1
|
Yamanaka T, Ueki T, Mase M, Inoue K. Arbitrary Ca 2+ regulation for endothelial nitric oxide, NFAT and NF-κB activities by an optogenetic approach. Front Pharmacol 2023; 13:1076116. [PMID: 36703743 PMCID: PMC9871596 DOI: 10.3389/fphar.2022.1076116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Modern western dietary habits and low physical activity cause metabolic abnormalities and abnormally elevated levels of metabolites such as low-density lipoprotein, which can lead to immune cell activation, and inflammatory reactions, and atherosclerosis. Appropriate stimulation of vascular endothelial cells can confer protective responses against inflammatory reactions and atherosclerotic conditions. This study aims to determine whether a designed optogenetic approach is capable of affecting functional changes in vascular endothelial cells and to evaluate its potential for therapeutic regulation of vascular inflammatory responses in vitro. We employed a genetically engineered, blue light-activated Ca2+ channel switch molecule that utilizes an endogenous store-operated calcium entry system and induces intracellular Ca2+ influx through blue light irradiation and observed an increase in intracellular Ca2+ in vascular endothelial cells. Ca2+-dependent activation of the nuclear factor of activated T cells and nitric oxide production were also detected. Microarray analysis of Ca2+-induced changes in vascular endothelial cells explored several genes involved in cellular contractility and inflammatory responses. Indeed, there was an increase in the gene expression of molecules related to anti-inflammatory and vasorelaxant effects. Thus, a combination of human blue light-activated Ca2+ channel switch 2 (hBACCS2) and blue light possibly attenuates TNFα-induced inflammatory NF-κB activity. We propose that extrinsic cellular Ca2+ regulation could be a novel approach against vascular inflammation.
Collapse
Affiliation(s)
- Tomoyasu Yamanaka
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitsuhito Mase
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Koichi Inoue
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan,*Correspondence: Koichi Inoue,
| |
Collapse
|
2
|
Tarantul VZ, Gavrilenko AV. Gene therapy for critical limb ischemia: Per aspera ad astra. Curr Gene Ther 2021; 22:214-227. [PMID: 34254916 DOI: 10.2174/1566523221666210712185742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022]
Abstract
Peripheral artery diseases remain a serious public health problem. Although there are many traditional methods for their treatment using conservative therapeutic techniques and surgery, gene therapy is an alternative and potentially more effective treatment option especially for "no option" patients. This review treats the results of many years of research and application of gene therapy as an example of treatment of patients with critical limb ischemia. Data on successful and unsuccessful attempts to use this technology for treating this disease are presented. Trends in changing the paradigm of approaches to therapeutic angiogenesis are noted: from viral vectors to non-viral vectors, from gene transfer to the whole organism to targeted transfer to cells and tissues, from single gene use to combination of genes; from DNA therapy to RNA therapy, from in vivo therapy to ex vivo therapy.
Collapse
Affiliation(s)
- Vyacheslav Z Tarantul
- National Research Center "Kurchatov Institute", Institute of Molecular Genetics, Moscow 123182, Russian Federation
| | - Alexander V Gavrilenko
- A.V.¬ Petrovsky Russian Scientific Center for Surgery, Moscow 119991, Russian Federation
| |
Collapse
|
3
|
Est-Witte SE, Farris AL, Tzeng SY, Hutton DL, Gong DH, Calabresi KG, Grayson WL, Green JJ. Non-viral gene delivery of HIF-1α promotes angiogenesis in human adipose-derived stem cells. Acta Biomater 2020; 113:279-288. [PMID: 32623098 PMCID: PMC8035702 DOI: 10.1016/j.actbio.2020.06.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/05/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Stable and mature vascular formation is a current challenge in engineering functional tissues. Transient, non-viral gene delivery presents a unique platform for delivering genetic information to cells for tissue engineering purposes and to restore blood flow to ischemic tissue. The formation of new blood vessels can be induced by upregulation of hypoxia-inducible factor-1α (HIF-1), among other factors. We hypothesized that biodegradable polymers could be used to efficiently deliver the HIF-1α gene to human adipose-derived stromal/stem cells (hASCs) and that this treatment could recruit an existing endogenous endothelial cell population to induce angiogenesis in a 3D cell construct in vitro. In this study, end-modified poly(β-amino ester) (PBAE) nanocomplexes were first optimized for transfection of hASCs and a new biodegradable polymer with increased hydrophobicity and secondary amine structures, N'-(3-aminopropyl)-N,N-dimethylpropane-1,3-diamine end-modified poly(1,4-butanediol diacrylate-co-4-amino-1-butanol), was found to be most effective. Optimal PBAE