1
|
Bao JM, Hou T, Zhao L, Song YJ, Liu Y, Xing LP, Xu H, Wang XY, Li Q, Zhang L, Chang JL, Li W, Shi Q, Wang YJ, Liang QQ. Notoginsenoside R1 reduces acquired lymphedema and increases lymphangiogenesis by promoting VEGF-C expression via cAMP/PKA/CREB signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156554. [PMID: 40020630 DOI: 10.1016/j.phymed.2025.156554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Acquired lymphedema is a global health concern with limited treatment options. While vascular endothelial growth factor C (VEGF-C) administration has shown promise for the treatment of this patient population, no small-molecule compounds have hitherto been identified to improve lymphedema by stimulating VEGF-C expression and lymphangiogenesis. OBJECTIVE This study investigated the therapeutic effect of notoginsenoside R1 (R1) on a mouse model of tail acquired lymphedema and explored the underlying mechanisms. METHODS C57BL/6J mice and lymphatic endothelial cells (LECs) specific VEGFR-3 knockout transgenic mice underwent surgical induction of tail acquired lymphedema. Tail circumference, lymphatic drainage function, VEGF-C expression, and lymphangiogenesis were measured. LECs' function was assessed using wound healing and tube formation assays. Quantitative PCR (q-PCR) and western blot were conducted to measure VEGF-C expression levels. In addition, RNA sequencing analysis and western blot were performed to elucidate the signal pathways involved. Luciferase reporter assays assessed VEGF-C promoter activity. RESULTS R1 treatment improved lymphedema, lymphatic function, and lymphangiogenesis in the mouse model. R1 enhanced migration, tube formation, and VEGF-C expression of LECs. These effects were abolished by VEGF-C siRNA and VEGFR-3 inhibitors. VEGFR3 knockout in LECs completely blocked R1's ability to promote lymphangiogenesis and lymphatic drainage while partially but significantly reducing its improvement on lymphedema. R1 activated the cAMP/PKA signaling pathway, leading to PKA and CREB phosphorylation. The PKA inhibitor and CREB siRNA inhibited R1-induced VEGF-C expression. Additionally, R1 activated VEGF-C promoter activity in a CREB-dependent manner. CONCLUSION R1 emerges as the first reported small natural compound to promote VEGF-C expression. It reduces acquired lymphedema and enhances lymphangiogenesis via the cAMP/PKA/CREB signaling pathway. These findings suggest R1 as a potential novel oral medication for treating acquired lymphedema patients.
Collapse
Affiliation(s)
- Jia-Min Bao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Tong Hou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Jing'an District Central Hospital, Shanghai 200040, China
| | - Li Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yong-Jia Song
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yang Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Lian-Ping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xiao-Yun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China
| | - Qing Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Li Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jun-Li Chang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Wei Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Jing'an District Central Hospital, Shanghai 200040, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yong-Jun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Qian-Qian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
2
|
Hong JM, Shin HS. Reinforcement of Transdural Angiogenesis: A Novel Approach to Treating Ischemic Stroke With Cerebral Perfusion Impairment. J Stroke 2025; 27:30-40. [PMID: 39916452 PMCID: PMC11834342 DOI: 10.5853/jos.2024.02810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 02/20/2025] Open
Abstract
Cerebral hypoperfusion plays a critical role in early neurological deterioration and long-term outcomes in patients with acute ischemic stroke, which remains a major global health challenge. This review explored transdural angiogenesis as a promising therapeutic strategy to restore cerebral perfusion in patients with ischemic stroke. The multiple burr hole procedure has been preliminarily used as an indirect revascularization method to induce transdural arteriogenesis. Theoretically, its efficacy could be enhanced by combining it with angiogenic boosters, such as erythropoietin. Recent clinical and preclinical studies have revealed that this combination therapy promotes angiogenesis and arteriogenesis, leading to successful revascularization across the dura mater and improved cerebral blood flow. This strategy may be particularly beneficial for high-risk patients with recurrent ischemic events, such as those with moyamoya disease or intracranial arterial occlusion, representing an effective strategy when conventional medical treatments are insufficient. This review highlights the potential of transdural angiogenesis enhancement as a novel intervention for ischemic stroke, offering an alternative to thrombolysis or endovascular treatment, particularly in acute stroke patients with impaired cerebral perfusion. This approach has the potential to bridge the treatment gap for patients outside the therapeutic window for acute stroke interventions. Although further research is required to refine this technique and validate its efficacy in broader clinical settings, early results have revealed promising outcomes at reducing stroke-related complications and improving patient prognosis. This review indicates that this novel strategy may offer hope for managing ischemic stroke and related conditions associated with significant cerebral hypoperfusion.
