon CE, Hamilton KD, Balzer J, Thirumala P. The Effect of Prophylactic Hypothermia on Neurophysiological and Functional Measures in the Setting of Iatrogenic Spinal Cord Impact Injury. World Neurosurg 2019; 129:e607-e613. [PMID: 31158549 DOI: 10.1016/j.wneu.2019.05.229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Iatrogenic spinal cord injury (iSCI) during spinal corrective surgery can result in devastating complications, such as paraplegia or paraparesis. Perioperatively, iSCI often occurs as a direct injury during spinal cord instrumentation placement. Currently, treatment of iSCI remains limited to posttraumatic hypothermia, which has demonstrated some value in recent clinical trials. Here we report the outcomes of preinjury hypothermia initiated preprocedurally and maintained for a considerable time after iSCI. METHODS Twenty-six female Sprague-Dawley rats were assigned at random to either a normothermic group (36 °C) or a hypothermic group (32 °C) and then underwent a laminectomy procedure at the T8 level. Each group was further divided at random to receive a 200-kdyn force contusive spinal cord injury or a sham impact. Hypothermic rats were then rewarmed after 2 hours of hypothermic treatment. Behavioral scores, temperature profiles, weights, and somatosensory evoked potentials were obtained at baseline and at specified time points after the procedure. RESULTS The median survival was 42 days for the iSCI hypothermic group and 11 days for the iSCI normothermic group (hazard ratio, 3.82; 95% confidence interval, 1.52-9.57). The probability of survival was significantly higher in the iSCI hypothermic group compared with the iSCI normothermic group (χ2 = 4.18; P = 0.040). The hypothermic group exhibited a higher Basso, Beattie and Bresnahan (BBB) locomotor rating scale score (17 vs. 14; P < 0.01), lower normalized latencies (1.06 ± 0.16 seconds vs. 1.34 ± 0.17 seconds; P = 0.04), and higher peak-to-peak amplitudes (0.32 ± 0.10 μV vs. 0.12 ± 0.09 μV; P = 0.005). CONCLUSIONS The use of prophylactic hypothermia before iSCI was significantly associated with an increased survival rate, higher BBB scores, and improved neurophysiological measures.
Collapse
Affiliation(s)
- Ahmed Jorge
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| | - Erika J Fish
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - C Edward Dixon
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Kojo D Hamilton
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jeffrey Balzer
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Parthasarathy Thirumala
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
Lee JC, Tae HJ, Cho JH, Kim IS, Lee TK, Park CW, Park YE, Ahn JH, Park JH, Yan BC, Lee HA, Hong S, Won MH. Therapeutic hypothermia attenuates paraplegia and neuronal damage in the lumbar spinal cord in a rat model of asphyxial cardiac arrest. J Therm Biol 2019; 83:1-7. [PMID: 31331507 DOI: 10.1016/j.jtherbio.2019.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 01/27/2023]
Abstract
Spinal cord ischemia can result from cardiac arrest. It is an important cause of severe spinal cord injury that can lead to serious spinal cord disorders such as paraplegia. Hypothermia is widely acknowledged as an effective neuroprotective intervention following cardiac arrest injury. However, studies on effects of hypothermia on spinal cord injury following asphyxial cardiac arrest and cardiopulmonary resuscitation (CA/CPR) are insufficient. The objective of this study was to examine effects of hypothermia on motor deficit of hind limbs of rats and vulnerability of their spinal cords following asphyxial CA/CPR. Experimental groups included a sham group, a group subjected to CA/CPR, and a therapeutic hypothermia group. Severe motor deficit of hind limbs was observed in the control group at 1 day after asphyxial CA/CPR. In the hypothermia group, motor deficit of hind limbs was significantly attenuated compared to that in the control group. Damage/death of motor neurons in the lumbar spinal cord was detected in the ventral horn at 1 day after asphyxial CA/CPR. Neuronal damage was significantly attenuated in the hypothermia group compared to that in the control group. These results indicated that therapeutic hypothermia after asphyxial CA/CPR significantly reduced hind limb motor dysfunction and motoneuronal damage/death in the ventral horn of the lumbar spinal cord following asphyxial CA/CPR. Thus, hypothermia might be a therapeutic strategy to decrease motor dysfunction by attenuating damage/death of spinal motor neurons following asphyxial CA/CPR.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Hyun-Jin Tae
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Chonbuk, Iksan, 54596, Republic of Korea
| | - Jeong Hwi Cho
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Chonbuk, Iksan, 54596, Republic of Korea
| | - In-Shik Kim
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Chonbuk, Iksan, 54596, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Young Eun Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Bing Chun Yan
- Institute of Integrative Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, PR China
| | - Hyang-Ah Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Seongkweon Hong
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
12
|
Mohammad Pour M, Farjah GH, Karimipour M, Pourheidar B, Khadem Ansari MH. Protective effect of lutein on spinal cord ischemia-reperfusion injury in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:412-417. [PMID: 31168346 PMCID: PMC6535199 DOI: 10.22038/ijbms.2018.30039.7239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/11/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Paraplegia is deterioration in motor or sensory function of the lower limbs that can occur after modification of a thoracoabdominal aortic aneurysm. The purpose of this survey was to determine the protective action of lutein on spinal cord ischemia-reperfusion (I-R) damage. MATERIALS AND METHODS Thirty-five male rats were distributed into five groups: intact, sham, dimethyl sulfoxide (I-R+DMSO), low dose lutein (I-R+0.2 mg/kg lutein), and high dose lutein (I-R + 0.4 mg/kg lutein). Thirty minutes before surgery, a single dose lutein or DMSO was administered to rats of experimental groups. Next, the abdominal aorta was clamped exactly under the left renal artery and proximal to the abdominal aortic bifurcation for 60 min. All animals were evaluated by neurological function and histological and biochemical examinations at 72 hr after I-R. RESULTS The mean motor deficit index (MDI) scores in lutein groups were lower compared with the DMSO group (P<0.001). Plasma level of malondialdehyde in lutein groups decreased compared with the DMSO group (P<0.05). Plasma level of total antioxidative capacity was increased in the high lutein group compared with low dose lutein and sham groups (P<0.05). Mean number of normal motor neurons in lutein groups was greater compared with the DMSO group (P<0.001). There was a significant negative correlation between MDI scores and the number of normal neurons (r= -0.764, P<0.001). CONCLUSION Findings of the present study demonstrate that lutein may support spinal cord neurons from I-R damage.