nanocomplexes had a hydrodynamic diameter of approximately 140 nm and had a zeta potential of 30 mV. The PBAE polymer self-assembled with HIF-1α plasmid DNA and treatment of hASCs with these nanocomplexes induced 3D vascularization. Cells transfected with this polymer-DNA complex were found to have 106-fold upregulation HIF-1α expression, an approximately 2-fold increase in secreted VEGF, and caused the formation of vessel tubules compared to an untransfected control. These gene therapy biomaterials may be useful for regenerative medicine. STATEMENT OF SIGNIFICANCE: Not only is the formation of stable vasculature a challenge for engineering human tissues in vitro, but it is also of valuable interest to clinical applications such as peripheral artery disease. Previous studies using HIF-1α to induce vascular formation have been limited by the necessity of hypoxic chambers. It would be advantageous to simulate endogenous responses to hypoxia without the need for physical hypoxia. In this study, 3D vascular formation was shown to be inducible through non-viral gene delivery of HIF-1α with new polymeric nanocomplexes. A biodegradable polymer N'-(3-aminopropyl)-N,N-dimethylpropane-1,3-diamine end-modified poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) demonstrates improved transfection of human adipose-derived stem cells. This nanobiotechnology could be a promising strategy for the creation of vasculature for tissue engineering and clinical applications.
Collapse
Affiliation(s)
- Savannah E Est-Witte
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Ashley L Farris
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Daphne L Hutton
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Dennis H Gong
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Kaitlyn G Calabresi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA.
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Oncology and Bloomberg~Kimmel Immunotherapy Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
4
|
Sarkar B, Nguyen PK, Gao W, Dondapati A, Siddiqui Z, Kumar VA. Angiogenic Self-Assembling Peptide Scaffolds for Functional Tissue Regeneration. Biomacromolecules 2018; 19:3597-3611. [PMID: 30132656 DOI: 10.1021/acs.biomac.8b01137] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Implantation of acellular biomimetic scaffolds with proangiogenic motifs may have exciting clinical utility for the treatment of ischemic pathologies such as myocardial infarction. Although direct delivery of angiogenic proteins is a possible treatment option, smaller synthetic peptide-based nanostructured alternatives are being investigated due to favorable factors, such as sustained efficacy and high-density epitope presentation of functional moieties. These peptides may be implanted in vivo at the site of ischemia, bypassing the first-pass metabolism and enabling long-term retention and sustained efficacy. Mimics of angiogenic proteins show tremendous potential for clinical use. We discuss possible approaches to integrate the functionality of such angiogenic peptide mimics into self-assembled peptide scaffolds for application in functional tissue regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - Vivek A Kumar
- Rutgers School of Dental Medicine , Newark , New Jersey 07101 , United States
| |
Collapse
|
5
|
Badin PM, Sopariwala DH, Lorca S, Narkar VA. Muscle Arnt/Hif1β Is Dispensable in Myofiber Type Determination, Vascularization and Insulin Sensitivity. PLoS One 2016; 11:e0168457. [PMID: 28005939 PMCID: PMC5178999 DOI: 10.1371/journal.pone.0168457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 12/01/2016] [Indexed: 02/07/2023] Open
Abstract
Aryl Hydrocarbon Receptor Nuclear Translocator/ hypoxia-inducible factor 1 beta (ARNT/ HIF1β), a member of bHLH-PAS family of transcriptional factors, plays a critical role in metabolic homeostasis, insulin resistance and glucose intolerance. The contributions of ARNT in pancreas, liver and adipose tissue to energy balance through gene regulation have been described. Surprisingly, the impact of ARNT signaling in the skeletal muscles, one of the major organs involved in glucose disposal, has not been investigated, especially in type II diabetes. Here we report that ARNT is expressed in the skeletal muscles, particularly in the energy-efficient oxidative slow-twitch myofibers, which are characterized by increased oxidative capacity, mitochondrial content, vascular supply and insulin sensitivity. However, muscle-specific deletion of ARNT did not change myofiber type distribution, oxidative capacity, mitochondrial content, capillarity, or the expression of genes associated with these features. Consequently, the lack of ARNT in the skeletal muscle did not affect weight gain, lean/fat mass, insulin sensitivity and glucose tolerance in lean mice, nor did it impact insulin resistance and glucose intolerance in high fat diet-induced obesity. Therefore, skeletal muscle ARNT is dispensable for controlling muscle fiber type and metabolic regulation, as well as diet-induced weight control, insulin sensitivity and glucose tolerance.
