1
|
Chen G, Yu C, Shi Y, Cai D, Zhou B. Transfer RNA-derived fragment tRF-36 modulates varicose vein progression via human vascular smooth muscle cell Notch signaling. Open Life Sci 2025; 20:20251075. [PMID: 40291782 PMCID: PMC12032976 DOI: 10.1515/biol-2025-1075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/15/2025] [Accepted: 02/11/2025] [Indexed: 04/30/2025] Open
Abstract
Varicose veins are a prevalent vascular disorder affecting millions of individuals worldwide, and we previously reported transfer RNA-derived fragment (tRF) involvement in varicose veins. This study investigated the role of tRF-36 in varicose vein pathogenesis. Varicose veins and adjacent normal vascular tissues were collected to measure the expression of Notch 1, 2, and 3 and the smooth muscle cell (SMC) markers SMA-α, and SM22α. Human vascular SMCs (HVSMCs) were transfected to alter tRF-36 levels and examine the effects on Notch 1-3, tRF-36, SMA-α, and SM22α expression. Notch 1-3 and tRF-36 levels were higher in varicose veins than in adjacent normal vascular tissues. tRF-36 knockdown decreased HVSMC viability, downregulated Notch 1, 2, and 3 expression, and upregulated SMC markers (SMA-α and SM22α) compared with control HVSMCs. When the Notch pathway was inhibited, the expression of tRF-36 was significantly reduced. Additionally, Notch pathway inhibition showed similar effects to tRF-36 knockdown on HVSMC viability and the expression of SMA-α and SM22α. Furthermore, a Notch pathway inhibitor reversed the effects of the tRF-36 mimic on HVSMCs. Our study suggests a critical role for tRF-36 in varicose veins and demonstrates that tRF-36 knockdown may suppress varicose vein progression by inhibiting the Notch signaling pathway.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Vascular Surgery, Shanghai East Hospital Affiliated to Tongji University School of Medicine,
No. 150, Jimo Road, Pudong New Area, Shanghai, 200120, P.R. China
| | - Chong Yu
- Department of Vascular Surgery, Shanghai East Hospital Affiliated to Tongji University School of Medicine,
No. 150, Jimo Road, Pudong New Area, Shanghai, 200120, P.R. China
| | - Yu Shi
- Department of Vascular Surgery, Shanghai East Hospital Affiliated to Tongji University School of Medicine,
No. 150, Jimo Road, Pudong New Area, Shanghai, 200120, P.R. China
| | - Danna Cai
- Department of Nursing, Shanghai East Hospital Affiliated to Tongji University School of Medicine,
Shanghai, 200120, P.R. China
| | - Bin Zhou
- Department of Vascular Surgery, Shanghai East Hospital Affiliated to Tongji University School of Medicine,
No. 150, Jimo Road, Pudong New Area, Shanghai, 200120, P.R. China
| |
Collapse
|
2
|
Sarı-Tunel F, Demirkan A, Vural B, Yıldız CE, Komurcu-Bayrak E. Omics Data Integration Uncovers mRNA-miRNA Interaction Regions in Genes Associated with Chronic Venous Insufficiency. Genes (Basel) 2024; 16:40. [PMID: 39858587 PMCID: PMC11765502 DOI: 10.3390/genes16010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Chronic venous insufficiency (CVI), a chronic vascular dysfunction, is a common health problem that causes serious complications such as painful varicose veins and even skin ulcers. Identifying the underlying genetic and epigenetic factors is important for improving the quality of life of individuals with CVI. In the literature, many genes, variants, and miRNAs associated with CVI have been identified through genomic and transcriptomic studies. Despite molecular pathogenesis studies, how the genes associated with CVI are regulated by miRNAs and the effect of variants in binding regions on expression levels are still not fully understood. In this study, previously identified genes, variants, and miRNAs associated with CVI, common variants in the mRNA-miRNA binding regions, were investigated using in silico analyses. Methods: For this purpose, miRNA research tools, MBS (miRNA binding site) database, genome browsers, and the eQTL Calculator in the GTEx portal were used. Results: We identified SNVs associated with CVI that may play a direct role in the miRNA-mediated regulation of the ZNF664, COL1A2, HFE, MDN, MTHFR, SRPX, TDRD5, TSPYL4, VEGFA, and APOE genes. In addition, when the common SNVs in the mRNA binding region of 75 unique CVI related-miRNAs in five candidate genes associated with CVI were examined, seven miRNAs associated with the expression profiles of ABCA1, PIEZO1, and CASZ1 genes were identified. Conclusions: In conclusion, the relationship between genetic markers identified in the literature that play a role in the pathogenesis of the CVI and the expression profiles was evaluated for the first time in the mRNA-miRNA interaction axis.
Collapse
Affiliation(s)
- Fatma Sarı-Tunel
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey; (F.S.-T.); (B.V.)
- Graduate School Institute of Health Sciences, Istanbul University, 34093 Istanbul, Turkey
| | - Ayse Demirkan
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, School of Biosciences and Medicine and People-Centred AI Institute, University of Surrey, Guildford GU2 7XH, UK
| | - Burcak Vural
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey; (F.S.-T.); (B.V.)
| | - Cenk Eray Yıldız
- Department of Cardiovascular Surgery, Institute of Cardiology, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey;
| | - Evrim Komurcu-Bayrak
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey;
| |
Collapse
|
3
|
Ageed FEM, Tifow FA, Ibrahim LA, Ismael AB, Balcıoğlu Ö, Özcem B, Cobanogullari H, Yılmaz S, Ergören MÇ. Molecular insights into Wnt3a and Wnt5a gene expression in venous insufficiency. Mol Biol Rep 2024; 52:53. [PMID: 39680245 DOI: 10.1007/s11033-024-10153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Chronic venous insufficiency (CVI) manifests as morphological and functional abnormalities in the venous system, primarily affecting the lower extremities and presenting as leg heaviness, oedema, and varicose veins. CVI is a common vascular disorder characterised by impaired blood flow in the veins, often leading to various clinical manifestations. To better understand the additional underlying mechanisms of CVI, it is essential to explore the role of Wnt proteins, which play a crucial role in regulating signalling processes. This study aimed to investigate the expression levels of the Wnt3a and Wnt5a genes using real-time PCR in patients with venous insufficiency compared to acontrol group. METHODS AND RESULTS 68 participants were included, comprising 29 controls and 39 patients with venous insufficiency from Near East University Hospital. Real-time PCR was utilised for gene expression analysis on a segment of the great saphenous vein biopsy, encompassing all vascular layers, from each participant in both groups. With a significance threshold of p < 0.05, the analysis revealed a significant difference in Wnt3a gene expression (p ₌ 0.0007) and a nonsignificant difference in Wnt5a expression levels (p ₌ 0.5726) between patients with venous insufficiency and the healthy control group. CONCLUSION This study indicates fluctuations in the Wnt genes in varicose vein biopsies compared to healthy veins. Consequently, further research is essential to elucidate whether the dysregulation of the Wnt pathway induces venous insufficiency or vice versa. This may facilitate targeted interventions addressing its fundamental molecular aberrations.