Collapse
Affiliation(s)
- Masoumeh Mohammad Pour
- Neurophysiology Research Center, Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Mojtaba Karimipour
- Neurophysiology Research Center, Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Bagher Pourheidar
- Neurophysiology Research Center, Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | |
Collapse
|
13
|
Zavodska M, Galik J, Marsala M, Papcunova S, Pavel J, Racekova E, Martoncikova M, Sulla I, Gajdos M, Lukac I, Kafka J, Ledecky V, Sulla I, Reichel P, Trbolova A, Capik I, Bimbova K, Bacova M, Stropkovska A, Kisucka A, Miklisova D, Lukacova N. Hypothermic treatment after computer-controlled compression in minipig: A preliminary report on the effect of epidural vs. direct spinal cord cooling. Exp Ther Med 2018; 16:4927-4942. [PMID: 30542449 PMCID: PMC6257352 DOI: 10.3892/etm.2018.6831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/29/2018] [Indexed: 11/24/2022] Open
Abstract
The aim of the present study was to investigate the therapeutic efficacy of local hypothermia (beginning 30 min post-injury persisting for 5 h) on tissue preservation along the rostro-caudal axis of the spinal cord (3 cm cranially and caudally from the lesion site), and the prevention of injury-induced functional loss in a newly developed computer-controlled compression model in minipig (force of impact 18N at L3 level), which mimics severe spinal cord injury (SCI). Minipigs underwent SCI with two post-injury modifications (durotomy vs. intact dura mater) followed by hypothermia through a perfusion chamber with cold (epidural t≈15°C) saline, DMEM/F12 or enriched DMEM/F12 (SCI/durotomy group) and with room temperature (t≈24°C) saline (SCI-only group). Minipigs treated with post-SCI durotomy demonstrated slower development of spontaneous neurological improvement at the early postinjury time points, although the outcome at 9 weeks of survival did not differ significantly between the two SCI groups. Hypothermia with saline (t≈15°C) applied after SCI-durotomy improved white matter integrity in the dorsal and lateral columns in almost all rostro-caudal segments, whereas treatment with medium/enriched medium affected white matter integrity only in the rostral segments. Furthermore, regeneration of neurofilaments in the spinal cord after SCI-durotomy and hypothermic treatments indicated an important role of local saline hypothermia in the functional outcome. Although saline hypothermia (24°C) in the SCI-only group exhibited a profound histological outcome (regarding the gray and white matter integrity and the number of motoneurons) and neurofilament protection in general, none of the tested treatments resulted in significant improvement of neurological status. The findings suggest that clinically-proven medical treatments for SCI combined with early 5 h-long saline hypothermia treatment without opening the dural sac could be more beneficial for tissue preservation and neurological outcome compared with hypothermia applied after durotomy.
Collapse
Affiliation(s)
- Monika Zavodska
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Jan Galik
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Martin Marsala
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia.,Department of Anesthesiology, Neuroregeneration Laboratory, University of California-San Diego, San Diego, CA 92093, USA
| | - Stefania Papcunova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Jaroslav Pavel
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Eniko Racekova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Marcela Martoncikova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Igor Sulla
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia.,Hospital of Slovak Railways, 040 01 Košice, Slovakia
| | - Miroslav Gajdos
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 66 Košice, Slovakia
| | - Imrich Lukac
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 66 Košice, Slovakia
| | - Jozef Kafka
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 66 Košice, Slovakia
| | - Valent Ledecky
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Igor Sulla
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Peter Reichel
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alexandra Trbolova
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Igor Capik
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Katarina Bimbova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Maria Bacova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Andrea Stropkovska
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Alexandra Kisucka
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Dana Miklisova
- Department of Vector-borne Diseases, Institute of Parasitology, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Nadezda Lukacova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| |
Collapse
|
14
|
Mongardon N, Kohlhauer M, Lidouren F, Barretto M, Micheau P, Adam C, Dhonneur G, Ghaleh B, Tissier R. Targeted Temperature Management With Total Liquid Ventilation After Ischemic Spinal Cord Injury. Ann Thorac Surg 2018; 106:1797-1803. [PMID: 30120942 DOI: 10.1016/j.athoracsur.2018.06.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Ischemic spinal cord injury is a devastating condition after aortic surgery. We determined whether ultrafast and short whole-body hypothermia provided by total liquid ventilation (TLV) attenuated lower limb paralysis after aortic cross-clamping with a targeted temperature management at 33°C versus 36°C. METHODS Anesthetized rabbits were submitted to infrarenal aortic cross-clamping during 15 min. A control group (n = 7) was maintained at normothermia (38°C to 38.5°C) with conventional mechanical ventilation. In TLV groups, TLV was started after reperfusion and maintained during 30 min with a target temperature at either 33°C or 36°C (TLV-33°C and TLV-36°C, respectively; n = 7 in each condition). After TLV, animals were resumed to conventional ventilation. Hypothermia was maintained during 120 min, before rewarming and awakening. Hind limb motor function was assessed with modified Tarlov score at day 2 and infarct size in the spinal cord was determined using triphenyltetrazolium chloride staining. RESULTS Target temperature was achieved within 20 minutes in the two TLV groups. At day 2, the modified Tarlov score was significantly lower in the control group, as compared with TLV-33°C and TLV-36°C groups (0.0 ± 0.0 versus 3.1 ± 0.7 and 2.6 ± 0.6, respectively). The infarct size of the spinal cord was also significantly higher in the control group compared with TLV-33°C and TLV-36°C groups (75% ± 10% versus 32% ± 7% and 28% ± 10%, respectively). Neither motor function nor infarct size differed significantly between TLV-33°C and TLV-36°C groups. CONCLUSIONS Ultrafast hypothermic TLV attenuates spinal cord injury when applied after ischemic insult. Neurological outcome was similar with targeted temperature management at either 33°C or 36°C.