Collapse
Affiliation(s)
- Pierre-Marie Badin
- Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, TX, United States of America
| | - Danesh H. Sopariwala
- Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, TX, United States of America
| | - Sabina Lorca
- Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, TX, United States of America
| | - Vihang A. Narkar
- Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, TX, United States of America
- Integrative Biology and Pharmacology, McGovern Medical School, UTHealth, Houston, TX, United States of America
- Graduate School of Biomedical Sciences, McGovern Medical School, UTHealth, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
6
|
Veliceasa D, Biyashev D, Qin G, Misener S, Mackie AR, Kishore R, Volpert OV. Therapeutic manipulation of angiogenesis with miR-27b. Vasc Cell 2015; 7:6. [PMID: 26161255 PMCID: PMC4497374 DOI: 10.1186/s13221-015-0031-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/08/2015] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Multiple studies demonstrated pro-angiogenic effects of microRNA (miR)-27b. Its targets include Notch ligand Dll4, Sprouty (Spry)-2, PPARγ and Semaphorin (SEMA) 6A. miR-27 effects in the heart are context-dependent: although it is necessary for ventricular maturation, targeted overexpression in cardiomyocytes causes hypertrophy and dysfunction during development. Despite significant recent advances, therapeutic potential of miR-27b in cardiovascular disease and its effects in adult heart remain unexplored. Here, we assessed the therapeutic potential of miR-27b mimics and inhibitors in rodent models of ischemic disease and cancer. METHODS We have used a number of models to demonstrate the effects of miR-27b mimicry and inhibition in vivo, including subcutaneous Matrigel plug assay, mouse models of hind limb ischemia and myocardial infarction and subcutaneous Lewis Lung carcinoma. RESULTS Using mouse model of myocardial infarction due to the coronary artery ligation, we showed that miR-27b mimic had overall beneficial effects, including increased vascularization, decreased fibrosis and increased ejection fraction. In mouse model of critical limb ischemia, miR-27b mimic also improved tissue re-vascularization and perfusion. In both models, miR-27b mimic clearly decreased macrophage recruitment to the site of hypoxic injury. In contrast, miR-27b increased the recruitment of bone marrow derived cells to the neovasculature, as was shown using mice reconstituted with fluorescence-tagged bone marrow. These effects were due, at least in part, to the decreased expression of Dll4, PPARγ and IL10. In contrast, blocking miR-27b significantly decreased vascularization and reduced growth of subcutaneous tumors and decreased BMDCs recruitment to the tumor vasculature. CONCLUSIONS Our study demonstrates the utility of manipulating miR-27b levels in the treatment of cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Dorina Veliceasa
- Urology Department, Northwestern University Feinberg School of Medicine, Chicago, IL USA ; Department of Urology, University of Illinois at Chicago Medical College, Chicago, IL USA
| | - Dauren Biyashev
- Department of Medicine, Cardiology Division, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Gangjian Qin
- Department of Medicine, Cardiology Division, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Sol Misener
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Alexander Roy Mackie
- Department of Medicine, Cardiology Division, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Raj Kishore
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA USA
| | - Olga V Volpert
- Urology Department, Northwestern University Feinberg School of Medicine, Chicago, IL USA ; Northwestern University, Feinberg Cardiovascular Research Institute, Chicago, IL USA
| |
Collapse
|
7
|
