1
|
Yarbakht M, Sarau G, Xu Y, Fang X, Mirzaei Z, Krüger R, Xiao Y, Usman A, Daniel C, Schiffer M, Christiansen S, Müller-Deile J. Fine particulate matter (PM 2.5) induces microRNA-192-5p causing glomerular damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118280. [PMID: 40373708 DOI: 10.1016/j.ecoenv.2025.118280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/25/2025] [Accepted: 05/04/2025] [Indexed: 05/17/2025]
Abstract
An association between air pollution and the incidence of membranous glomerulonephritis (MGN) has been shown in epidemiological studies. However, the causality of this relationship and data on potential pathomechanisms are still missing. Anti-phospholipase A2 receptor (PLA2R1) antibodies, upregulation of microRNA-192-5p, and decreased expression of its podocyte target nephronectin (NPNT) in patients with MGN have been shown, but the trigger for these regulations remained unknown. The current study aimed to assay the possible role of PM2.5 in the pathogenesis of MGN. In this study, we characterized particulate matter (PM2.5) collected on air filters in Shanghai by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray fluorescence, microwave plasma atomic emission spectroscopy, nanoparticle tracking analysis, and Raman spectroscopy. Cultured human podocytes, zebrafish, and mice were exposed to PM2.5 to assess possible effects on glomerular function and ultrastructure. PM2.5 caused a reduction of podocyte-specific markers and upregulation of microRNA-192-5p. Moreover, NPNT/npnt/Npnt were downregulated, while PLA2R1/pla2r1/Pla2r1 were upregulated. PM2.5 was able to cause edema, proteinuria, and glomerular damage with loosening of the glomerular basement membrane and partial podocyte effacement in zebrafish larvae. BulkRNA seq analysis and qPCR of zebrafish larvae showed an increase in inflammatory response and oxidative stress due to the exposure to PM2.5. Long-term exposure of mice to ambient PM2.5 induced glomerular damage, albuminuria, and upregulation of pulmonary microRNA-192-5p. Therefore, air pollution might be involved in developing MGN through inflammatory pathways and the induction of microRNA-192-5p, which targets gene expression important for glomerular cell function.
Collapse
Affiliation(s)
- Melina Yarbakht
- Department of Nephrology and Hypertension, Uniklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - George Sarau
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden, Germany; Leuchs Emeritus Group, Max Planck Institute for the Science of Light, Erlangen, Germany; Institute for Nanotechnology and Correlative Microscopy eV INAM, Forchheim, Germany
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai China
| | - Xinyi Fang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai China
| | - Zeynab Mirzaei
- Institute for Nanotechnology and Correlative Microscopy eV INAM, Forchheim, Germany
| | - René Krüger
- Department of Nephrology and Hypertension, Uniklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Yalan Xiao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai China
| | - Arslan Usman
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden, Germany
| | - Christoph Daniel
- Department of Nephropathology, Uniklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, Uniklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Silke Christiansen
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden, Germany; Leuchs Emeritus Group, Max Planck Institute for the Science of Light, Erlangen, Germany; Institute for Nanotechnology and Correlative Microscopy eV INAM, Forchheim, Germany; Physics Department, Freie Universität Berlin, Berlin, Germany
| | - Janina Müller-Deile
- Department of Nephrology and Hypertension, Uniklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
2
|
Schenk H, Drummond IA. Kidney development, injury and regeneration-Zebrafish. Curr Top Dev Biol 2025; 163:307-321. [PMID: 40254347 DOI: 10.1016/bs.ctdb.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Acute kidney injury (AKI), acute kidney disease (AKD), and chronic kidney disease (CKD) affect millions worldwide, presenting an escalating health care and economic burden, while current treatments primarily focus on slowing further kidney function loss. Treatment failure can lead to end-stage kidney disease (ESKD), which necessitates kidney replacement therapies, including dialysis-which significantly reduces quality of life-or kidney transplantation. However, limited organ availability extends waiting times to up to 10-15 years in some European countries, such as the United Kingdom and Germany. The urgent need for regenerative therapies that promote kidney recovery and potentially enable the development of de novo human kidneys places the zebrafish as a powerful model organism for these studies. Zebrafish can regenerate kidney function after AKI by forming new nephrons that integrate into the existing tubular network. Using zebrafish to investigate kidney development and injury-induced regeneration allows for the discovery of key pathways involved in renal repair and development. Importantly, adult zebrafish possess a niche of kidney progenitor cells that facilitate regeneration after injury. This chapter provides an overview of kidney development and regeneration mechanisms, highlights current experimental approaches for modeling kidney injury, and explores potential translational implications for human kidney regenerative therapies.