Collapse
Affiliation(s)
- Nicolas Mongardon
- Inserm, U955, Equipe 3, Créteil, France; Université Paris Est, UMR_S955, UPEC, DHU A-TVB, Créteil, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France; Service d'Anesthésie-Réanimation, DHU A-TVB, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | - Matthias Kohlhauer
- Inserm, U955, Equipe 3, Créteil, France; Université Paris Est, UMR_S955, UPEC, DHU A-TVB, Créteil, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Fanny Lidouren
- Inserm, U955, Equipe 3, Créteil, France; Université Paris Est, UMR_S955, UPEC, DHU A-TVB, Créteil, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Mariana Barretto
- Inserm, U955, Equipe 3, Créteil, France; Université Paris Est, UMR_S955, UPEC, DHU A-TVB, Créteil, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | - Clovis Adam
- Service d'Anatomo-pathologie, Hôpital Bicêtre, Assistance Publique des Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Gilles Dhonneur
- Service d'Anesthésie-Réanimation, DHU A-TVB, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | - Bijan Ghaleh
- Inserm, U955, Equipe 3, Créteil, France; Université Paris Est, UMR_S955, UPEC, DHU A-TVB, Créteil, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Renaud Tissier
- Inserm, U955, Equipe 3, Créteil, France; Université Paris Est, UMR_S955, UPEC, DHU A-TVB, Créteil, France; Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France.
| |
Collapse
|
15
|
Mesenchymal Stem Cell-Based Therapy Improves Lower Limb Movement After Spinal Cord Ischemia in Rats. Ann Thorac Surg 2018; 105:1523-1530. [DOI: 10.1016/j.athoracsur.2017.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/28/2017] [Accepted: 12/12/2017] [Indexed: 11/19/2022]
|
16
|
Teh DBL, Chua SM, Prasad A, Kakkos I, Jiang W, Yue M, Liu X, All AH. Neuroprotective assessment of prolonged local hypothermia post contusive spinal cord injury in rodent model. Spine J 2018; 18:507-514. [PMID: 29074466 DOI: 10.1016/j.spinee.2017.10.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/26/2017] [Accepted: 10/16/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Although general hypothermia is recognized as a clinically applicable neuroprotective intervention, acute moderate local hypothermia post contusive spinal cord injury (SCI) is being considered a more effective approach. Previously, we have investigated the feasibility and safety of inducing prolonged local hypothermia in the central nervous system of a rodent model. PURPOSE Here, we aimed to verify the efficacy and neuroprotective effects of 5 and 8 hours of local moderate hypothermia (30±0.5°C) induced 2 hours after moderate thoracic contusive SCI in rats. STUDY DESIGN Rats were induced with moderate SCI (12.5 mm) at its T8 section. Local hypothermia (30±0.5°C) was induced 2 hours after injury induction with an M-shaped copper tube with flow of cold water (12°C), from the T6 to the T10 region. Experiment groups were divided into 5-hour and 8-hour hypothermia treatment groups, respectively, whereas the normothermia control group underwent no hypothermia treatment. METHODS The neuroprotective effects were assessed through objective weekly somatosensory evoked potential (SSEP) and motor behavior (basso, beattie and bresnahan Basso, Beattie and Bresnahan (BBB) scoring) monitoring. Histology on spinal cord was performed until at the end of day 56. All authors declared no conflict of interest. This work was supported by the Singapore Institute for Neurotechnology Seed Fund (R-175-000-121-733), National University of Singapore, Ministry of Education, Tier 1 (R-172-000-414-112.). RESULTS Our results show significant SSEP amplitudes recovery in local hypothermia groups starting from day 14 post-injury onward for the 8-hour treatment group, which persisted up to days 28 and 42, whereas the 5-hour group showed significant improvement only at day 42. The functional improvement plateaued after day 42 as compared with control group of SCI with normothermia. This was supported by both 5-hour and 8-hour improvement in locomotion as measured by BBB scores. Local hypothermia also observed insignificant changes in its SSEP latency, as compared with the control. In addition, 5- and 8-hour hypothermia rats' spinal cord showed higher percentage of parenchyma preservation. CONCLUSIONS Early local moderate hypothermia can be induced for extended periods of time post SCI in the rodent model. Such intervention improves functional electrophysiological outcome and motor behavior recovery for a long time, lasting until 8 weeks.