Li X, Ballantyne LL, Che X, Mewburn JD, Kang JX, Barkley RM, Murphy RC, Yu Y, Funk CD. Endogenously generated omega-3 fatty acids attenuate vascular inflammation and neointimal hyperplasia by interaction with free fatty acid receptor 4 in mice. J Am Heart Assoc 2015; 4:jah3926. [PMID: 25845931 PMCID: PMC4579939 DOI: 10.1161/jaha.115.001856] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Omega‐3 polyunsaturated fatty acids (ω3 PUFAs) suppress inflammation through activation of free fatty acid receptor 4 (FFAR4), but this pathway has not been explored in the context of cardiovascular disease. We aimed to elucidate the involvement of FFAR4 activation by ω3 PUFAs in the process of vascular inflammation and neointimal hyperplasia in mice. Methods and Results We used mice with disruption of FFAR4 (Ffar4−/−), along with a strain that synthesizes high levels of ω3 PUFAs (fat‐1) and a group of crossed mice (Ffar4−/−/fat‐1), to elucidate the role of FFAR4 in vascular dysfunction using acute and chronic thrombosis/vascular remodeling models. The presence of FFAR4 in vascular‐associated cells including perivascular adipocytes and macrophages, but not platelets, was demonstrated. ω3 PUFAs endogenously generated in fat‐1 mice (n=9), but not in compound Ffar4−/−/fat‐1 mice (n=9), attenuated femoral arterial thrombosis induced by FeCl3. Neointimal hyperplasia and vascular inflammation in the common carotid artery were significantly curtailed 4 weeks after FeCl3 injury in fat‐1 mice (n=6). This included greater luminal diameter and enhanced blood flow, reduced intima:media ratio, and diminished macrophage infiltration in the vasculature and perivascular adipose tissue compared with control mice. These effects were attenuated in the Ffar4−/−/fat‐1 mice. Conclusions These results indicate that ω3 PUFAs mitigate vascular inflammation, arterial thrombus formation, and neointimal hyperplasia by interaction with FFAR4 in mice. Moreover, the ω3 PUFA–FFAR4 pathway decreases inflammatory responses with dampened macrophage transmigration and infiltration.
Collapse
Affiliation(s)
- Xinzhi Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (X.L., L.L.B., X.C., C.D.F.)
| | - Laurel L Ballantyne
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (X.L., L.L.B., X.C., C.D.F.)
| | - Xinghui Che
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (X.L., L.L.B., X.C., C.D.F.)
| | - Jeffrey D Mewburn
- Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (J.D.M.)
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (J.X.K.)
| | - Robert M Barkley
- Department of Pharmacology, University of Colorado Denver, Aurora, CO (R.M.B., R.C.M.)
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, CO (R.M.B., R.C.M.)
| | - Ying Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (Y.Y.)
| | - Colin D Funk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (X.L., L.L.B., X.C., C.D.F.)
| |
Collapse
|
8
|
Song KM, Choi MJ, Kwon MH, Ghatak K, Park SH, Ryu DS, Ryu JK, Suh JK. Optimizing in vivo gene transfer into mouse corpus cavernosum by use of surface electroporation. Korean J Urol 2015; 56:197-204. [PMID: 25763123 PMCID: PMC4355430 DOI: 10.4111/kju.2015.56.3.197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/08/2015] [Indexed: 11/22/2022] Open
Abstract
Purpose Electroporation is known to enhance the efficiency of gene transfer through a transient increase in cell membrane permeability. The aim of this study was to determine the optimal conditions for in vivo electroporation-mediated gene delivery into mouse corpus cavernosum. Materials and Methods Diabetes was induced in C57BL/6 mice by intraperitoneal injections of streptozotocin. After intracavernous injection of pCMV-Luc (100 µg/40 µL), different electroporation settings (5-50 V, 8-16 pulses with a duration of 40-100 ms) were applied to the penis to establish the optimal conditions for electroporation. Gene expression was evaluated by luciferase assay. We also assessed the undesired consequences of electroporation by visual inspection and hematoxylin-eosin staining of penile tissue. Results Electroporation profoundly induced gene expression in the corpus cavernosum tissue of normal mice in a voltage-dependent manner. We observed electrical burn scars in the penis of normal mice who received electroporation with eight 40-ms pulses at a voltage of 50 V and sixteen 40-ms pulses, eight 100-ms pulses, and sixteen 100-ms pulses at a voltage of 30 V. No detectable burn scars were noted in normal mice stimulated with eight 40-ms pulses at a voltage of 30 V. Electroporation also significantly induced gene expression in diabetic mice stimulated with 40-ms pulse at a voltage of 30 V without injury to the penis. Conclusions We have established the optimal electroporation conditions for maximizing gene transfer into the corpus cavernosum of mice while avoiding damage to the erectile tissue. The electroporation-mediated gene delivery technique will be a valuable tool for gene therapy in the field of erectile dysfunction.