Collapse
Affiliation(s)
- Heiko Schenk
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany; Mount Desert Island Biological Laboratory, Bar Harbor, ME, United States.
| | - Iain A Drummond
- Mount Desert Island Biological Laboratory, Bar Harbor, ME, United States
| |
Collapse
|
3
|
Guaragna MS, Casimiro FMS, Varela P, de S Feltran L, Watanabe A, Neves PDMM, Pesquero JB, Belangero VMS, Nogueira PCK, Onuchic LF. Past and future in vitro and in vivo approaches toward circulating factors and biomarkers in idiopathic nephrotic syndrome. Pediatr Nephrol 2025:10.1007/s00467-024-06643-8. [PMID: 39883133 DOI: 10.1007/s00467-024-06643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025]
Abstract
Predicting the risks of progression to chronic kidney disease (CKD) stage 5 in idiopathic nephrotic syndrome (NS) and recurrence of the disease (rNS) following kidney transplantation (KT) is a key assessment to provide essential management information. NS has been categorized etiologically as genetic and immune-based. A genetic cause can be identified in ~ 30% of children with steroid-resistant NS (SRNS), a finding associated with a very low risk of rNS following KT. In immune-based NS, clinical overlap is observed among steroid-sensitive NS, secondary-resistant NS, and SRNS not associated with disease-causing genetic variants (non-monogenic SRNS). While ~ 50% of SRNS patients with no identified monogenic disease respond to intensified immunosuppressive treatments, the ones that do not respond to this therapy have a high risk of progression to CKD stage 5 and post-KT rNS. Secondary-resistant patients who progress to CKD stage 5 display the highest risk of post-KT rNS. The proposed shared underlying mechanism of the immune-based NS associated with post-KT rNS is based on a systemic circulating factor (CF) that affects glomerular permeability by inducing foot process effacement and focal segmental glomerulosclerosis. However, identifying patients without a detected genetic form who will recur post-KT is a major challenge. Extensive efforts, therefore, have been made to identify CFs and biomarkers potentially capable of predicting the risk of progression to CKD stage 5 and post-KT rNS. This review discusses the in vitro and in vivo approaches employed to date to identify and characterize potential CFs and CF-induced biomarkers of recurrent NS and offers an assessment of their potential to improve outcomes of KT in this patient population.
Collapse
Affiliation(s)
- Mara S Guaragna
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil
- Center for Molecular Biology and Genetic Engineering, State University of Campinas, Campinas, Brazil
| | - Fernanda M S Casimiro
- Center for Diagnosis and Research On Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Patrícia Varela
- Center for Diagnosis and Research On Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luciana de S Feltran
- Division of Pediatric Kidney Transplantation, São Paulo Samaritan Hospital, São Paulo, Brazil
| | - Andreia Watanabe
- Department of Pediatrics, University of São Paulo School of Medicine, São Paulo, Brazil
- Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Precil D M M Neves
- Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Division of Nephrology, University of São Paulo School of Medicine, Avenida Dr. Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil
| | - João B Pesquero
- Center for Diagnosis and Research On Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Vera M S Belangero
- Department of Pediatrics, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Paulo C K Nogueira
- Division of Pediatric Kidney Transplantation, São Paulo Samaritan Hospital, São Paulo, Brazil
- Department of Pediatric Nephrology, São Paulo Federal University, São Paulo, Brazil
| | - Luiz F Onuchic
- Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil.