Collapse
Affiliation(s)
- Daniel Boon Loong Teh
- Department of Medicine & Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Dr, 5-COR, Singapore 117456, Singapore
| | - Soo Min Chua
- Department of Medicine & Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Dr, 5-COR, Singapore 117456, Singapore
| | - Ankshita Prasad
- Department of Medicine & Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Dr, 5-COR, Singapore 117456, Singapore; Department of Biomedical Engineering, National University of Singapore, E4, 4 Engineering Dr 3, Singapore 117583, Singapore
| | - Ioannis Kakkos
- Department of Electrical and Computing Engineering, National Technical University of Athens, Zografos, 15773, Athens, Greece
| | - Wenxuan Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Mu Yue
- Department of Statistics and Applied Probability, National University of Singapore, Level 7, Block S16,6 Science Dr 2, Singapore 117546, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, 3 Science Dr 3, Singapore 117543, Singapore
| | - Angelo Homayoun All
- Department of Medicine & Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Dr, 5-COR, Singapore 117456, Singapore; Department of Biomedical Engineering and Department of Neurology, John Hopkins School of Medicine, 701C Rutland Ave 720, Baltimore, MD 21205, USA.
| |
Collapse
|
17
|
Choudhary RC, Jia X. Hypothalamic or Extrahypothalamic Modulation and Targeted Temperature Management After Brain Injury. Ther Hypothermia Temp Manag 2017; 7:125-133. [PMID: 28467285 PMCID: PMC5610405 DOI: 10.1089/ther.2017.0003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Targeted temperature management (TTM) has been recognized to protect tissue function and positively influence neurological outcomes after brain injury. While shivering during hypothermia nullifies the beneficial effect of TTM, traditionally, antishivering drugs or paralyzing agents have been used to reduce the shivering. The hypothalamic area of the brain helps in controlling cerebral temperature and body temperature through interactions between different brain areas. Thus, modulation of different brain areas either pharmacologically or by electrical stimulation may contribute in TTM; although, very few studies have shown that TTM might be achieved by activation and inhibition of neurons in the hypothalamic region. Recent studies have investigated potential pharmacological methods of inducing hypothermia for TTM by aiming to maintain the TTM and reduce the shivering effect without using antiparalytic drugs. Better survival and neurological outcome after brain injury have been reported after pharmacologically induced TTM. This review discusses the mechanisms and modulation of the hypothalamus with other brain areas that are involved in inducing hypothermia through which TTM may be achieved and provides therapeutic strategies for TTM after brain injury.
Collapse
Affiliation(s)
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Schroeder DC, Guschlbauer M, Maul AC, Cremer DA, Becker I, de la Puente Bethencourt D, Paal P, Padosch SA, Wetsch WA, Annecke T, Böttiger BW, Sterner-Kock A, Herff H. Oesophageal heat exchangers with a diameter of 11mm or 14.7mm are equally effective and safe for targeted temperature management. PLoS One 2017; 12:e0173229. [PMID: 28291783 PMCID: PMC5349448 DOI: 10.1371/journal.pone.0173229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/18/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Targeted temperature management (TTM) is widely used in critical care settings for conditions including hepatic encephalopathy, hypoxic ischemic encephalopathy, meningitis, myocardial infarction, paediatric cardiac arrest, spinal cord injury, traumatic brain injury, ischemic stroke and sepsis. Furthermore, TTM is a key treatment for patients after out-of-hospital cardiac-arrest (OHCA). However, the optimal cooling method, which is quick, safe and cost-effective still remains controversial. Since the oesophagus is adjacent to heart and aorta, fast heat-convection to the central blood-stream could be achieved with a minimally invasive oesophageal heat exchanger (OHE). To date, the optimal diameter of an OHE is still unknown. While larger diameters may cause thermal- or pressure-related tissue damage after long-term exposure to the oesophageal wall, smaller diameter (e.g., gastric tubes, up to 11mm) may not provide effective cooling rates. Thus, the objective of the study was to compare OHE-diameters of 11mm (OHE11) and 14.7mm (OHE14.7) and their effects on tissue and cooling capability. METHODS Pigs were randomized to OHE11 (N = 8) or OHE14.7 (N = 8). After cooling, pigs were maintained at 33°C for 1 hour. After 10h rewarming, oesophagi were analyzed by means of histopathology. The oesophagus of four animals from a separate study that underwent exactly the identical preparation and cooling protocol described above but received a maintenance period of 24h were used as histopathological controls. RESULTS Mean cooling rates were 2.8±0.4°C°C/h (OHE11) and 3.0±0.3°C °C/h (OHE14.7; p = 0.20). Occasional mild acute inflammatory transepithelial infiltrates were found in the cranial segment of the oesophagus in all groups including controls. Deviations from target temperature were 0.1±0.4°C (OHE11) and 0±0.1°C (OHE14.7; p = 0.91). Rewarming rates were 0.19±0.07°C °C/h (OHE11) and 0.20±0.05°C °C/h (OHE14.7; p = 0.75). CONCLUSIONS OHE with diameters of 11 mm and 14.7 mm achieve effective cooling rates for TTM and did not cause any relevant oesophageal tissue damage. Both OHE demonstrated acceptable deviations from target temperature and allowed for an intended rewarming rate (0.25°C/h).