Collapse
Affiliation(s)
- Ji Man Hong
- Department of Neurology, Ajou University Medical Center, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Science, Ajou University Medical Center, Ajou University School of Medicine, Suwon, Korea
| | - Hee Sun Shin
- Department of Biomedical Science, Ajou University Medical Center, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
3
|
Lin YC, Shih JY, Lin YW, Niu KC, Hong CS, Chen ZC, Pan SC, Chang TY, Kan WC, Chang WT. Hyperbaric Oxygen Therapy Improved Neovascularisation Following Limb Ischaemia-The Role of ROS Mitigation. J Cell Mol Med 2024; 28:e70310. [PMID: 39720917 DOI: 10.1111/jcmm.70310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024] Open
Abstract
Hyperbaric oxygen (HBO) therapy has emerged as a potential treatment, shown to enhance blood flow and angiogenesis. However, specific effects and mechanisms of HBO on limb ischaemia responding to a hypoxic environment remain largely unknown. We aimed to investigate the therapeutic potential of HBO in the treatment of limb ischaemia. Following limb ischaemia surgery, we evaluated the angiogenic capacity in wild-type C57BL/6J mice subjected to HBO treatment (100% oxygen at 3 ATA for 1 h/day for five consecutive days) compared to untreated controls. Notably, through laser Doppler perfusion imaging and CD31 staining mice receiving HBO postlimb ischaemia surgery exhibited significantly enhanced angiogenic capability and reduced ROS expression compared to nontreated counterparts. Additionally, in vitro experiments were conducted to investigate whether HBO could mitigate endothelial cell dysfunction and reactive oxygen species (ROS) production triggered by oxygen-glucose deprivation (OGD). HBO treatment rescued the impaired proliferation, migration and tube formation of endothelial cells following OGD. Mechanistically, HBO upregulated the expression of proangiogenic proteins, including vascular endothelial growth factor (VEGF), haem oxygenase-1 (HO-1), hypoxia-inducible factor 1 (HIF-1) and nuclear factor erythroid 2-related factor 2 (Nrf2). Collectively, HBO treatment shows promise in augmenting the endogenous angiogenic potential and suppressing ROS levels in limb ischaemia.
Collapse
Affiliation(s)
- You-Cheng Lin
- Division of Plastic Surgery, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jhih-Yuan Shih
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Cardiology, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Wen Lin
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Ko-Chi Niu
- Department of Hyperbaric Oxygen Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chon-Seng Hong
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Zhih-Cherng Chen
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Cardiology, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shin-Chen Pan
- Department of Surgery, Section of Plastic and Reconstructive Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Yen Chang
- Department of Surgery, Section of Plastic and Reconstructive Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chih Kan
- Division of Nephrology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan, Taiwan
- Department of Radiology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Wei-Ting Chang
- Division of Plastic Surgery, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Tseng SY, Chang HY, Li YH, Chao TH. Effects of Cilostazol on Angiogenesis in Diabetes through Adiponectin/Adiponectin Receptors/Sirtuin1 Signaling Pathway. Int J Mol Sci 2022; 23:14839. [PMID: 36499166 PMCID: PMC9739574 DOI: 10.3390/ijms232314839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Cilostazol is an antiplatelet agent with vasodilating effects that functions by increasing the intracellular concentration of cyclic adenosine monophosphate. We have previously shown that cilostazol has favorable effects on angiogenesis. However, there is no study to evaluate the effects of cilostazol on adiponectin. We investigated the effects of cilostazol on angiogenesis in diabetes in vitro and in vivo through adiponectin/adiponectin receptors (adipoRs) and the sirtuin 1 (SIRT1)/AMP-activated protein kinase (AMPK) signaling pathway. Human umbilical vein endothelial cells (HUVECs) and human aortic smooth muscle cells (HASMCs) were cocultured under high glucose (HG) conditions. Adiponectin concentrations in the supernatants were significantly increased when HASMCs were treated with cilostazol but not significantly changed when only HUVECs were treated with cilostazol. Cilostazol treatment enhanced the expression of SIRT1 and upregulated the phosphorylation of AMPK in HG-treated HUVECs. By sequential knockdown of adipoRs, SIRT1, and AMPK, our data demonstrated that cilostazol prevented apoptosis and stimulated proliferation, chemotactic motility, and capillary-like tube formation in HG-treated HUVECs through the adipoRs/SIRT1/AMPK signaling pathway. The phosphorylation of downstream signaling molecules, including acetyl-CoA carboxylase (ACC) and endothelial nitric oxide synthase (eNOS), was downregulated when HUVECs were treated with a SIRT1 inhibitor. In streptozotocin-induced diabetic mice, cilostazol treatment could improve blood flow recovery 21-28 days after inducing hindlimb ischemia as well as increase the circulating of CD34+CD45dim cells 14-21 days after operation; moreover, these effects were significantly attenuated by the knockdown of adipoR1 but not adipoR2. The expression of SIRT1 and phosphorylation of AMPK/ACC and Akt/eNOS in ischemic muscles were significantly attenuated by the gene knockdown of adipoRs. Cilostazol improves HG-induced endothelial dysfunction in vascular endothelial cells and enhances angiogenesis in diabetic mice by upregulating the expression of adiponectin/adipoRs and its SIRT1/AMPK downstream signaling pathway.
Collapse
Affiliation(s)
- Shih-Ya Tseng
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Hsien-Yuan Chang
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yi-Heng Li
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ting-Hsing Chao
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Health Management Center, National Cheng Kung University Hospital, Tainan 704, Taiwan
| |
Collapse
|
5
|
Chen PW, Tseng SY, Chang HY, Lee CH, Chao TH. Diverse Effects of Cilostazol on Proprotein Convertase Subtilisin/Kexin Type 9 between Obesity and Non-Obesity. Int J Mol Sci 2022; 23:ijms23179768. [PMID: 36077166 PMCID: PMC9456424 DOI: 10.3390/ijms23179768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in cholesterol homeostasis. Cilostazol exerts favorable cellular and metabolic effects; however, the effect of cilostazol on the expression of PCSK9 has not been previously reported. Our study aimed to investigate the potential mechanisms of action of cilostazol on the expression of PCSK9 and lipid homeostasis. We evaluated the effects of cilostazol on the expression of PCSK9 in HepG2 cells and evaluated potential molecular mechanisms by measuring signaling molecules in the liver and serum lipid profiles in high-fat diet-induced obese mice and normal chow-fed mice. Cilostazol treatment significantly induced the messenger RNA and protein expression of PCSK9 in HepG2 cells and enhanced PCSK9 promoter activity. Chromatin immunoprecipitation assays confirmed that cilostazol treatment enhanced PCSK9 transcription by binding to peroxisome proliferator-activated receptor-γ (PPARγ) via the PPARγ DNA response element. PPARγ knockdown attenuated the stimulatory effect of cilostazol on PCSK9. In vitro, cilostazol treatment increased PCSK9 expression in vehicle-treated HepG2 cells but decreased PCSK9 expression in palmitic acid-treated HepG2 cells. In vivo, cilostazol treatment increased the serum levels of PCSK9 in normal mice but significantly reduced PCSK9 levels in obese mice. The expressions of PCSK9-relevant microRNAs also showed similar results. Clinical data showed that cilostazol treatment significantly reduced serum PCSK9 levels in patients with obesity. The obesity-dependent effects of cilostazol on PCSK9 expression observed from bench to bedside demonstrates the therapeutic potential of cilostazol in clinical settings.