- Division of Nephrology, University of São Paulo School of Medicine, Avenida Dr. Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil.
| |
Collapse
|
4
|
Schindler M, Endlich N. Zebrafish as a model for podocyte research. Am J Physiol Renal Physiol 2024; 326:F369-F381. [PMID: 38205541 DOI: 10.1152/ajprenal.00335.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Podocytes, specialized postmitotic cells, are central players in various kidney-related diseases. Zebrafish have become a valuable model system for studying podocyte biology because they are genetically easy to manipulate, transparent, and their glomerular structure is similar to that of mammals. This review provides an overview of the knowledge of podocyte biology in zebrafish larvae, with particular focus on their essential contribution to understanding the mechanisms that underlie kidney diseases as well as supporting drug development. In addition, special attention is given to advances in live-imaging techniques allowing the observation of dynamic processes, including podocyte motility, podocyte process behavior, and glomerulus maturation. The review further addresses the functional aspects of podocytes in zebrafish larvae. This includes topics such as glomerular filtration, ultrastructural analyses, and evaluation of podocyte response to nephrotoxic insults. Studies presented in this context have provided important insights into the maintenance and resistance of the glomerular filtration barrier in zebrafish larvae and explored the potential transferability of these findings to mammals such as mice, rats, and most importantly, humans. The recent ability to identify potential therapeutic targets represents a promising new way to identify drugs that could effectively treat podocyte-associated glomerulopathies in humans. In summary, this review gives an overview about the importance of zebrafish as a model for podocyte-related disease and targeted drug development. It also highlights the key role of advanced imaging techniques in transparent zebrafish larvae, improving our understanding of glomerular diseases and the significant potential for translation of these findings to humans.
Collapse
Affiliation(s)
- Maximilian Schindler
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
5
|
Drummond BE, Ercanbrack WS, Wingert RA. Modeling Podocyte Ontogeny and Podocytopathies with the Zebrafish. J Dev Biol 2023; 11:9. [PMID: 36810461 PMCID: PMC9944608 DOI: 10.3390/jdb11010009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Podocytes are exquisitely fashioned kidney cells that serve an essential role in the process of blood filtration. Congenital malformation or damage to podocytes has dire consequences and initiates a cascade of pathological changes leading to renal disease states known as podocytopathies. In addition, animal models have been integral to discovering the molecular pathways that direct the development of podocytes. In this review, we explore how researchers have used the zebrafish to illuminate new insights about the processes of podocyte ontogeny, model podocytopathies, and create opportunities to discover future therapies.
Collapse
Affiliation(s)
| | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
6
|
Deng X, Zhou C, Liao R, Guo Y, Wang Y, Li G, Wu J, Xu H, Hu Z, Pei G, Liao W, Yao Y, Yang Q, Zeng R, Xu G. Separated parabiont reveals the fate and lifespan of peripheral-derived immune cells in normal and ischaemia-induced injured kidneys. Open Biol 2021; 11:200340. [PMID: 34102079 PMCID: PMC8187026 DOI: 10.1098/rsob.200340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Immune cell infiltration plays a key role in acute kidney injury (AKI) to chronic kidney disease (CKD) progression. T lymphocytes, neutrophils, monocytes/macrophages and other immune cells regulate inflammation, tissue remodelling and repair. To determine the kinetics of accumulation of various immune cell populations, we established an animal model combining parabiosis and separation surgery to explore the fate and lifespan of peripheral leucocytes that migrate to the kidney. We found that peripheral T lymphocytes could survive for a long time (more than 14 days), whereas peripheral neutrophils survived for a short time in both healthy and ischaemia-induced damaged kidneys. Nearly half of the peripheral-derived macrophages disappeared after 14 days in normal kidneys, while their existing time in the inflammatory kidneys was prolonged. A fraction of F4/80high macrophages were renewed from the circulating monocyte pool. In addition, we found that after renal ischaemia reperfusion, neutrophils increased significantly in the early phase, and T lymphocytes mainly accumulated in the late stage, whereas macrophages infiltrated throughout AKI-CKD progression and were sustained longer in injured as opposed to normal kidneys. In conclusion, peripheral-derived macrophages, T lymphocytes and neutrophils exhibit different lifespans in the kidney, which may play different roles during AKI-CKD progression.