Collapse
Affiliation(s)
- Fatima Eltayb M Ageed
- Faculty of Medicine, Department of Medical Genetics, Near East University, Nicosia, 99138, Cyprus
| | - Fadumo Ali Tifow
- Faculty of Medicine, Department of Medical Genetics, Near East University, Nicosia, 99138, Cyprus
| | - Leylo Abdullahi Ibrahim
- Faculty of Medicine, Department of Medical Genetics, Near East University, Nicosia, 99138, Cyprus
| | - Aya B Ismael
- Faculty of Medicine, Department of Medical Genetics, Near East University, Nicosia, 99138, Cyprus
| | - Özlem Balcıoğlu
- Faculty of Medicine, Department of Cardiovascular Surgery, Near East University, Nicosia, 99138, Cyprus
| | - Barçın Özcem
- Faculty of Medicine, Department of Cardiovascular Surgery, Near East University, Nicosia, 99138, Cyprus
| | - Havva Cobanogullari
- Laboratory of Medical Genetics, Near East University, Near East University Hospital, Nicosia, 99138, Cyprus
| | - Selma Yılmaz
- Faculty of Medicine, Department of Medical Genetics, Near East University, Nicosia, 99138, Cyprus
| | - Mahmut Çerkez Ergören
- Faculty of Medicine, Department of Medical Genetics, Near East University, Nicosia, 99138, Cyprus.
- Faculty of Art and Sciences, Department of Biological Sciences, Eastern Mediterranean University, Famagusta, Cyprus.
| |
Collapse
|
4
|
Diaz JA, Gianesini S, Khalil RA. Glycocalyx disruption, endothelial dysfunction and vascular remodeling as underlying mechanisms and treatment targets of chronic venous disease. INT ANGIOL 2024; 43:563-590. [PMID: 39873224 PMCID: PMC11839207 DOI: 10.23736/s0392-9590.24.05339-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The glycocalyx is an essential structural and functional component of endothelial cells. Extensive hemodynamic changes cause endothelial glycocalyx disruption and vascular dysfunction, leading to multiple arterial and venous disorders. Chronic venous disease (CVD) is a common disorder of the lower extremities with major health and socio-economic implications, but complex pathophysiology. Genetic aberrations accentuated by environmental factors, behavioral tendencies, and hormonal disturbances promote venous reflux, valve incompetence, and venous blood stasis. Increased venous hydrostatic pressure and changes in shear-stress cause glycocalyx injury, endothelial dysfunction, secretion of adhesion molecules, leukocyte recruitment/activation, and release of cytokines, chemokines, and hypoxia-inducible factor, causing smooth muscle cell switch from contractile to synthetic proliferative phenotype, imbalance in matrix metalloproteinases (MMPs), degradation of collagen and elastin, and venous tissue remodeling, leading to venous dilation and varicose veins. In the advanced stages of CVD, leukocyte infiltration of the vein wall causes progressive inflammation, fibrosis, disruption of junctional proteins, accumulation of tissue metabolites and reactive oxygen and nitrogen species, and iron deposition, leading to skin changes and venous leg ulcer (VLU). CVD management includes compression stockings, venotonics, and surgical intervention. In addition to its antithrombotic and fibrinolytic properties, literature suggests sulodexide benefits in reducing inflammation, promoting VLU healing, improving endothelial function, exhibiting venotonic properties, and inhibiting MMP-9. Understanding the role of glycocalyx, endothelial dysfunction, and vascular remodeling should help delineate the underlying mechanisms and develop improved biomarkers and targeted therapy for CVD and VLU.
Collapse
Affiliation(s)
- Jose A. Diaz
- Division of Surgical Research, Light Surgical Research and Training Laboratory, Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sergio Gianesini
- Vascular Diseases Center, Translational Surgery Unit, University of Ferrara, Ferrara, Italy, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Raouf A. Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Rojas MG, Pereira-Simon S, Zigmond ZM, Varona Santos J, Perla M, Santos Falcon N, Stoyell-Conti FF, Salama A, Yang X, Long X, Duque JC, Salman LH, Tabbara M, Martinez L, Vazquez-Padron RI. Single-Cell Analyses Offer Insights into the Different Remodeling Programs of Arteries and Veins. Cells 2024; 13:793. [PMID: 38786017 PMCID: PMC11119253 DOI: 10.3390/cells13100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Arteries and veins develop different types of occlusive diseases and respond differently to injury. The biological reasons for this discrepancy are not well understood, which is a limiting factor for the development of vein-targeted therapies. This study contrasts human peripheral arteries and veins at the single-cell level, with a focus on cell populations with remodeling potential. Upper arm arteries (brachial) and veins (basilic/cephalic) from 30 organ donors were compared using a combination of bulk and single-cell RNA sequencing, proteomics, flow cytometry, and histology. The cellular atlases of six arteries and veins demonstrated a 7.8× higher proportion of contractile smooth muscle cells (SMCs) in arteries and a trend toward more modulated SMCs. In contrast, veins showed a higher abundance of endothelial cells, pericytes, and macrophages, as well as an increasing trend in fibroblasts. Activated fibroblasts had similar proportions in both types of vessels but with significant differences in gene expression. Modulated SMCs and activated fibroblasts were characterized by the upregulation of MYH10, FN1, COL8A1, and ITGA10. Activated fibroblasts also expressed F2R, POSTN, and COMP and were confirmed by F2R/CD90 flow cytometry. Activated fibroblasts from veins were the top producers of collagens among all fibroblast populations from both types of vessels. Venous fibroblasts were also highly angiogenic, proinflammatory, and hyper-responders to reactive oxygen species. Differences in wall structure further explain the significant contribution of fibroblast populations to remodeling in veins. Fibroblasts are almost exclusively located outside the external elastic lamina in arteries, while widely distributed throughout the venous wall. In line with the above, ECM-targeted proteomics confirmed a higher abundance of fibrillar collagens in veins vs. more basement ECM components in arteries. The distinct cellular compositions and transcriptional programs of reparative populations in arteries and veins may explain differences in acute and chronic wall remodeling between vessels. This information may be relevant for the development of antistenotic therapies.