Collapse
Affiliation(s)
- Po-Wei Chen
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Shih-Ya Tseng
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Hsien-Yuan Chang
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Cheng-Han Lee
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ting-Hsing Chao
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Health Management Center, National Cheng Kung University Hospital, Tainan 704, Taiwan
- Correspondence: ; Tel.: +886-6-23523535 (ext. 2392); Fax: +886-6-2753834
| |
Collapse
|
6
|
Effects of STAT3 on aging-dependent neovascularization impairment following limb ischemia: from bedside to bench. Aging (Albany NY) 2022; 14:4897-4913. [PMID: 35696641 PMCID: PMC9217700 DOI: 10.18632/aging.204122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Aging is a major risk factor for ischemic hypoxia-related diseases, including peripheral artery diseases (PADs). Signal transducer and activator of transcription 3 (STAT3) is a critical transcription activator in angiogenesis. Nevertheless, the effect of aging on endothelial cells and their responses to hypoxia are not well studied. Using a hindlimb hypoxic/ischemic model of aged mice, we found that aged mice (80-100-week-old) expressed significantly lower levels of angiogenesis than young mice (10-week-old). In our in vitro study, aged endothelial cells (≥30 passage) showed a significant accumulation of β-galactosidase and a high expression of aging-associated genes, including p16, p21, and hTERT compared with young cells (<10 passage). After 24 hours of hypoxia exposure, proliferation, migration and tube formation were significantly impaired in aged cells compared with young cells. Notably, STAT3 and angiogenesis-associated proteins such as PI3K/AKT were significantly downregulated in aged mouse limb tissues and aged cells. Further, using STAT3 siRNA, we found that suppressing STAT3 expression in endothelial cells impaired proliferation, migration and tube formation under hypoxia. Correspondingly, in patients with limb ischemia we also observed a higher expression of circulating STAT3, associated with a lower rate of major adverse limb events (MALEs). Collectively, STAT3 could be a biomarker reflecting the development of MALE in patients and also a regulator of age-dependent angiogenesis post limb ischemia. Additional studies are required to elucidate the clinical applications of STAT3.
Collapse
|
7
|
A Randomized Controlled Trial Evaluating Outcome Impact of Cilostazol in Patients with Coronary Artery Disease or at a High Risk of Cardiovascular Disease. J Pers Med 2022; 12:jpm12060938. [PMID: 35743723 PMCID: PMC9225272 DOI: 10.3390/jpm12060938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/25/2022] Open
Abstract
Previous studies found that cilostazol has a favorable effect on glucose and lipid homeostasis, endothelial function, atherosclerosis, and vasculo-angiogenesis. However, it is poorly understood whether these effects can translate into better clinical outcomes. This study investigated the outcome effect of cilostazol in patients with coronary artery disease (CAD) or at a high risk of cardiovascular (CV) disease. We conducted a randomized, double-blind, placebo-controlled trial involving 266 patients who received cilostazol, 200 mg/day (n = 134) or placebo (n = 132). Pre-specified clinical endpoints including composite major adverse cardiovascular events (MACE) (CV death, non-fatal myocardial infarct, non-fatal stroke, hospitalization for heart failure, or unplanned coronary revascularization), the composite major coronary event (MCE) and major adverse CV and cerebrovascular event (MACCE), were prospectively assessed. The mean duration of follow-up was 2.9 years. Relative to placebo, cilostazol treatment had a borderline effect on risk reduction of MACE (hazard ratio [HR], 0.67; 95% confidence interval (CI), 0.34–1.33), whereas the beneficial effect in favor of cilostazol was significant in patients with diabetes mellitus or a history of percutaneous coronary intervention (p for interaction, 0.02 and 0.06, respectively). Use of cilostazol, significantly reduced the risk of MCE (HR, 0.38; 95% CI, 0.17–0.86) and MACCE (HR, 0.47; 95% CI, 0.23–0.96). A significantly lower risk of angina pectoris (HR, 0.38; 95% CI, 0.17–0.86) was also observed in the cilostazol group. After multi-variable adjustment, cilostazol treatment independently predicted a lower risk of MCE. In conclusion, these results suggest cilostazol may have beneficial effects in patients with CAD or at a high risk of CV disease.