Collapse
Affiliation(s)
- Kang-Moon Song
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Min Ji Choi
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Mi-Hye Kwon
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Kalyan Ghatak
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Soo-Hwan Park
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Dong-Soo Ryu
- Department of Urology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Jun-Kyu Suh
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| |
Collapse
|
9
|
Abstract
The key impediment to the successful application of gene therapy in clinics is not the paucity of therapeutic genes. It is rather the lack of nontoxic and efficient strategies to transfer therapeutic genes into target cells. Over the past few decades, considerable progress has been made in gene transfer technologies, and thus far, three different delivery systems have been developed with merits and demerits characterizing each system. Viral and chemical methods of gene transfer utilize specialized carrier to overcome membrane barrier and facilitate gene transfer into cells. Physical methods, on the other hand, utilize various forms of mechanical forces to enforce gene entry into cells. Starting in 1980s, physical methods have been introduced as alternatives to viral and chemical methods to overcome various extra- and intracellular barriers that limit the amount of DNA reaching the intended cells. Accumulating evidence suggests that it is quite feasible to directly translocate genes into cytoplasm or even nuclei of target cells by means of mechanical force, bypassing endocytosis, a common pathway for viral and nonviral vectors. Indeed, several methods have been developed, and the majority of them share the same underlying mechanism of gene transfer, i.e., physically created transient pores in cell membrane through which genes get into cells. Here, we provide an overview of the current status and future research directions in the field of physical methods of gene transfer.
Collapse
|
10
|
Ross JL, Queme LF, Shank AT, Hudgins RC, Jankowski MP. Sensitization of group III and IV muscle afferents in the mouse after ischemia and reperfusion injury. THE JOURNAL OF PAIN 2014; 15:1257-70. [PMID: 25245401 PMCID: PMC4302035 DOI: 10.1016/j.jpain.2014.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/22/2014] [Accepted: 09/04/2014] [Indexed: 12/12/2022]
Abstract
UNLABELLED Ischemic myalgia is a unique type of muscle pain in the patient population. The role that discrete muscle afferent subpopulations play in the generation of pain during ischemic events, however, has yet to be determined. Using 2 brachial artery occlusion models to compare prolonged ischemia or transient ischemia with reperfusion of the muscles, we found that both injuries caused behavioral decrements in grip strength, as well as increased spontaneous pain behaviors. Using our ex vivo forepaw muscles, median and ulnar nerves, dorsal root ganglion, and spinal cord recording preparation, we found after both prolonged and transient ischemia that there was a significant increase in the number of afferents that responded to both noxious and non-noxious chemical (lactate, adenosine triphosphate, varying pH) stimulation of the muscles compared to uninjured controls. However, we found an increase in firing to heat stimuli specifically in muscle afferents during prolonged ischemia, but a distinct increase in afferent firing to non-noxious chemicals and decreased mechanical thresholds after transient ischemia. The unique changes in afferent function observed also corresponded with distinct patterns of gene expression in the dorsal root ganglia. Thus, the development of ischemic myalgia may be generated by unique afferent-based mechanisms during prolonged and transient ischemia. PERSPECTIVE This study analyzed the response properties of thinly myelinated group III and unmyelinated group IV muscle afferents during prolonged and transient ischemia in addition to pain behaviors and alterations in DRG gene expression in the mouse. Results suggest that mechanisms of pain generation during prolonged ischemia may be different from ischemia/reperfusion.
Collapse
Affiliation(s)
- Jessica L. Ross
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center
| | - Luis F. Queme
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center
| | - Aaron T. Shank
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center
| | - Renita C. Hudgins
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center
| | - Michael P. Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center
- Department of Pediatrics, University of Cincinnati, Cincinnati OH 45229
| |
Collapse
|