Collapse
Affiliation(s)
- Miguel G. Rojas
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Simone Pereira-Simon
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | | | - Javier Varona Santos
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Mikael Perla
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Nieves Santos Falcon
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Filipe F. Stoyell-Conti
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Alghidak Salama
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Xiaofeng Yang
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xiaochun Long
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Juan C. Duque
- Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Loay H. Salman
- Division of Nephrology and Hypertension, Albany Medical College, Albany, NY 12208, USA
| | - Marwan Tabbara
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Laisel Martinez
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
| | - Roberto I. Vazquez-Padron
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.G.R.); (S.P.-S.); (J.V.S.); (A.S.)
- Bruce W. Carter Veterans Affairs Medical Center, Miami, FL 33125, USA;
| |
Collapse
|
6
|
Chu H, Qin Y, Qiu T, Zhou S, Na Z, Sun Y, Xu Y, Zhong Y. Phenotype and function of smooth muscle cells derived from the human normal great saphenous vein in response to hypoxia. Phlebology 2024; 39:96-107. [PMID: 37921696 DOI: 10.1177/02683555231211990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
OBJECTIVE The contribution of hypoxia to the pathophysiology of vascular smooth muscle cells (VSMCs) has not yet been fully elucidated. This study evaluated the effect of hypoxia on the phenotype and function of SMCs derived from the human normal great saphenous veins (NGSVs). METHODS Fifteen NGSV tissue samples were collected. SMCs were isolated and cultured. Proliferation, migration, adhesion, senescence, and the structure of cytoskeletal filaments in SMCs were observed. mRNA and protein expression of Bax, Bcl-2, caspase-3, matrix metalloproteinases (MMP)-2, MMP-9, tissue inhibitor of metalloproteinases (TIMP)-1, and TIMP-2 was detected by fluorescent quantitative polymerase chain reaction and immunoblotting in the cobalt chloride (CoCl2) and the control groups. RESULTS A decrease in the number of cytoskeletal filaments was observed. mRNA and protein expression of Bas and caspase-3 was significantly decreased, while the quantity of proliferation, migration, adhesion, senescence, and mRNA and protein expression of Bcl-2, MMP-2, MMP-9, TIMP-1, and TIMP-2 in SMCs in the CoCl2 group were significantly increased compared with the control group. CONCLUSION Under hypoxic conditions, the phenotype and function of SMCs derived from the human NGSVs were dysregulated, suggesting that VSMCs switch from the contractile phenotype to the secretory or synthetic phenotype, and more dedifferentiate, resulting in extracellular matrix deposition and apoptotic decrease through the intrinsic pathway.
Collapse
Affiliation(s)
- Haibo Chu
- Department of General Surgery, Jiaozhou Branch of Shanghai East Hospital, Tongji University, Qingdao, China
| | - Yanyan Qin
- Department of General Surgery, Jiaozhou Branch of Shanghai East Hospital, Tongji University, Qingdao, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Tianzhen Qiu
- Department of General Surgery, Jiaozhou Branch of Shanghai East Hospital, Tongji University, Qingdao, China
| | - Shunchang Zhou
- Department of General Surgery, Jiaozhou Branch of Shanghai East Hospital, Tongji University, Qingdao, China
| | - Zhang Na
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China
| | - Yanping Sun
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China
| | - Yongbo Xu
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
7
|
Biomechanical stretch-induced CLOCK upregulation in venous smooth muscle cells promotes phenotypic and functional transformation. Vascul Pharmacol 2022; 146:107097. [PMID: 35963524 DOI: 10.1016/j.vph.2022.107097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND A chronic change in hemodynamic forces might activate the pathophysiological process of maladaptive venous remodeling. Biomechanical stretching stimulates venous smooth muscle cells (SMCs) in the media, and biomechanical loads exceeding physiological levels affect the intrinsic circadian rhythm and cellular phenotype. This study aimed to investigate the changes in the expression patterns of circadian clock genes under biomechanical stretching and their role in the regulation of the SMC phenotype. METHODS Circadian genes were detected in venous specimens and venous SMCs from patients with varicose veins (VVs) and patients with autologous vein grafts (normal veins). Molecular mechanism studies of SMC phenotypic switching under biomechanical stretching were performed in human umbilical venous SMCs (HUVSMCs). RESULTS CLOCK upregulation was observed in VVs. The circadian rhythm was disrupted in venous SMCs derived from VVs. In addition, CLOCK expression and cell proliferation and migration were increased in HUVSMCs exposed to biomechanical stretch. CLOCK overexpression activated NF-κB signaling and phenotypic transformation in HUVSMCs, whereas CLOCK depletion had inhibitory effects on these pathways. Further experiments revealed that the CLOCK protein regulates phenotypic and functional transformation via the RHOA/ROCK1 pathway. CONCLUSIONS Our results demonstrate that CLOCK is a crucial regulator of the SMC phenotype under mechanical stretch. The CLOCK/RHOA/ROCK1 pathway is important in phenotypic adaptation, and targeting RHOA/ROCK1 could potentially reverse stretch-induced phenotypic switching.
Collapse
|
8
|
Diaz JA. Verständnis, Prävention und Behandlung von venösen und lymphatischen Erkrankungen basieren auf der Arbeit von Grundlagenforschern. PHLEBOLOGIE 2022. [DOI: 10.1055/a-1853-2048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Zusammenfassung
Zweck Die Rolle der Grundlagenforschung in allen Bereichen der Medizin war, ist und wird auch immer kritisch sein. Die Grundlagenforschung leistet einen Beitrag zu Wissen und Fortschritt. In der Phlebologie ist es nicht anders. Das Manuskript beschreibt die neuesten Errungenschaften der Grundlagenforschung zum Thema Phlebologie.