Collapse
Affiliation(s)
- Daniel C. Schroeder
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Kerpener Straße 62, Cologne, Germany
| | - Maria Guschlbauer
- Department of Experimental Medicine, University Hospital of Cologne, Cologne, Germany
| | - Alexandra C. Maul
- Department of Experimental Medicine, University Hospital of Cologne, Cologne, Germany
| | - Daniel A. Cremer
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Kerpener Straße 62, Cologne, Germany
| | - Ingrid Becker
- Institute of Medical Statistics, Informatics and Epidemiology, University Hospital of Cologne, Kerpener Straße 62, Cologne, Germany
| | - David de la Puente Bethencourt
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Kerpener Straße 62, Cologne, Germany
| | - Peter Paal
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust. Queen Mary University of London, London, United Kingdom
- Barmherzige Brüder Salzburg Hospital, Department of Anaesthesiology and Critical Care Medicine, Kajetanerplatz 2, Salzburg, Austria
| | - Stephan A. Padosch
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Kerpener Straße 62, Cologne, Germany
| | - Wolfgang A. Wetsch
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Kerpener Straße 62, Cologne, Germany
| | - Thorsten Annecke
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Kerpener Straße 62, Cologne, Germany
| | - Bernd W. Böttiger
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Kerpener Straße 62, Cologne, Germany
| | - Anja Sterner-Kock
- Department of Experimental Medicine, University Hospital of Cologne, Cologne, Germany
| | - Holger Herff
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Kerpener Straße 62, Cologne, Germany
| |
Collapse
|
19
|
Martirosyan NL, Patel AA, Carotenuto A, Kalani MYS, Bohl MA, Preul MC, Theodore N. The role of therapeutic hypothermia in the management of acute spinal cord injury. Clin Neurol Neurosurg 2017; 154:79-88. [PMID: 28131967 DOI: 10.1016/j.clineuro.2017.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/30/2016] [Accepted: 01/02/2017] [Indexed: 12/18/2022]
Abstract
This review paper investigates the history, efficacy, and administration of systemic and local hypothermia for spinal cord injury (SCI). It summarizes the published experimental and clinical evidence on hypothermia for SCI and analyzes the potential for further research. Early experimental animal research showed that local hypothermia improved recovery and gain of function after acute SCI. However, in the early 1970s, clinical research findings did not coincide with results of these animal trials, which led to a loss of interest in local hypothermia. Since the 1980s, systemic hypothermia has been successfully used to treat SCI in both animals and humans. An abundance of positive evidence suggests that clinical trials are needed to determine the effectiveness of hypothermia for SCI. As a first step, we investigated the published clinical and experimental evidence on the use of hypothermia for SCI patients, who have few available treatment options. We searched PubMed for English-language reports published from 1940 to 2016 containing terms related to SCI treatment using hypothermia. We reviewed all articles on local hypothermia and acute SCI or on systemic hypothermia and acute SCI. Bibliographies of retrieved publications were also screened for additional citations. Ninety-six papers were selected. The clinical use of hypothermia is most successful if applied according to certain optimized parameters (e.g., duration, temperature, time from injury to initiation of cooling, and rewarming time). Preliminary data suggest that modest systemic hypothermia applied for 48h provides the best therapeutic value, but the parameters for use of local hypothermia vary greatly. Experimental evidence and some clinical evidence suggest that both local hypothermia and systemic hypothermia are beneficial for acute SCI. Future research should focus on defining the optimal levels of parameters. Large, multicenter, controlled clinical trials are needed to investigate its therapeutic potential.
Collapse
Affiliation(s)
- Nikolay L Martirosyan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States; Division of Neurosurgery, University of Arizona, Tucson, AZ, United States
| | - Arpan A Patel
- College of Medicine, University of Arizona, Tucson, AZ, United States
| | | | - M Yashar S Kalani
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Michael A Bohl
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States; Division of Neurosurgery, University of Arizona, Tucson, AZ, United States; College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Nicholas Theodore
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States.
| |
Collapse
|
20
|
He F, Ren Y, Shi E, Liu K, Yan L, Jiang X. Overexpression of microRNA-21 protects spinal cords against transient ischemia. J Thorac Cardiovasc Surg 2016; 152:1602-1608. [DOI: 10.1016/j.jtcvs.2016.07.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 07/01/2016] [Accepted: 07/27/2016] [Indexed: 11/26/2022]
|
21
|
Hu J, Yu Q, Xie L, Zhu H. Targeting the blood-spinal cord barrier: A therapeutic approach to spinal cord protection against ischemia-reperfusion injury. Life Sci 2016; 158:1-6. [PMID: 27329433 DOI: 10.1016/j.lfs.2016.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 12/15/2022]
Abstract
One of the principal functions of physical barriers between the blood and central nervous system protects system (i.e., blood brain barrier and blood-spinal cord barrier) is the protection from toxic and pathogenic agents in the blood. Disruption of blood-spinal cord barrier (BSCB) plays a key role in spinal cord ischemia-reperfusion injury (SCIRI). Following SCIRI, the permeability of the BSCB increases. Maintaining the integrity of the BSCB alleviates the spinal cord injury after spinal cord ischemia. This review summarizes current knowledge of the structure and function of the BSCB and its changes following SCIRI, as well as the prevention and cure of SCIRI and the role of the BSCB.
Collapse
Affiliation(s)
- Ji Hu
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430077, Hubei Province, China.
| | - Qijing Yu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| | - Lijie Xie
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430077, Hubei Province, China
| | - Hongfei Zhu
- Department of Anesthesiology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei Province, China
| |
Collapse
|
22
|
Nardone R, Pikija S, Mutzenbach JS, Seidl M, Leis S, Trinka E, Sellner J. Current and emerging treatment options for spinal cord ischemia. Drug Discov Today 2016; 21:1632-1641. [PMID: 27326910 DOI: 10.1016/j.drudis.2016.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 05/21/2016] [Accepted: 06/14/2016] [Indexed: 11/19/2022]
Abstract
Spinal cord infarction (SCI) is a rare but disabling disorder caused by a wide spectrum of conditions. Given the lack of randomized-controlled trials, contemporary treatment concepts are adapted from guidelines for cerebral ischemia, atherosclerotic vascular disease, and acute traumatic spinal cord injury. In addition, patients with SCI are at risk for several potentially life-threatening but preventable systemic and neurologic complications. Notably, there is emerging evidence from preclinical studies for the use of neuroprotection in acute ischemic injury of the spinal cord. In this review, we discuss the current state of the art for the therapy and prevention of SCI and highlight potential emerging treatment concepts awaiting translational adoption.