Collapse
Affiliation(s)
- Xuan Deng
- Division of Nephrology, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, People's Republic of China
| | - Cheng Zhou
- Division of Nephrology, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, People's Republic of China
| | - Ruichun Liao
- Division of Nephrology, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, People's Republic of China
| | - Yi Guo
- Division of Nephrology, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, People's Republic of China
| | - Yuxi Wang
- Division of Nephrology, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, People's Republic of China
| | - Guoli Li
- Division of Nephrology, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, People's Republic of China
| | - Jianliang Wu
- Division of Nephrology, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, People's Republic of China
| | - Huzi Xu
- Division of Nephrology, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, People's Republic of China
| | - Zhizhi Hu
- Division of Nephrology, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, People's Republic of China
| | - Guangchang Pei
- Division of Nephrology, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, People's Republic of China
| | - Wenhui Liao
- Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, People's Republic of China
| | - Ying Yao
- Division of Nephrology, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, People's Republic of China
| | - Qian Yang
- Division of Nephrology, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, People's Republic of China
| | - Rui Zeng
- Division of Nephrology, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, People's Republic of China
| | - Gang Xu
- Division of Nephrology, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, People's Republic of China
| |
Collapse
|
7
|
Ebefors K, Lassén E, Anandakrishnan N, Azeloglu EU, Daehn IS. Modeling the Glomerular Filtration Barrier and Intercellular Crosstalk. Front Physiol 2021; 12:689083. [PMID: 34149462 PMCID: PMC8206562 DOI: 10.3389/fphys.2021.689083] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
The glomerulus is a compact cluster of capillaries responsible for blood filtration and initiating urine production in the renal nephrons. A trilaminar structure in the capillary wall forms the glomerular filtration barrier (GFB), composed of glycocalyx-enriched and fenestrated endothelial cells adhering to the glomerular basement membrane and specialized visceral epithelial cells, podocytes, forming the outermost layer with a molecular slit diaphragm between their interdigitating foot processes. The unique dynamic and selective nature of blood filtration to produce urine requires the functionality of each of the GFB components, and hence, mimicking the glomerular filter in vitro has been challenging, though critical for various research applications and drug screening. Research efforts in the past few years have transformed our understanding of the structure and multifaceted roles of the cells and their intricate crosstalk in development and disease pathogenesis. In this review, we present a new wave of technologies that include glomerulus-on-a-chip, three-dimensional microfluidic models, and organoids all promising to improve our understanding of glomerular biology and to enable the development of GFB-targeted therapies. Here, we also outline the challenges and the opportunities of these emerging biomimetic systems that aim to recapitulate the complex glomerular filter, and the evolving perspectives on the sophisticated repertoire of cellular signaling that comprise the glomerular milieu.