Methode Der vorliegende Beitrag beleuchtet Publikationen mit dem Thema Grundlagenforschung in der Phlebologie aufgrund einer PubMed-Suche. Die gefundenen Artikel sowie die verschiedenen Schritte, die für Grundlagenforschung angewendet werden, werden diskutiert. Die Relevanz dieser Arbeiten in Bezug auf die tägliche Arbeit in der Phlebologie wird beleuchtet, insbesondere in Bezug auf die Veränderungen der Venenklappen, der Venenwand und den darauffolgenden Störungen des Blutstroms.
Ergebnisse Veränderte Venenwände bei Varizen sind das Ergebnis eines Umbauprozesses aufgrund von Veränderungen der Venenwand auf Zellebene sowie im Interstitium. An diesem Prozess sind glatte Muskelzellen beteiligt. Ferner wurde eine Transformation vom kontraktilen zum sekretorischen Phänotyp beschrieben. In diesem Umbaustadium sind Matrix-Metalloproteinasen (MMP) aktiv beteiligt. Sie tragen zur beobachteten endgültigen Veränderung der Venenwand bei Varizen bei. Die Eigenschaften des Blutstroms und die Funktion der Venenklappen haben sich als zusammenhängendes System erwiesen.
Schlussfolgerungen Die wissenschaftliche Methode ist der Grundpfeiler der Grundlagenforschung. Varizen entstehen durch einen veränderten Blutstrom und einen Umbau der Venenwand.
Collapse
Affiliation(s)
- José Antonio Diaz
- Division of Surgical Research, Light Surgical Research and Training Laboratory, Vanderbilt University Medical Center, Nashville, USA
| |
Collapse
|
9
|
Molnár AÁ, Nádasy GL, Dörnyei G, Patai BB, Delfavero J, Fülöp GÁ, Kirkpatrick AC, Ungvári Z, Merkely B. The aging venous system: from varicosities to vascular cognitive impairment. GeroScience 2021; 43:2761-2784. [PMID: 34762274 PMCID: PMC8602591 DOI: 10.1007/s11357-021-00475-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 10/25/2022] Open
Abstract
Aging-induced pathological alterations of the circulatory system play a critical role in morbidity and mortality of older adults. While the importance of cellular and molecular mechanisms of arterial aging for increased cardiovascular risk in older adults is increasingly appreciated, aging processes of veins are much less studied and understood than those of arteries. In this review, age-related cellular and morphological alterations in the venous system are presented. Similarities and dissimilarities between arterial and venous aging are highlighted, and shared molecular mechanisms of arterial and venous aging are considered. The pathogenesis of venous diseases affecting older adults, including varicose veins, chronic venous insufficiency, and deep vein thrombosis, is discussed, and the potential contribution of venous pathologies to the onset of vascular cognitive impairment and neurodegenerative diseases is emphasized. It is our hope that a greater appreciation of the cellular and molecular processes of vascular aging will stimulate further investigation into strategies aimed at preventing or retarding age-related venous pathologies.
Collapse
Affiliation(s)
- Andrea Ágnes Molnár
- Heart and Vascular Center, Semmelweis University, Városmajor Street 68, 1121, Budapest, Hungary.
| | | | - Gabriella Dörnyei
- Department of Morphology and Physiology, Health Sciences Faculty, Semmelweis University, Budapest, Hungary
| | | | - Jordan Delfavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center On Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gábor Áron Fülöp
- Heart and Vascular Center, Semmelweis University, Városmajor Street 68, 1121, Budapest, Hungary
| | - Angelia C Kirkpatrick
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Veterans Affairs Medical Center, 921 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Zoltán Ungvári
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center On Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor Street 68, 1121, Budapest, Hungary
| |
Collapse
|
10
|
Li K, Yu G, Xu Y, Chu H, Zhong Y, Zhan H. Phenotypic and Functional Transformation in Smooth Muscle Cells Derived from a Superficial Thrombophlebitis-affected Vein Wall. Ann Vasc Surg 2021; 79:335-347. [PMID: 34648856 DOI: 10.1016/j.avsg.2021.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Superficial thrombophlebitis (ST) is a frequent pathology, but its exact incidence remains to be determined. This study tested the hypothesis whether relationships exist among smooth muscle cells (SMCs) derived from ST, varicose great saphenous veins (VGSVs), and normal great saphenous veins (GSVs). METHODS Forty-one samples of ST, VGSVs, and GSVs were collected. SMCs were isolated and cultured. Proliferation, migration, adhesion, and senescence in SMCs from the three vein walls were compared by various methods. Bax, Bcl-2, caspase-3, matrix metalloproteinase-2 (MMP-2), MMP-9, tissue inhibitor of metalloproteinase-1 (TIMP-1), and TIMP-2 messenger RNA (mRNA) and protein expressions were detected by fluorescence quantitative PCR and Western blot. RESULTS An obvious decrease in cytoskeletal filaments was observed in thrombophlebitic vascular smooth muscle cells (TVSMCs). The quantity of proliferation, migration, adhesion, and senescence in TVSMCs was significantly higher than in varicose vascular smooth muscle cells and normal vascular smooth muscle cells (NVSMCs) (all P < 0.05). Bax and caspase-3 mRNA and protein expression were decreased, while Bcl-2 mRNA and protein expression were increased in the TVSMCs compared with the varicose vascular smooth muscle cells and the NVSMCs (all P < 0.05). MMP-2, MMP-9, TIMP-1, and TIMP-2 mRNA and protein expression were significantly increased in the TVSMCs compared with the VVGSVs and the NVSMCs (all P < 0.05). CONCLUSION SMCs derived from ST are more dedifferentiated and demonstrate increased cell proliferation, migration, adhesion, and senescence, as well as obviously decreased cytoskeletal filaments. These results suggest that the phenotypic and functional differences could be related to the presence of atrophic and hypertrophic vein segments during the disease course among SMCs derived from ST, VGSVs, and GSVs.