Collapse
|
8
|
Emerging Role of cAMP/AMPK Signaling. Cells 2022; 11:cells11020308. [PMID: 35053423 PMCID: PMC8774420 DOI: 10.3390/cells11020308] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/20/2022] Open
Abstract
The 5′-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a natural energy sensor in mammalian cells that plays a key role in cellular and systemic energy homeostasis. At the cellular level, AMPK supports numerous processes required for energy and redox homeostasis, including mitochondrial biogenesis, autophagy, and glucose and lipid metabolism. Thus, understanding the pathways regulating AMPK activity is crucial for developing strategies to treat metabolic disorders. Mounting evidence suggests the presence of a link between cyclic AMP (cAMP) and AMPK signaling. cAMP signaling is known to be activated in circumstances of physiological and metabolic stress due to the release of stress hormones, such as adrenaline and glucagon, which is followed by activation of membrane-bound adenylyl cyclase and elevation of cellular cAMP. Because the majority of physiological stresses are associated with elevated energy consumption, it is not surprising that activation of cAMP signaling may promote AMPK activity. Aside from the physiological role of the cAMP/AMPK axis, numerous reports have suggested its role in several pathologies, including inflammation, ischemia, diabetes, obesity, and aging. Furthermore, novel reports have provided more mechanistic insight into the regulation of the cAMP/AMPK axis. In particular, the role of distinct cAMP microdomains generated by soluble adenylyl cyclase in regulating basal and induced AMPK activity has recently been demonstrated. In the present review, we discuss current advances in the understanding of the regulation of the cAMP/AMPK axis and its role in cellular homeostasis and explore some translational aspects.
Collapse
|
9
|
Cilostazol induces angiogenesis and regulates oxidative stress in a dose-dependent manner: A chorioallantoic membrane study. TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2021; 29:449-456. [PMID: 35096441 PMCID: PMC8762914 DOI: 10.5606/tgkdc.dergisi.2021.22212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/25/2021] [Indexed: 11/21/2022]
Abstract
Background
In this study, we aimed to investigate the effects of cilostazol on angiogenesis and oxidative stress using the chorioallantoic membrane model.
Methods
In this experimental study, the Ross 308 chick embryos were used. The negative control group (n=10) received no intervention. The positive control group (n=10) consisted of eggs treated with epidermal growth factor for inducing angiogenesis. Three cilostazol groups were designed with 10-7 (n=10), 10-6 (n=10), and 10-5 (n=10) M concentrations. Each egg was punctured on the sixth day of incubation, and drug pellets were introduced to the positive control and drug groups at the prespecified doses. Vascular development was evaluated on the eighth day of application. The total oxidant status, total antioxidant capacity, and oxidative stress index levels were determined from albumen liquids obtained with a syringe before and after drug application.
Results
Lower oxidative stress index levels were obtained from the positive control and cilostazol groups compared to the negative control albumens (p=0.001). The increments in vascular junctions and newly developed vascular nodules were evaluated in drug-free and drug-applied chorioallantoic membranes. The highest activity was obtained in the 10-7 M concentration cilostazol group. An increased angiogenic activity was detected in all drug groups in each concentration compared to the negative control group (p=0.001). Angiogenic activity was similar in all the cilostazol-treated groups (p=0.43).
Conclusion
Cilostazol has a positive stimulant effect on angiogenesis and it seems to suppress oxidative stress during embryonic growth. Cilostazol exerts these effects significantly and similarly at different doses.
Collapse
|
10
|
Zhao Y, Ye S, Lin J, Liang F, Chen J, Hu J, Chen K, Fang Y, Chen X, Xiong Y, Lin L, Tan X. NmFGF1-Regulated Glucolipid Metabolism and Angiogenesis Improves Functional Recovery in a Mouse Model of Diabetic Stroke and Acts via the AMPK Signaling Pathway. Front Pharmacol 2021; 12:680351. [PMID: 34025437 PMCID: PMC8139577 DOI: 10.3389/fphar.2021.680351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetes increases the risk of stroke, exacerbates neurological deficits, and increases mortality. Non-mitogenic fibroblast growth factor 1 (nmFGF1) is a powerful neuroprotective factor that is also regarded as a metabolic regulator. The present study aimed to investigate the effect of nmFGF1 on the improvement of functional recovery in a mouse model of type 2 diabetic (T2D) stroke. We established a mouse model of T2D stroke by photothrombosis in mice that were fed a high-fat diet and injected with streptozotocin (STZ). We found that nmFGF1 reduced the size of the infarct and attenuated neurobehavioral deficits in our mouse model of T2D stroke. Angiogenesis plays an important role in neuronal survival and functional recovery post-stroke. NmFGF1 promoted angiogenesis in the mouse model of T2D stroke. Furthermore, nmFGF1 reversed the reduction of tube formation and migration in human brain microvascular endothelial cells (HBMECs) cultured in high glucose conditions and treated with oxygen glucose deprivation/re-oxygenation (OGD). Amp-activated protein kinase (AMPK) plays a critical role in the regulation of angiogenesis. Interestingly, we found that nmFGF1 increased the protein expression of phosphorylated AMPK (p-AMPK) both in vivo and in vitro. We found that nmFGF1 promoted tube formation and migration and that this effect was further enhanced by an AMPK agonist (A-769662). In contrast, these processes were inhibited by the application of an AMPK inhibitor (compound C) or siRNA targeting AMPK. Furthermore, nmFGF1 ameliorated neuronal loss in diabetic stroke mice via AMPK-mediated angiogenesis. In addition, nmFGF1 ameliorated glucose and lipid metabolic disorders in our mouse model of T2D stroke without causing significant changes in body weight. These results revealed that nmFGF1-regulated glucolipid metabolism and angiogenesis play a key role in the improvement of functional recovery in a mouse model of T2D stroke and that these effects are mediated by the AMPK signaling pathway.