Collapse
Affiliation(s)
- Raffaele Nardone
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria; Department of Neurology, Franz Tappeiner Hospital, Merano, Italy
| | - Slaven Pikija
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
| | - J Sebastian Mutzenbach
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
| | - Martin Seidl
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
| | - Stefan Leis
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - Johann Sellner
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria; Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Germany.
| |
Collapse
|
23
|
Alkabie S, Boileau AJ. The Role of Therapeutic Hypothermia After Traumatic Spinal Cord Injury—A Systematic Review. World Neurosurg 2016; 86:432-49. [DOI: 10.1016/j.wneu.2015.09.079] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 12/16/2022]
|
24
|
Xu X, Li N, Zhu L, Zhou Y, Cheng H. Beneficial effects of local profound hypothermia and the possible mechanism after experimental spinal cord injury in rats. J Spinal Cord Med 2015; 39:220-8. [PMID: 26322652 PMCID: PMC5072505 DOI: 10.1179/2045772315y.0000000051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE The primary focus of this study was to investigate the effects of local profound hypothermia and to explore the possible mechanism in adult rats with spinal cord injury. STUDY DESIGN AND METHODS Spinal cord injury models were established by placing aneurysm clips on T10. An epidural perfusion device was applied to maintain a steady temperature (18 °C) for 120 min with gradual rewarming to 37 °C Total hypothermic duration lasted up to about 170 min. The expression of axon regeneration inhibitors was tested by Western blot and real-time PCR. Luxol Fast Blue (LFB) stain and Bielschowsky silver stain were used to observe spinal cord morphology. Motor function of the hind limbs (BBB score) was monitored for 21 days. RESULTS The expressions of RhoA, ROCK-II, NG2, Neurocan, Brevican, and Nogo-A were downregulated by regional hypothermia (RH) after spinal cord injury. Subsequent observation showed that rats that had received RH had an alleviated demyelinating condition and a greater number of nerve fibers. Furthermore, the RH group achieved higher BBB scores than the spinal cord injury (SCI) group. CONCLUSIONS Recovery of hind limb function in rats can be promoted by local profound hypothermia; this may be caused by the suppression of axon regeneration inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Huilin Cheng
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
25
|
Abstract
Spinal cord injury (SCI) is a major health problem and is associated with a diversity of neurological symptoms. Pathophysiologically, dysfunction after SCI results from the culmination of tissue damage produced both by the primary insult and a range of secondary injury mechanisms. The application of hypothermia has been demonstrated to be neuroprotective after SCI in both experimental and human studies. The myriad of protective mechanisms of hypothermia include the slowing down of metabolism, decreasing free radical generation, inhibiting excitotoxicity and apoptosis, ameliorating inflammation, preserving the blood spinal cord barrier, inhibiting astrogliosis, promoting angiogenesis, as well as decreasing axonal damage and encouraging neurogenesis. Hypothermia has also been combined with other interventions, such as antioxidants, anesthetics, alkalinization and cell transplantation for additional benefit. Although a large body of work has reported on the effectiveness of hypothermia as a neuroprotective approach after SCI and its application has been translated to the clinic, a number of questions still remain regarding its use, including the identification of hypothermia's therapeutic window, optimal duration and the most appropriate rewarming rate. In addition, it is necessary to investigate the neuroprotective effect of combining therapeutic hypothermia with other treatment strategies for putative synergies, particularly those involving neurorepair.
Collapse
Affiliation(s)
- Jiaqiong Wang
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
- The Neuroscience Program, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
| |
Collapse
|
26
|
Vipin A, Kortelainen J, Al-Nashash H, Chua SM, Thow X, Manivannan J, Astrid, Thakor NV, Kerr CL, All AH. Prolonged Local Hypothermia Has No Long-Term Adverse Effect on the Spinal Cord. Ther Hypothermia Temp Manag 2015; 5:152-62. [PMID: 26057714 DOI: 10.1089/ther.2015.0005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hypothermia is known to be neuroprotective and is one of the most effective and promising first-line treatments for central nervous system (CNS) trauma. At present, induction of local hypothermia, as opposed to general hypothermia, is more desired because of its ease of application and safety; fewer side effects and an absence of severe complications have been noted. Local hypothermia involves temperature reduction of a small and specific segment of the spinal cord. Our group has previously shown the neuroprotective effect of short-term, acute moderate general hypothermia through improvements in electrophysiological and motor behavioral assessments, as well as histological examination following contusive spinal cord injury (SCI) in rats. We have also shown the benefit of using short-term local hypothermia versus short-term general hypothermia post-acute SCI. The overall neuroprotective benefit of hypothermia can be categorized into three main components: (1) induction modality, general versus local, (2) invasive, semi-invasive or noninvasive, and (3) duration of hypothermia induction. In this study, a series of experiments were designed to investigate the feasibility, long-term safety, as well as eventual complications and side effects of prolonged, semi-invasive, moderate local hypothermia (30°C±0.5°C for 5 and 8 hours) in rats with uninjured spinal cord while maintaining their core temperature at 37°C±0.5°C. The weekly somatosensory evoked potential and motor behavioral (Basso, Beattie and Bresnahan) assessments of rats that underwent 5 and 8 hours of semi-invasive local hypothermia, which revealed no statistically significant changes in electrical conductivity and behavioral outcomes. In addition, 4 weeks after local hypothermia induction, histological examination showed no anatomical damages or morphological changes in their spinal cord structure and parenchyma. We concluded that this method of prolonged local hypothermia is feasible, safe, and has the potential for clinical translation.