Collapse
Affiliation(s)
- Kun Li
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China.; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Guoting Yu
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China.; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongbo Xu
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China
| | - Haibo Chu
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China..
| | - Hanxiang Zhan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China..
| | | |
Collapse
|
11
|
Yu G, Li K, Xu Y, Chu H, Zhan H, Zhong Y. The expression of matrix metalloproteinases and their tissue inhibitors in the vein wall following superficial venous thrombosis. Phlebology 2021; 37:63-71. [PMID: 34494484 DOI: 10.1177/02683555211043332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Superficial venous thrombosis (SVT) is the complications of varicose great saphenous veins (VGSVs), but its pathogenesis remains unclear. This study was designed to measure the changes in expression of matrix metalloproteinases (MMPs) and the tissue inhibitor of metalloproteinases (TIMPs) from SVT, VGSVs, and great saphenous veins (GSVs). METHODS In the venous walls of the three groups, the expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 proteins, protein-positive expression ratios, mRNA expression, and protein expression were determined by immunohistochemistry, polymerase chain reaction, and western blot. RESULTS The MMP-2, MMP-9, TIMP-1, and TIMP-2 protein-positive expression ratios, mRNA and protein expression in the SVT group were significantly higher than those in the VGSV and the GSV groups. The corresponding expression in the VGSV group were significantly higher than those in the GSV group. CONCLUSION Disequilibrium of MMPs and TIMPs in SVT wall occurs due to underlying high hydrostatic pressure and inflammation. These results suggested that MMPs and TIMPs participate in the process of venous wall remodeling.
Collapse
Affiliation(s)
- Guoting Yu
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Kun Li
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongbo Xu
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China
| | - Haibo Chu
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China
| | - Hanxiang Zhan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
12
|
Cao Y, Cao Z, Wang W, Jie X, Li L. MicroRNA‑199a‑5p regulates FOXC2 to control human vascular smooth muscle cell phenotypic switch. Mol Med Rep 2021; 24:627. [PMID: 34212977 PMCID: PMC8281299 DOI: 10.3892/mmr.2021.12266] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/26/2021] [Indexed: 01/18/2023] Open
Abstract
Varicose veins are among the most common disorders of the vascular system; however, the pathogenesis of varicose veins remains unclear. The present study aimed to investigate the roles of microRNA (miR)‑199a‑5p in varicose veins and in the phenotypic transition of vascular smooth muscle cells (VSMCs). Bioinformatics analysis confirmed that miR‑199a‑5p had target sites on the forkhead box C2 (FOXC2) 3'‑untranslated region. Reverse transcription‑quantitative PCR (RT‑qPCR) and western blotting were used to detect the expression levels of miR‑199a‑5p and FOXC2 in varicose vein and normal great saphenous vein tissues. Cell Counting Kit‑8 and Transwell migration assays were performed to validate the effects of miR‑199a‑5p on VSMCs. Contractile markers, such as smooth muscle 22α, calponin, smooth muscle actin and myosin heavy chain 11 were used to detect phenotypic transition. RT‑qPCR revealed that miR‑199a‑5p was downregulated in varicose veins compared with expression in normal great saphenous veins, whereas FOXC2 was upregulated in varicose veins. In addition, biomarkers of the VSMC contractile phenotype were downregulated in varicose veins. Overexpression of miR‑199a‑5p by mimics suppressed VSMC proliferation and migration, whereas depletion of miR‑199a‑5p enhanced VSMC proliferation and migration. Notably, the effects caused by miR‑199a‑5p could be reversed by FOXC2 overexpression. Dual luciferase reporter analysis confirmed that FOXC2 was a target of miR‑199a‑5p. In conclusion, miR‑199a‑5p may be a novel regulator of phenotypic switching in VSMCs by targeting FOXC2 during varicose vein formation.
Collapse
Affiliation(s)
- Yushi Cao
- Department of Hepatobiliary Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhongwen Cao
- Department of Vascular Surgery, Qianwei Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| | - Weitie Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xiangyu Jie
- Department of Vascular Surgery, Qianwei Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| | - Lei Li
- Department of Vascular Surgery, Qianwei Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
13
|
Ortega MA, Fraile-Martínez O, García-Montero C, Álvarez-Mon MA, Chaowen C, Ruiz-Grande F, Pekarek L, Monserrat J, Asúnsolo A, García-Honduvilla N, Álvarez-Mon M, Bujan J. Understanding Chronic Venous Disease: A Critical Overview of Its Pathophysiology and Medical Management. J Clin Med 2021; 10:3239. [PMID: 34362022 PMCID: PMC8348673 DOI: 10.3390/jcm10153239] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 01/19/2023] Open
Abstract
Chronic venous disease (CVD) is a multifactorial condition affecting an important percentage of the global population. It ranges from mild clinical signs, such as telangiectasias or reticular veins, to severe manifestations, such as venous ulcerations. However, varicose veins (VVs) are the most common manifestation of CVD. The explicit mechanisms of the disease are not well-understood. It seems that genetics and a plethora of environmental agents play an important role in the development and progression of CVD. The exposure to these factors leads to altered hemodynamics of the venous system, described as ambulatory venous hypertension, therefore promoting microcirculatory changes, inflammatory responses, hypoxia, venous wall remodeling, and epigenetic variations, even with important systemic implications. Thus, a proper clinical management of patients with CVD is essential to prevent potential harms of the disease, which also entails a significant loss of the quality of life in these individuals. Hence, the aim of the present review is to collect the current knowledge of CVD, including its epidemiology, etiology, and risk factors, but emphasizing the pathophysiology and medical care of these patients, including clinical manifestations, diagnosis, and treatments. Furthermore, future directions will also be covered in this work in order to provide potential fields to explore in the context of CVD.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.O.); (O.F.-M.); (C.G.-M.); (C.C.); (L.P.); (J.M.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.O.); (O.F.-M.); (C.G.-M.); (C.C.); (L.P.); (J.M.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.O.); (O.F.-M.); (C.G.-M.); (C.C.); (L.P.); (J.M.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Miguel A. Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.O.); (O.F.-M.); (C.G.-M.); (C.C.); (L.P.); (J.M.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Chen Chaowen
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.O.); (O.F.-M.); (C.G.-M.); (C.C.); (L.P.); (J.M.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Fernando Ruiz-Grande
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain;
- Department of Vascular Surgery, Príncipe de Asturias Hospital, 28801 Alcalá de Henares, Spain
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.O.); (O.F.-M.); (C.G.-M.); (C.C.); (L.P.); (J.M.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.O.); (O.F.-M.); (C.G.-M.); (C.C.); (L.P.); (J.M.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Angel Asúnsolo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain;
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, The City University of New York, New York, NY 10027, USA
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.O.); (O.F.-M.); (C.G.-M.); (C.C.); (L.P.); (J.M.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.O.); (O.F.-M.); (C.G.-M.); (C.C.); (L.P.); (J.M.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Immune System Diseases—Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.O.); (O.F.-M.); (C.G.-M.); (C.C.); (L.P.); (J.M.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| |
Collapse
|
14
|
Wang Z, Qi Y, Wang R, Wu W, Li Z, Wang M, Liu R, Zhang C, Li W, Wang S. IGFBP6 regulates vascular smooth muscle cell proliferation and morphology via cyclin E-CDK2. J Cell Physiol 2020; 235:9538-9556. [PMID: 32529639 DOI: 10.1002/jcp.29762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 03/22/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022]
Abstract
Despite the high prevalence of varicose veins, the underlying pathogenesis of this disease remains unclear. The present study aims to explore the role of insulin-like growth factor binding protein 6 (IGFBP6) in vascular smooth muscle cells (VSMCs). Using a protein array approach, we identified several differentially expressed proteins between varicose great saphenous veins and normal great saphenous veins. Bioinformatic analysis showed that IGFBP6 was closely related to cell proliferation. Further validation confirmed that IGFBP6 was one of the most highly expressed proteins in varicose vein tissue. Knocking down IGFBP6 in VSMCs significantly attenuated cell proliferation and induced the S phase arrest during the cell cycle. Further experiments demonstrated that IGFBP6 knockdown increased cyclin E ubiquitination, which reduced expression of cyclin E and phosphorylation of CDK2. Furthermore, IGFBP6 knockdown arrested centrosome replication, which subsequently influenced VSMC morphology. Ultimately, IGFBP6 was validated to be involved in VSMC proliferation in varicose vein tissues. The present study reveals that IGFBP6 is closely correlated with VSMC biological function and provides unprecedented insights into the underlying pathogenesis of varicose veins.