Collapse
Affiliation(s)
- Yeli Zhao
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shasha Ye
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingjing Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fei Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jian Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yani Fang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiongjian Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ye Xiong
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, China
| | - Xianxi Tan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Shimatani K, Sato H, Saito A, Sasai M, Watanabe K, Mizukami K, Kamohara M, Miyagawa S, Sawa Y. A novel model of chronic limb ischemia to therapeutically evaluate the angiogenic effects of drug candidates. Am J Physiol Heart Circ Physiol 2021; 320:H1124-H1135. [PMID: 33481698 DOI: 10.1152/ajpheart.00470.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/30/2022]
Abstract
Critical limb ischemia (CLI) is a severe state of peripheral artery disease with high unmet clinical needs. Further, there are no effective treatment options for patients with CLI. Based on preclinical study results, predicting the clinical efficacy of CLI treatments is typically difficult because conventional hindlimb ischemia (HLI) rodent models display spontaneous recovery from ischemia, which is not observed in patients with CLI. Therefore, we aimed to develop a novel chronic and severe HLI model to properly evaluate the therapeutic effects of drug candidates for CLI. Severe HLI mice (Type-N) were generated by increasing the excised area of blood vessels in a hindlimb of NOG mice. Immunohistochemistry and gene expression analysis at 9 wk after the Type-N operation revealed that the ischemic limb was in a steady state with impaired angiogenesis, like that observed in patients with CLI. We did selection of chronic Type-N mice based on the number of necrotic nails and blood flow rate at 2 wk after surgery because some Type-N mice showed mild symptoms. Therapeutic treatment with cilostazol, which is used for intermittent claudication, did not restore blood flow in chronic Type-N mice. In contrast, therapeutic transplantation of pericytes and vascular endothelial cells, which can form new blood vessels in vivo, significantly improved blood flow in a subset of Type-N mice. These findings suggest that this novel chronic and severe HLI model may be a valuable standard animal model for therapeutic evaluation of the angiogenic effects of CLI drug candidates.NEW & NOTEWORTHY We developed a chronic and severe hindlimb ischemia (HLI) mouse model for preclinical research on critical limb ischemia (CLI). This model partially reflects human CLI pathology in that it does not show spontaneous restoration of blood flow or expression of angiogenic genes in the ischemic limb. This novel model may be valuable for therapeutic evaluation of the angiogenic effects of CLI drug candidates.
Collapse
Affiliation(s)
| | - Hiromu Sato
- Drug Discovery Research, Astellas Pharma Incorporated, Ibaraki, Japan
| | - Atsuhiro Saito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masao Sasai
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenichi Watanabe
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuhiko Mizukami
- Drug Discovery Research, Astellas Pharma Incorporated, Ibaraki, Japan
| | - Masazumi Kamohara
- Drug Discovery Research, Astellas Pharma Incorporated, Ibaraki, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
12
|
Blanco-Rivero J, Xavier FE. Therapeutic Potential of Phosphodiesterase Inhibitors for Endothelial Dysfunction- Related Diseases. Curr Pharm Des 2021; 26:3633-3651. [PMID: 32242780 DOI: 10.2174/1381612826666200403172736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/08/2020] [Indexed: 02/08/2023]
Abstract
Cardiovascular diseases (CVD) are considered a major health problem worldwide, being the main cause of mortality in developing and developed countries. Endothelial dysfunction, characterized by a decline in nitric oxide production and/or bioavailability, increased oxidative stress, decreased prostacyclin levels, and a reduction of endothelium-derived hyperpolarizing factor is considered an important prognostic indicator of various CVD. Changes in cyclic nucleotides production and/ or signalling, such as guanosine 3', 5'-monophosphate (cGMP) and adenosine 3', 5'-monophosphate (cAMP), also accompany many vascular disorders that course with altered endothelial function. Phosphodiesterases (PDE) are metallophosphohydrolases that catalyse cAMP and cGMP hydrolysis, thereby terminating the cyclic nucleotide-dependent signalling. The development of drugs that selectively block the activity of specific PDE families remains of great interest to the research, clinical and pharmaceutical industries. In the present review, we will discuss the effects of PDE inhibitors on CVD related to altered endothelial function, such as atherosclerosis, diabetes mellitus, arterial hypertension, stroke, aging and cirrhosis. Multiple evidences suggest that PDEs inhibition represents an attractive medical approach for the treatment of endothelial dysfunction-related diseases. Selective PDE inhibitors, especially PDE3 and PDE5 inhibitors are proposed to increase vascular NO levels by increasing antioxidant status or endothelial nitric oxide synthase expression and activation and to improve the morphological architecture of the endothelial surface. Thereby, selective PDE inhibitors can improve the endothelial function in various CVD, increasing the evidence that these drugs are potential treatment strategies for vascular dysfunction and reinforcing their potential role as an adjuvant in the pharmacotherapy of CVD.