Collapse
Affiliation(s)
- Ashwati Vipin
- 1 Singapore Institute for Neurotechnology, National University of Singapore , Singapore, Singapore
| | - Jukka Kortelainen
- 2 Biomedical Engineering Research Group, Department of Computer Science and Engineering, University of Oulu , Oulu, Finland
| | - Hasan Al-Nashash
- 3 Department of Electrical Engineering, American University of Sharjah , Sharjah, United Arab Emirates
| | - Soo Min Chua
- 1 Singapore Institute for Neurotechnology, National University of Singapore , Singapore, Singapore
| | - Xinyuan Thow
- 1 Singapore Institute for Neurotechnology, National University of Singapore , Singapore, Singapore
| | - Janani Manivannan
- 4 Department of Orthopedic Surgery, National University of Singapore , Singapore, Singapore
| | - Astrid
- 1 Singapore Institute for Neurotechnology, National University of Singapore , Singapore, Singapore
| | - Nitish V Thakor
- 1 Singapore Institute for Neurotechnology, National University of Singapore , Singapore, Singapore .,5 Department of Biomedical Engineering, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Candace L Kerr
- 6 Department of Biochemistry and Molecular Biology, University of Maryland , Baltimore, Maryland
| | - Angelo H All
- 1 Singapore Institute for Neurotechnology, National University of Singapore , Singapore, Singapore .,4 Department of Orthopedic Surgery, National University of Singapore , Singapore, Singapore .,5 Department of Biomedical Engineering, Johns Hopkins School of Medicine , Baltimore, Maryland.,7 Department of Biomedical Engineering, National University of Singapore , Singapore, Singapore .,8 Division of Neurology, Department of Medicine, National University of Singapore , Singapore, Singapore .,9 Department of Neurology, Johns Hopkins School of Medicine , Baltimore, Maryland
| |
Collapse
|
27
|
He F, Shi E, Yan L, Li J, Jiang X. Inhibition of micro-ribonucleic acid-320 attenuates neurologic injuries after spinal cord ischemia. J Thorac Cardiovasc Surg 2015; 150:398-406. [PMID: 26092503 DOI: 10.1016/j.jtcvs.2015.03.066] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/18/2015] [Accepted: 03/21/2015] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Micro ribonucleic acids (miRNAs) are involved in a wide range of biological functions, in multiple tissues, including the central nervous system. We investigated a novel neuroprotective strategy of down-regulation of miR-320 in the spinal cord under the condition of transient ischemia. METHODS Spinal cord ischemia was induced in rats by cross-clamping the descending aorta for 14 minutes. Lentivirus vectors containing antisense oligonucleotides of rat miR-320 (antagomiR-320) were transfected into the experimental rats by means of intrathecal injection, 5 days before spinal cord ischemia. Control lentivirus vectors, or the vehicle, were given to the control animals. Hind-limb motor function was assessed during 48 hours after ischemia, using the Motor Deficit Index (MDI), and histologic examination was performed. In parallel experiments, expressions of miR-320, and the phosphorylation state of heat-shock protein 20 (phospho-Hsp20) in the spinal cord were evaluated by quantitative real-time polymerase chain reaction and western blot analysis. RESULTS The time courses of expressions of miR-320 and phospho-Hsp20 in the spinal cord, after the transient ischemia, indicated that expression of phospho-Hsp20 was negatively correlated with expression of miR-320. Transfection of antagomiR-320 significantly reduced expression of miR-320 in the spinal cord and dramatically up-regulated expression of phospho-Hsp20. Compared with controls, inhibition of miR-320 markedly improved hind-limb motor function, as evidenced by lower MDI scores, at 6, 12, 24, and 48 hours after reperfusion, and increased the number of intact motor neurons in the lumbar spinal cord. CONCLUSIONS Inhibition of miR-320 induces neuroprotection in the spinal cord, against ischemia-reperfusion injury, possibly via up-regulation of phospho-Hsp20.
Collapse
Affiliation(s)
- Fang He
- Department of Anesthesiology, Fourth Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Enyi Shi
- Department of Cardiac Surgery, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Lihui Yan
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Juchen Li
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Xiaojing Jiang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
28
|
Kassai F, Kedves R, Gyertyán I, Tuka B, Fülöp F, Toldi J, Lendvai B, Vécsei L. Effect of a kynurenic acid analog on home-cage activity and body temperature in rats. Pharmacol Rep 2015; 67:1188-92. [PMID: 26481540 DOI: 10.1016/j.pharep.2015.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/20/2015] [Accepted: 04/24/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND N-(2-N,N-Dimethylaminoethyl)-4-oxo-1H-quinoline-2-carboxamide hydrochloride (SzR-72) is a kynurenic acid (KYNA) amide analog that displays neuroprotective action. Whereas its brain penetration ability and its solubility limit the therapeutic use of KYNA: the corresponding properties of the analog exceed those of the parent compound. Although SzR-72 has been extensively studied, its exact mechanism of action has not yet been fully clarified. As KYNA induces hypothermia in laboratory rodents, it may be hypothesized that SzR-72 may have a similar effect. This would be of major importance, since the hypothermia generated by external cooling is neuroprotective, thus a putative hypothermic effect of SzR-72 could contribute to its neuroprotective action. METHODS The effects of SzR-72 on the body temperature and home-cage activity of rats were studied by using a telemetry system. In order to follow the longitudinal changes in the effects of the compound, subchronic drug administration was applied. RESULTS The initial administration of the compound induced substantial hypothermia and reduced the home-cage activity. During the 5 days of SzR-72 administration, partial tolerance developed to the hypothermic effect, while the inhibition of home-cage activity detected after the acute administration was completely tolerated. CONCLUSIONS On the basis of these results, it cannot be excluded that the hypothermic effect of SzR-72 contributes to its neuroprotective action.