Collapse
Affiliation(s)
- Zhecun Wang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunling Qi
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Wang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weibin Wu
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zilun Li
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mian Wang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruiming Liu
- Laboratory of General Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunxiang Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wen Li
- Laboratory of General Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shenming Wang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Zha B, Qiu P, Zhang C, Li X, Chen Z. GPR30 Promotes the Phenotypic Switching of Vascular Smooth Muscle Cells via Activating the AKT and ERK Pathways. Onco Targets Ther 2020; 13:3801-3808. [PMID: 32440148 PMCID: PMC7212987 DOI: 10.2147/ott.s244128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background Lower extremity varicose veins (LEVVs) are a common venous disorder of venous dilation and tortuosity. The functional integrity of vascular smooth muscle cells (VSMCs), the majority of the cells in venous tissues, and their phenotypic differences play important roles in the occurrence and development of LEVV. However, the underlying mechanism remains unclear. Methods The expression of estrogen receptors ERα and ERβ and G-protein-coupled receptor 30 (GPR30) in LEVV tissues and the role of GPR30 in VSMC phenotypic switching were examined by Western blotting and quantitative real-time PCR. Finally, the related mechanisms underlying LEVVs were explored by Western blotting. Results The serum estradiol content was increased in LEVV patients compared with normal control patients, but the mRNA levels of ERα and ERβ were not significantly different. GPR30 was overexpressed in LEVVs, and high expression of GPR30 promoted the maintenance of a synthetic phenotype in which OPN, MMP-1 and MMP-9 were highly expressed and α-SMA was poorly expressed in VSMCs. Finally, the mechanism by which GPR30 promotes the phenotypic switching of VSMCs is dependent on the ERK1/2 and AKT pathways. Conclusion GPR30 may contribute to the pathogenesis of LEVVs by promoting the maintenance of a synthetic phenotype in VSMCs by activating the ERK1/2 and AKT pathways, and GPR30 might be a novel therapeutic target for clinical LEVV treatment.
Collapse
Affiliation(s)
- Binshan Zha
- Department of Vascular and Thyroid Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Peng Qiu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, and Vascular Center of Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Chenxin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Xinyuan Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, People's Republic of China
| | - Zhiyong Chen
- Department of Vascular and Thyroid Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
16
|
Guo Z, Luo C, Zhu T, Li L, Zhang W. Elevated c-fos expression is correlated with phenotypic switching of human vascular smooth muscle cells derived from lower limb venous varicosities. J Vasc Surg Venous Lymphat Disord 2020; 9:242-251. [PMID: 32360331 DOI: 10.1016/j.jvsv.2020.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/04/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Lower limb venous varicosities (VVs) are clinically common; however, their molecular underpinnings are far from well elucidated. Previous studies have demonstrated that the phenotypic transition of vascular smooth muscle cells (VSMCs) plays a critical role in VV pathogenesis and that c-fos is upregulated in VSMCs from VVs. The present study investigated the histologic and cytologic changes in VVs and the correlation between c-fos upregulation and VSMC phenotypic switching. METHODS Thirty-four patients with VVs (VV group) and 13 patients undergoing coronary artery bypass using autologous great saphenous vein segments (normal vein [NV] group) were enrolled in the present study. The great saphenous veins of both groups were harvested for subsequent experiments. Hematoxylin and eosin staining was performed for vein morphologic analysis. Real-time quantitative polymerase chain reaction, immunohistochemistry, and Western blot assays were used to assess mRNA and protein expression of c-fos, α-smooth muscle actin (α-SMA), and osteopontin (OPN). Simple linear regression was used to evaluate the correlation between c-fos and OPN/α-SMA. Primary VSMCs were isolated from both groups and cultured in vitro. A cell counting kit-8 assay and scratch-wound assay were used to analyze the proliferation and migration abilities of the cells, respectively. RESULTS The mean age of the patients in the NV and VV groups was 61.4 ± 3.8 years and 59.5 ± 10.4 years, respectively. The vein cavities of the VV group were dilated, and the arrangement of the cells was disordered. The tunica media of the VV group was thicker than that of the NV group owing to the accumulation and proliferation of VSMCs. Significantly elevated mRNA levels of c-fos and OPN were observed in the VV group compared with the NV group, and a positive correlation was further demonstrated between the mRNA levels of c-fos and OPN/α-SMA (R2, 0.5524; P < .001). The VSMCs derived from the VV group were more numerous (as shown by the cell counting kit-8 assay) and had a significantly greater migration speed (as shown by the scratch-wound assay) than those derived from the NV group. Moreover, the protein expression of c-fos was significantly upregulated in VSMCs derived from the VV group, and this change was accompanied by a decrease in α-SMA and an increase in OPN expression. CONCLUSIONS Both mRNA and protein expression of c-fos were upregulated in VV specimens, and the