Collapse
Affiliation(s)
- Javier Blanco-Rivero
- Departamento de Fisiologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| | - Fabiano E Xavier
- Departamento de Fisiologia e Farmacologia, Centro de Biociencias, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
13
|
Fiori A, Hammes HP, Bieback K. Adipose-derived mesenchymal stromal cells reverse high glucose-induced reduction of angiogenesis in human retinal microvascular endothelial cells. Cytotherapy 2020; 22:261-275. [PMID: 32247542 DOI: 10.1016/j.jcyt.2020.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/12/2020] [Accepted: 02/22/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND AIMS Diabetic retinopathy (DR) is characterized by a progressive alteration of the retinal microvasculature, arising from microaneurysms to leaky vessels and finally abnormal neovascularization. The hyperglycemia-mediated loss of pericytes is a key event in vessel degeneration causing vascular destabilization. To overcome this, mesenchymal stromal cells (MSCs) have been tested as pericyte replacement in several animal models showing repair and regeneration of DR-damaged vasculature. METHODS We hypothesized that adipose-derived mesenchymal stromal cells (ASCs) resist high glucose-induced challenges and protect human retinal microvascular endothelial cells (HRMVECs) from glucose-mediated injury. ASCs and HRMVECs were cultured under normal-glucose (NG; 1 g/L) and high-glucose (HG; 4.5 g/L) conditions comparing their phenotype and angiogenic potential. RESULTS Whereas ASCs were generally unaffected by HG, HG caused a reduction of the angiogenic potential in HRMVEC. Indeed, HG-treated HRMVECs formed fewer vascular tube structures in a basement membrane angiogenesis assay. However, this was not observed in a direct ASC and HRMVEC coculture angiogenesis assay. Increased oxidative stress levels appeared to be linked to the HG-induced reduction of angiogenesis, which could be restored by ASC-conditioned medium and antioxidant treatment. CONCLUSIONS These findings suggest that ASC resist HG-stress whereas endothelial cell angiogenic capacity is reduced. Thus, ASC may be potentially therapeutically active in DR by restoring angiogenic deficits in retinal endothelial cells by the secretion of proangiogenic factors. However, these data also inquire for a thorough risk assessment about the timing of the ASC-based cell therapy, which can be considered advantageous at early stage of DR, but possibly detrimental at the late neo-angiogenic stage of DR.
Collapse
Affiliation(s)
- Agnese Fiori
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Institute Mannheim, Germany
| | - Hans-Peter Hammes
- Endocrinology Department, 5th Medical Department, Medical Faculty Mannheim, Heidelberg University Mannheim, Baden-Württemberg, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Institute Mannheim, Germany; Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden-Württemberg, Germany.
| |
Collapse
|
14
|
Su SC, Hung YJ, Huang CL, Shieh YS, Chien CY, Chiang CF, Liu JS, Lu CH, Hsieh CH, Lin CM, Lee CH. Cilostazol inhibits hyperglucose-induced vascular smooth muscle cell dysfunction by modulating the RAGE/ERK/NF-κB signaling pathways. J Biomed Sci 2019; 26:68. [PMID: 31492153 PMCID: PMC6731603 DOI: 10.1186/s12929-019-0550-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/25/2019] [Indexed: 02/08/2023] Open
Abstract
Background Increasing evidence suggests that high glucose (HG) causes abnormalities in endothelial and vascular smooth muscle cell function (VSMC) and contributes to atherosclerosis. Receptor for advanced glycation end-products (RAGE) has been linked to the pathogenesis of both the macrovascular and microvascular complications of diabetes. Cilostazol is used to treat diabetic vasculopathy by ameliorating HG-induced vascular dysfunction. Objectives In this study, we investigated whether the cilostazol suppression of HG-induced VSMC dysfunction is through RAGE signaling and its possible regulation mechanism. Method We investigated the effect of HG and cilostazol on RAGE signaling in A7r5 rat VSMCs. Aortic tissues of streptozotocin (STZ) diabetic mice were also collected. Results Aortic tissue samples from the diabetic mice exhibited a significantly decreased RAGE expression after cilostazol treatment. HG increased RAGE, focal adhesion kinase (FAK), matrix metalloproteinase-2 (MMP-2), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions, and was accompanied with increased reactive oxygen species (ROS), cell proliferation, adhesion and migration. Cilostazol significantly reversed HG-induced RAGE, ROS, downstream gene expressions and cell functions. RAGE knockdown significantly reversed the expressions of HG-induced vasculopathy related gene expressions and cell functions. Cilostazol with RAGE knockdown had additive effects on downstream ERK/NF-κB signaling pathways, gene expressions and cell functions of A7r5 rat VSMCs in HG culture. Conclusions Both in vitro and in vivo experimental diabetes models showed novel signal transduction of cilostazol-mediated protection against HG-related VSMC dysfunction, and highlighted the involvement of RAGE signaling and downstream pathways.
Collapse
Affiliation(s)
- Sheng-Chiang Su
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. .,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan. .,Division of Biochemistry, National Defense Medical Center, Taipei, Taiwan.
| | - Chia-Luen Huang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Shing Shieh
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan.,Department of Oral Diagnosis and Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Division of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chu-Yen Chien
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Fu Chiang
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Jhih-Syuan Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chieh-Hua Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Hsun Hsieh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Ming Lin
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Hsing Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. .,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan. .,Division of Biochemistry, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
15
|
Lee YJ, Shu MS, Kim JY, Kim YH, Sim KH, Sung WJ, Eun JR. Cilostazol protects hepatocytes against alcohol-induced apoptosis via activation of AMPK pathway. PLoS One 2019; 14:e0211415. [PMID: 30695051 PMCID: PMC6350983 DOI: 10.1371/journal.pone.0211415] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/14/2019] [Indexed: 02/07/2023] Open
Abstract
Alcoholic liver disease (ALD) is a worldwide health problem and hepatocyte apoptosis has been associated with the development/progression of ALD. However, no definite effective pharmacotherapy for ALD is currently available. Cilostazol, a selective type III phosphodiesterase inhibitor has been shown to protect hepatocytes from ethanol-induced apoptosis. In the present study, the underlying mechanisms for the protective effects of cilostazol were examined. Primary rat hepatocytes were treated with ethanol in the presence or absence of cilostazol. Cell viability and intracellular cAMP were measured. Apoptosis was detected by Hoechst staining, TUNEL assay, and caspase-3 activity assay. The roles of cAMP and AMP-activated protein kinase (AMPK) pathways in the action of CTZ were explored using pharmacological inhibitors and siRNAs. Liver from mice received ethanol (5 g/kg body weight) by oral gavage following cilostazol treatment intraperitoneally was obtained for measurement of apoptosis and activation of AMPK pathway. Cilostazol inhibited ethanol-induced hepatocyte apoptosis and potentiated the increases in cAMP level induced by forskolin. However, the anti-apoptotic effect of cilostazol was not reversed by an inhibitor of adenylyl cyclase. Interestingly, cilostazol activated AMPK and increased the level of LC3-II, a marker of autophagy. The inhibition of AMPK abolished the effects of cilostazol on LC3-II expression and apoptosis. Moreover, the inhibition of LKB1 and CaMKK2, upstream kinases of AMPK, dampened cilostazol-inhibited apoptosis as well as AMPK activation. In conclusion, cilostazol protected hepatocytes from apoptosis induced by ethanol mainly via AMPK pathway which is regulated by both LKB1 and CaMKK2. Our results suggest that cilostazol may have potential as a promising therapeutic drug for treatment of ALD.