Collapse
Affiliation(s)
- Ferenc Kassai
- Gedeon Richter Plc, Pharmacology and Drug Safety Department, Budapest, Hungary; MTA SE NAP B Cognitive Translational Behavioral Pharmacology Group, Budapest, Hungary.
| | - Rita Kedves
- Gedeon Richter Plc, Pharmacology and Drug Safety Department, Budapest, Hungary
| | - István Gyertyán
- Gedeon Richter Plc, Pharmacology and Drug Safety Department, Budapest, Hungary; MTA SE NAP B Cognitive Translational Behavioral Pharmacology Group, Budapest, Hungary
| | - Bernadett Tuka
- MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry and Stereochemistry Research Group of the Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Balázs Lendvai
- Gedeon Richter Plc, Pharmacology and Drug Safety Department, Budapest, Hungary
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary; Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
29
|
Bazley FA, Pashai N, Kerr CL, All AH. The effects of local and general hypothermia on temperature profiles of the central nervous system following spinal cord injury in rats. Ther Hypothermia Temp Manag 2014; 4:115-24. [PMID: 25019643 DOI: 10.1089/ther.2014.0002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Local and general hypothermia are used to treat spinal cord injury (SCI), as well as other neurological traumas. While hypothermia is known to provide significant therapeutic benefits due to its neuroprotective nature, it is unclear how the treatment may affect healthy tissues or whether it may cause undesired temperature changes in areas of the body that are not the targets of treatment. We performed 2-hour moderate general hypothermia (32°C core) or local hypothermia (30°C spinal cord) on rats that had received either a moderate contusive SCI or laminectomy (control) while monitoring temperatures at three sites: the core, spinal cord, and cortex. First, we identified that injured rats that received general hypothermia exhibited larger temperature drops at the spinal cord (-3.65°C, 95% confidence intervals [CIs] -3.72, -3.58) and cortex (-3.64°C, CIs -3.73, -3.55) than uninjured rats (spinal cord: -3.17°C, CIs -3.24, -3.10; cortex: -3.26°C, CIs -3.34, -3.17). This was found due to elevated baseline temperatures in the injured group, which could be due to inflammation. Second, both general hypothermia and local hypothermia caused a significant reduction in the cortical temperature (-3.64°C and -1.18°C, respectively), although local hypothermia caused a significantly lower drop in cortical temperature than general hypothermia (p<0.001). Lastly, the rates of rewarming of the cord were not significantly different among the methods or injury groups that were tested; the mean rate of rewarming was 0.13±0.1°C/min. In conclusion, local hypothermia may be more suitable for longer durations of hypothermia treatment for SCI to reduce temperature changes in healthy tissues, including the cortex.
Collapse
Affiliation(s)
- Faith A Bazley
- 1 Singapore Institute for Neurotechnology, National University of Singapore , Singapore
| | | | | | | |
Collapse
|
30
|
Kenny R, Cai G, Bayliss JA, Clarke M, Choo YL, Miller AA, Andrews ZB, Spencer SJ. Endogenous ghrelin's role in hippocampal neuroprotection after global cerebral ischemia: does endogenous ghrelin protect against global stroke? Am J Physiol Regul Integr Comp Physiol 2013; 304:R980-90. [PMID: 23576609 DOI: 10.1152/ajpregu.00594.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ghrelin is a gastrointestinal hormone with a well-characterized role in feeding and metabolism. Recent evidence suggests that ghrelin may also be neuroprotective after injury in animal models of cerebral ischemia. Thus exogenous ghrelin treatment can improve cell survival, reduce infarct size, and rescue memory deficits in focal ischemia models, doing so by suppressing inflammation and apoptosis. Endogenous ghrelin plays a key a role in a number of physiological processes, including feeding, metabolism, stress, and anxiety. However, no study has examined whether endogenous ghrelin also contributes to neuroprotection after cerebral ischemia. Here, we aimed to determine whether endogenous ghrelin normally protects against neuronal cell death and cognitive impairments after global cerebral ischemia and whether such changes are linked with inflammation or apoptosis. We used a two-vessel occlusion (2VO) model of global cerebral ischemia in wild-type (wt) and ghrelin knockout (ghr-/-) C57/Bl6J mice. ghr-/- mice had improved cell survival in the Cornu Ammonis(CA)-2/3 region of the hippocampus-a region of significant growth hormone secretagogue receptor expression. They also displayed less cellular degeneration than wt mice after the 2VO (Fluoro-Jade) and had less cognitive impairment in the novel object-recognition test. These outcomes were despite evidence of more neuroinflammation and apoptosis in the ghr-/- and less of a postsurgery hypothermia. Finally, we found that mortality in the week following the 2VO was reduced more in ghr-/- mice than in wt. Overall, these experiments point to a neurodegenerative but antiapoptotic effect of endogenous ghrelin in this model of global ischemia, highlighting that further research is essential before we can apply ghrelin treatments to neurodegenerative insults in the clinic.
Collapse
Affiliation(s)
- Rachel Kenny
- School of Health Sciences and Health Innovations Research Institute, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|