phenotypic biomarkers (OPN/α-SMA) were altered concurrently. VSMCs derived from VVs showed increased proliferation and migration abilities. Upregulation of c-fos might play a role in the phenotypic switching of VSMCs and subsequently participate in the pathogenesis of VVs. CLINICAL RELEVANCE C-fos is an immediate early gene owing to the transient and rapid change in its expression in response to stimuli. It is involved in the regulation of cell proliferation, cell growth, and cell movement. In the present study, varicose vein specimens showed increased mRNA and protein expression of c-fos, accompanied by altered phenotypic biomarkers. The upregulation of the c-fos gene in smooth muscle cells cultured from varicose vein specimens might be associated with phenotypic switching and functional disturbance. These results could contribute to the exploration of the molecular mechanisms underlying the pathogenesis of varicose veins and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Zhenyu Guo
- Department of Vascular Surgery Fudan University, Shanghai, People's Republic of China
| | - Chentao Luo
- Department of Cardiac Surgery, Fudan University, Shanghai, People's Republic of China
| | - Ting Zhu
- Department of Vascular Surgery Fudan University, Shanghai, People's Republic of China
| | - Li Li
- Zhongshan Hospital and Department of Vascular Surgery, Huadong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Wan Zhang
- Zhongshan Hospital and Department of Vascular Surgery, Huadong Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
17
|
Zhang C, Li H, Guo X. FOXC2-AS1 regulates phenotypic transition, proliferation and migration of human great saphenous vein smooth muscle cells. Biol Res 2019; 52:59. [PMID: 31801629 PMCID: PMC6894326 DOI: 10.1186/s40659-019-0266-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023] Open
Abstract
Objectives In varicose veins, vascular smooth muscle cells (VSMCs) often shows phenotypic transition and abnormal proliferation and migration. Evidence suggests the FOXC2–Notch pathway may be involved in the pathogenesis of varicose veins. Here, this study aimed to explore the role of long non-coding RNA FOXC2-AS1 (FOXC2 antisense RNA 1) in phenotypic transition, proliferation, and migration of varicose vein-derived VSMCs and to explore whether the FOXC2-Notch pathway was involved in this process. Methods The effect of FOXC2-AS1 on the proliferation and migration of human great saphenous vein smooth muscle cells (SV-SMCs) was analyzed using MTT assay and Transwell migration assay, respectively. The levels of contractile marker SM22α and synthetic marker osteopontin were measured by immunohistochemistry and Western blot to assess the phenotypic transition. Results The human varicose veins showed thickened intima, media and adventitia layers, increased synthetic VSMCs, as well as upregulated FOXC2-AS1 and FOXC2 expression. In vitro assays showed that FOXC2-AS1 overexpression promoted phenotypic transition, proliferation, and migration of SV-SMCs. However, the effect of FOXC2-AS1 overexpression could be abrogated by both FOXC2 silencing and the Notch signaling inhibitor FLI-06. Furthermore, FOXC2-AS1 overexpression activated the Notch pathway by upregulating FOXC2. Conclusion FOXC2-AS1 overexpression promotes phenotypic transition, proliferation, and migration of SV-SMCs, at least partially, by activating the FOXC2-Notch pathway.
Collapse
Affiliation(s)
- Chuang Zhang
- Department of Pathology, Basic Medical College of Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan, China.,Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450002, Henan, China
| | - Huixiang Li
- Department of Pathology, Basic Medical College of Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan, China.
| | - Xueli Guo
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450002, Henan, China
| |
Collapse
|
18
|
Hu X, Hu F, Xu Y, Tang J, Chu H, Zhong Y. Disequilibrium in MMPs and the tissue inhibitor of metalloproteinases in different segments of the varicose great saphenous vein wall. INT ANGIOL 2019; 38:185-193. [PMID: 31058480 DOI: 10.23736/s0392-9590.19.04144-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Varicose great saphenous veins (VGSVs) are a common disorder with a high incidence, but the pathogenesis is unclear. This study was designed to measure the changes in matrix metalloproteinases (MMPs) and the tissue inhibitor of metalloproteinases (TIMPs) in different segments from VGSV walls to determine the relationship between MMPs, TIMPs expression, and expansion of the venous wall. METHODS Twenty-one VGSV and 12 normal great saphenous vein (GSV) specimens were collected. Venous walls in the two groups, expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 proteins, protein-positive expression ratios, mRNA expression, and protein content were determined by immunohistochemistry, PCR, and western blot. RESULTS The MMP-2, MMP-9, TIMP-1, and TIMP-2 protein-positive expression ratios, mRNA expression in the upper, middle, and lower segments in the VGSV group were significantly higher than the corresponding regions in the GSV group, respectively. The MMP-2, MMP-9, TIMP-1, and TIMP-2 protein-positive expression ratios, mRNA expression, and protein concentrations in the lower segments in the VGSV group were also significantly higher than the upper and middle segments in the VGSV group and the corresponding regions in the GSV group, respectively. CONCLUSIONS Under high hemodynamics, disequilibrium of MMPs and TIMPs from VGSVs exists within the upper, middle, and lower segments of VGSVs. These results suggested that MMPs and TIMPs participate in the process of venous wall remodeling and may be one of the mechanisms associated with the formation and development in varicose veins.