Collapse
Affiliation(s)
- Youn Ju Lee
- Department of Pharmacology, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Mi-Sun Shu
- Department of Pharmacology, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Jong-Yeon Kim
- Deparment of Physiology, School of Medicine, Yeungnam University, Daegu, Korea
| | - Yun-Hye Kim
- Deparment of Physiology, School of Medicine, Yeungnam University, Daegu, Korea
| | - Kyeong Hwa Sim
- Department of Pharmacology, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Woo Jung Sung
- Department of Pathology, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Jong Ryeol Eun
- Department of Internal medicine, Myongj Hospital, Hanyang University College of Medicine, Goyang, Korea
- * E-mail:
| |
Collapse
|
16
|
Chen IC, Tseng WK, Li YH, Tseng SY, Liu PY, Chao TH. Effect of cilostazol on plasma levels of proprotein convertase subtilisin/kexin type 9. Oncotarget 2017; 8:108042-108053. [PMID: 29296222 PMCID: PMC5746124 DOI: 10.18632/oncotarget.22448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/28/2017] [Indexed: 12/26/2022] Open
Abstract
The protein complex proprotein convertase subtilisin/kexin type 9 (PCSK9) serves as an important target for the prevention and treatment of atherosclerosis and lipid homeostasis. This study investigated the effect of cilostazol on plasma PCSK9 concentrations. We performed a post hoc analysis of two prospective, double-blind, randomized controlled trials including 115 patients of whom 61 received cilostazol 200 mg/day and 54 received placebo for 12 weeks. Linear regression analysis was performed to determine the associations between several parameters and changes in PCSK9 levels. Use of cilostazol, but not placebo, significantly increased plasma PCSK9 concentrations, high-density lipoprotein cholesterol levels, and number of circulating endothelial progenitor cells (EPCs), and decreased triglyceride levels with a trend toward an increase in total cholesterol (TC) levels. A reduction in hemoglobin A1C and an increase in plasma vascular endothelial growth factor and adiponectin levels with cilostazol treatment were also found. Changes in the number of circulating EPCs were positively correlated and the TC concentrations were inversely correlated with changes in the PCSK9 levels. After adjusting for changes in levels of TC and numbers of circulating EPCs and history of metabolic syndrome, use of cilostazol remained independently associated with changes in plasma PCSK9 levels. In conclusion, cilostazol treatment was significantly and independently associated with an increase in plasma PCSK9 levels in patients with peripheral artery disease or at a high risk of cardiovascular disease regardless of background statin use and caused an improvement in some metabolic disorders and levels of vasculo-angiogenic biomarkers.
Collapse
Affiliation(s)
- I-Chih Chen
- Department of Internal Medicine, Tainan Municipal Hospital, Tainan, Taiwan
| | - Wei-Kung Tseng
- Department of Medical Imaging and Radiological Sciences, I-Shou University and Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Yi-Heng Li
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Shih-Ya Tseng
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Ping-Yen Liu
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Hsing Chao
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| |
Collapse
|
17
|
de Matos AM, de Macedo MP, Rauter AP. Bridging Type 2 Diabetes and Alzheimer's Disease: Assembling the Puzzle Pieces in the Quest for the Molecules With Therapeutic and Preventive Potential. Med Res Rev 2017; 38:261-324. [PMID: 28422298 DOI: 10.1002/med.21440] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/18/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes (T2D) and Alzheimer's disease (AD) are two age-related amyloid diseases that affect millions of people worldwide. Broadly supported by epidemiological data, the higher incidence of AD among type 2 diabetic patients led to the recognition of T2D as a tangible risk factor for the development of AD. Indeed, there is now growing evidence on brain structural and functional abnormalities arising from brain insulin resistance and deficiency, ultimately highlighting the need for new approaches capable of preventing the development of AD in type 2 diabetic patients. This review provides an update on overlapping pathophysiological mechanisms and pathways in T2D and AD, such as amyloidogenic events, oxidative stress, endothelial dysfunction, aberrant enzymatic activity, and even shared genetic background. These events will be presented as puzzle pieces put together, thus establishing potential therapeutic targets for drug discovery and development against T2D and diabetes-induced cognitive decline-a heavyweight contributor to the increasing incidence of dementia in developed countries. Hoping to pave the way in this direction, we will present some of the most promising and well-studied drug leads with potential against both pathologies, including their respective bioactivity reports, mechanisms of action, and structure-activity relationships.