Collapse
Affiliation(s)
- Xiaoxuan Hu
- Ningxia Medical University, Yinchuan, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Fuxing Hu
- Center of General Surgery, The 89th Hospital of People's Liberation Army, Weifang, China
| | - Yongbo Xu
- Center of General Surgery, The 89th Hospital of People's Liberation Army, Weifang, China
| | - Jinyuan Tang
- Center of General Surgery, The 89th Hospital of People's Liberation Army, Weifang, China
| | - Haibo Chu
- Center of General Surgery, The 89th Hospital of People's Liberation Army, Weifang, China -
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
19
|
Chemokines and Growth Factors Produced by Lymphocytes in the Incompetent Great Saphenous Vein. Mediators Inflamm 2019; 2019:7057303. [PMID: 30733642 PMCID: PMC6348837 DOI: 10.1155/2019/7057303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 01/21/2023] Open
Abstract
The role of cytokines in the pathogenesis of chronic venous disease (CVD) remains obscure. It has been postulated that oscillatory flow present in incompetent veins causes proinflammatory changes. Our earlier study confirmed this hypothesis. This study is aimed at assessing chemokines and growth factors (GFs) released by lymphocytes in patients with great saphenous vein (GSV) incompetence. In 34 patients exhibiting reflux in GSV, blood was derived from the cubital vein and from the incompetent saphenofemoral junction. In 12 healthy controls, blood was derived from the cubital vein. Lymphocyte culture with and without stimulation by phytohemagglutinin (PHA) was performed. Eotaxin, interleukin 8 (IL-8), macrophage inflammatory protein 1 A and 1B (MIP-1A and MIP-1B), interferon gamma-induced protein (IP-10), monocyte chemoattractant protein-1 (MCP-1), interleukin 5 (IL-5), fibroblast growth factor (FGF), granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), platelet-derived growth factor-BB (PDGF-BB), and vascular endothelial growth factor (VEGF) were assessed in culture supernatants by a Bio-Plex assay. Higher concentrations of eotaxin and G-CSF were revealed in the incompetent GSV, compared with the concentrations in the patients' upper limbs. The concentrations of MIP-1A and MIP-1B were higher in the CVD group while the concentration of VEGF was lower. In the stimulated cultures, the concentration of G-CSF proved higher in the incompetent GSV, as compared with the patients' upper limbs. Between the groups, the concentration of eotaxin was higher in the CVD group, while the IL-5 and MCP-1 concentrations were lower. IL-8, IP-10, FGF, GM-CSF, and PDGF-BB did not reveal any significant differences in concentrations between the samples. These observations suggest that the concentrations of chemokines and GFs are different in the blood of CVD patients. The oscillatory flow present in incompetent veins may play a role in these changes. However, the role of cytokines in CVD requires further study.
Collapse
|
20
|
Hsieh CS, Tsai CT, Chen YH, Chang SN, Hwang JJ, Chuang EY, Wu IH. Global Expression Profiling Identifies a Novel Hyaluronan Synthases 2 Gene in the Pathogenesis of Lower Extremity Varicose Veins. J Clin Med 2018; 7:jcm7120537. [PMID: 30544995 PMCID: PMC6306753 DOI: 10.3390/jcm7120537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/24/2018] [Accepted: 12/07/2018] [Indexed: 11/16/2022] Open
Abstract
Lower extremities varicose veins (VV) are among the most easily recognized venous abnormalities. The genetic mechanism of VV is largely unknown. In this study, we sought to explore the global expressional change of VV and identify novel genes that might play a role in VV. We used next-generation ribonucleic acid (RNA) sequence (RNA seq) technology to study the global messenger RNA expressional change in the venous samples of five diseased and five control patients. We identified several differentially expressed genes, which were further confirmed by conventional reverse transcription polymerase chain reaction (RT-PCR). Using these significant genes we performed in silico pathway analyses and found distinct transcriptional networks, such as angiogenesis, cell adhesion, vascular injury, and carbohydrate metabolisms that might be involved in the mechanism of VV. Among these significant genes, we also found hyaluronan synthases 2 gene (HAS2) played a pivotal role and governed all these pathways. We further confirmed that HAS2 expression was decreased in the venous samples of patients with VV. Finally, we used a zebrafish model with fluorescence emitting vasculature and red blood cells to see the morphological changes of the venous system and blood flow. We found that HAS2 knockdown in zebrafish resulted in dilated venous structural with static venous flow. HAS2 may modulate the transcriptional networks of angiogenesis, cell adhesion, vascular injury, and carbohydrate metabolisms in venous tissues and downregulation of HAS2 may underlie the mechanism of VV.
Collapse
Affiliation(s)
- Chia-Shan Hsieh
- Department of Life Science, Genome and Systems Biology Degree Program, National Taiwan University, Taipei 10617, Taiwan.
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 10055, Taiwan.
| | - Chia-Ti Tsai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei 10002, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| | - Yau-Hung Chen
- Department of Chemistry, Tamkang University, Taipei 25137, Taiwan.
| | - Sheng-Nan Chang
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin 64041, Taiwan.
| | - Juey-Jen Hwang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei 10002, Taiwan.
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin 64041, Taiwan.
| | - Eric Y Chuang
- Department of Life Science, Genome and Systems Biology Degree Program, National Taiwan University, Taipei 10617, Taiwan.
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 10055, Taiwan.
| | - I-Hui Wu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
- Department of Surgery, National Taiwan University Hospital, Taipei, 10002, Taiwan.
| |
Collapse
|
21
|
Jiang X. Silencing of heart and neural crest derivatives expressed transcript 2 attenuates transforming growth factor-β1-enhanced apoptosis of human bronchial epithelial cells. Oncol Lett 2018; 16:4997-5005. [PMID: 30250565 PMCID: PMC6144912 DOI: 10.3892/ol.2018.9299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/22/2018] [Indexed: 01/10/2023] Open
Abstract
Human bronchial epithelial (HBE) cells form the first protective barrier of the airway to protect patients from pulmonary diseases. The present study was performed to illustrate the mechanism underlying the effect of silencing heart and neural crest derivatives expressed transcript 2 (HAND2) on attenuating the transforming growth factor (TGF)-β1-enhanced apoptosis of HBE cells. TGF-β1 (10 µg/ml) was applied to HBE cells, and the HBE cells were transfected with small interfering RNA targeting HAND2 or were transfected with non-specific sequence. Subsequently, cell proliferation was measured using a Cell Counting kit-8 assay, whereas cell cycle and apoptosis status were measured using a flow cytometer. Reverse transcription-quantitative polymerase chain reaction and western blot analyses were performed to detect the expression levels of cell cycle- and apoptosis-related factors. Western blot analysis was also used to detect the phosphorylation levels of extracellular signal-regulated kinase (ERK), P38 and c-Jun-N-terminal kinase (JNK) of mitogen-activated protein kinase (MAPK) pathways. The results showed that TGF-β1 decreased HBE cell proliferation ability, arrested cell cycle at the G2 phase and promoted cell apoptosis with statistical significance. The expression levels of P21 and Cyclin D1 were inhibited, and those of caspase-3, caspase-8 and caspase-9 were promoted by TGF-β1. The phosphorylation levels of ERK, P38 and JNK were increased by TGF-β1. HAND2-silencing significantly alleviated the above functions of TGF-β1 on the HBE cells. In conclusion, the silencing of HAND2 attenuated the TGF-β1-stimulated apoptosis of HBE cells through regulating cell cycle, apoptosis-related factors and ERK/P38/JNK MAPK pathways. This may provide a novel treatment strategy for pulmonary disease, with HAND2 as the novel gene target.
Collapse
Affiliation(s)
- Xiaohui Jiang
- Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|