Collapse
Affiliation(s)
- Ana Marta de Matos
- Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisbon, Portugal.,CEDOC Chronic Diseases, Nova Medical School, Rua Câmara Pestana n 6, 6-A, Ed. CEDOC II, 1150-082, Lisbon, Portugal
| | - Maria Paula de Macedo
- CEDOC Chronic Diseases, Nova Medical School, Rua Câmara Pestana n 6, 6-A, Ed. CEDOC II, 1150-082, Lisbon, Portugal
| | - Amélia Pilar Rauter
- Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
18
|
Malinovskaya NA, Komleva YK, Salmin VV, Morgun AV, Shuvaev AN, Panina YA, Boitsova EB, Salmina AB. Endothelial Progenitor Cells Physiology and Metabolic Plasticity in Brain Angiogenesis and Blood-Brain Barrier Modeling. Front Physiol 2016; 7:599. [PMID: 27990124 PMCID: PMC5130982 DOI: 10.3389/fphys.2016.00599] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/16/2016] [Indexed: 12/31/2022] Open
Abstract
Currently, there is a considerable interest to the assessment of blood-brain barrier (BBB) development as a part of cerebral angiogenesis developmental program. Embryonic and adult angiogenesis in the brain is governed by the coordinated activity of endothelial progenitor cells, brain microvascular endothelial cells, and non-endothelial cells contributing to the establishment of the BBB (pericytes, astrocytes, neurons). Metabolic and functional plasticity of endothelial progenitor cells controls their timely recruitment, precise homing to the brain microvessels, and efficient support of brain angiogenesis. Deciphering endothelial progenitor cells physiology would provide novel engineering approaches to establish adequate microfluidically-supported BBB models and brain microphysiological systems for translational studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alla B. Salmina
- Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| |
Collapse
|
19
|
Cilostazol Improves Proangiogenesis Functions in Human Early Endothelial Progenitor Cells through the Stromal Cell-Derived Factor System and Hybrid Therapy Provides a Synergistic Effect In Vivo. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3639868. [PMID: 27595100 PMCID: PMC4993925 DOI: 10.1155/2016/3639868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/08/2016] [Indexed: 12/17/2022]
Abstract
This study investigated the effect of cilostazol on proangiogenesis functions in human early endothelial progenitor cells (EPCs) in vitro and the therapeutic implication of hybrid therapy with cilostazol and human early EPCs in vivo. Cilostazol significantly increased colony-forming units and enhanced differentiation of EPCs toward endothelial lineage. Treatments resulted in antiapoptotic effects and stimulated proliferation and migration and in vitro vascular tube formation through activation of stromal cell-derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4)/phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway. Blood flow recovery and capillary density in murine ischemic hindlimbs were significantly improved in cilostazol-treated, human early EPCs-treated, and cotreatment groups. The effects were attenuated with SDF-1α inhibition. Plasma SDF-1α levels were significantly higher in 3 active treatment groups after surgery, with greatest effects observed in hybrid therapy. The angiogenic effects of transplanted EPCs pretreated with cilostazol ex vivo were superior to untreated EPCs using in vivo Matrigel assay. Implanted EPCs were incorporated into the capillary, with pretreatment or cotreatment with cilostazol resulting in enhanced effects. Taken together, cilostazol promotes a large number of proangiogenic functions in human early EPCs through activation of SDF-1/CXCR4/PI3K/Akt signaling, and hybrid therapy provides a synergistic effect in vivo. Cotreatment may be beneficial in ischemic disease.
Collapse
|
20
|
Chao TH, Chen IC, Li YH, Lee PT, Tseng SY. Plasma Levels of Proprotein Convertase Subtilisin/Kexin Type 9 Are Elevated in Patients With Peripheral Artery Disease and Associated With Metabolic Disorders and Dysfunction in Circulating Progenitor Cells. J Am Heart Assoc 2016; 5:JAHA.116.003497. [PMID: 27207972 PMCID: PMC4889209 DOI: 10.1161/jaha.116.003497] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) is involved in cholesterol homeostasis, inflammation, and oxidative stress. This study investigated the association of plasma PCSK9 levels with the presence and severity of peripheral artery disease (PAD) and with parameters of endothelial homeostasis. METHODS AND RESULTS A post hoc analysis of 2 randomized trials (115 patients, 44 with PAD and 71 without atherosclerotic disease) was conducted. Patients with PAD had significantly higher plasma PCSK9 levels than those without (471.6±29.6 versus 302.4±16.1 ng/mL, P<0.001). Parameters for glucose homeostasis, endothelial progenitor cell functions, apoptotic circulating endothelial cell counts, and plasma levels of vascular endothelial growth factor-A165 and oxidized low-density lipoprotein were correlated with PCSK9 concentration. By multivariable linear regression analysis, presence of PAD, plasma glucose or hemoglobin A1c levels, apoptotic circulating endothelial cell counts, and vascular endothelial growth factor-A165 concentration were found to be associated with PCSK9 levels after multivariable adjustment. Patients with extensive involvement of PAD or with severe PAD had significantly higher PCSK9 levels than those without PAD. Computed tomographic angiography showed that the numbers of chronic total occlusion sites and vessels involved were positively associated with PCSK9 levels in patients with PAD (r=0.40, P=0.01, and r=0.36, P=0.02, respectively). CONCLUSION PCSK9 levels were significantly higher in patients with PAD, especially those with advanced PAD. Further large-scale studies examining the effect of PCSK9-targeting therapies or the modification of PCSK9 levels on cardiovascular outcomes in this clinical setting are warranted. CLINICAL TRIAL REGISTRATION Cohort 1: URL: ClinicalTrials.gov. Unique identifier: NCT01952756; cohort 2: URL: ClinicalTrials.gov. Unique identifier: NCT02194686.
Collapse
Affiliation(s)
- Ting-Hsing Chao
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - I-Chih Chen
- Department of Internal Medicine, Tainan Municipal Hospital, Tainan, Taiwan
| | - Yi-Heng Li
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Po-Tseng Lee
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Shih-Ya Tseng
- Department of Biological Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|