Collapse
Affiliation(s)
- Kerstin Ebefors
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Emelie Lassén
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nanditha Anandakrishnan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Evren U Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ilse S Daehn
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
8
|
Müller-Deile J, Sarau G, Kotb AM, Jaremenko C, Rolle-Kampczyk UE, Daniel C, Kalkhof S, Christiansen SH, Schiffer M. Novel diagnostic and therapeutic techniques reveal changed metabolic profiles in recurrent focal segmental glomerulosclerosis. Sci Rep 2021; 11:4577. [PMID: 33633212 PMCID: PMC7907124 DOI: 10.1038/s41598-021-83883-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Idiopathic forms of Focal Segmental Glomerulosclerosis (FSGS) are caused by circulating permeability factors, which can lead to early recurrence of FSGS and kidney failure after kidney transplantation. In the past three decades, many research endeavors were undertaken to identify these unknown factors. Even though some potential candidates have been recently discussed in the literature, "the" actual factor remains elusive. Therefore, there is an increased demand in FSGS research for the use of novel technologies that allow us to study FSGS from a yet unexplored angle. Here, we report the successful treatment of recurrent FSGS in a patient after living-related kidney transplantation by removal of circulating factors with CytoSorb apheresis. Interestingly, the classical published circulating factors were all in normal range in this patient but early disease recurrence in the transplant kidney and immediate response to CytoSorb apheresis were still suggestive for pathogenic circulating factors. To proof the functional effects of the patient's serum on podocytes and the glomerular filtration barrier we used a podocyte cell culture model and a proteinuria model in zebrafish to detect pathogenic effects on the podocytes actin cytoskeleton inducing a functional phenotype and podocyte effacement. We then performed Raman spectroscopy in the < 50 kDa serum fraction, on cultured podocytes treated with the FSGS serum and in kidney biopsies of the same patient at the time of transplantation and at the time of disease recurrence. The analysis revealed changes in podocyte metabolome induced by the FSGS serum as well as in focal glomerular and parietal epithelial cell regions in the FSGS biopsy. Several altered Raman spectra were identified in the fractionated serum and metabolome analysis by mass spectrometry detected lipid profiles in the FSGS serum, which were supported by disturbances in the Raman spectra. Our novel innovative analysis reveals changed lipid metabolome profiles associated with idiopathic FSGS that might reflect a new subtype of the disease.
Collapse
Affiliation(s)
- Janina Müller-Deile
- Department of Nephrology and Hypertension, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany.
| | - George Sarau
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden, Germany.,Leuchs Emeritus Group, Max Planck Institute for the Science of Light, Erlangen, Germany.,Institute for Nanotechnology and Correlative Microscopy eV INAM, Forchheim, Germany
| | - Ahmed M Kotb
- Department of Nephrology and Hypertension, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany.,Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Asyût, Egypt
| | - Christian Jaremenko
- Institute for Nanotechnology and Correlative Microscopy eV INAM, Forchheim, Germany.,Institute of Optics, Information and Photonics, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Ulrike E Rolle-Kampczyk
- Department Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Kalkhof
- Institute for Bioanalysis, University of Applied Sciences Coburg, Coburg, Germany.,Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Silke H Christiansen
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden, Germany.,Leuchs Emeritus Group, Max Planck Institute for the Science of Light, Erlangen, Germany.,Institute for Nanotechnology and Correlative Microscopy eV INAM, Forchheim, Germany.,Physics Department, Freie Universität Berlin, Berlin, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
9
|
Perez-Hernandez J, Riffo-Campos AL, Ortega A, Martinez-Arroyo O, Perez-Gil D, Olivares D, Solaz E, Martinez F, Martínez-Hervás S, Chaves FJ, Redon J, Cortes R. Urinary- and Plasma-Derived Exosomes Reveal a Distinct MicroRNA Signature Associated With Albuminuria in Hypertension. Hypertension 2021; 77:960-971. [PMID: 33486986 DOI: 10.1161/hypertensionaha.120.16598] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Urinary albumin excretion (UAE) is a marker of cardiovascular risk and renal damage in hypertension. MicroRNAs (miRNAs) packaged into exosomes function as paracrine effectors in cell communication and the kidney is not exempt. This study aimed to state an exosomal miRNA profile/signature associated to hypertension with increased UAE and the impact of profibrotic TGF-β1 (transforming growth factor β1) on exosomes miRNA release. Therefore, exosomes samples from patients with hypertension with/without UAE were isolated and characterized. Three individual and unique small RNA libraries from each subject were prepared (total plasma, urinary, and plasma-derived exosomes) for next-generation sequencing profiling. Differentially expressed miRNAs were over-represented in Kyoto Encyclopedia of Genes and Genomes pathways, and selected miRNAs were validated by real-time quantitative polymerase chain reaction in a confirmation cohort. Thus, a signature of 29 dysregulated circulating miRNAs was identified in UAE hypertensive subjects, regulating 21 pathways. Moreover, changes in the levels of 4 exosomes-miRNAs were validated in a confirmation cohort and found associated with albuminuria. In particular miR-26a, major regulator of TGF-β signaling, was found downregulated in both type of exosomes when compared with healthy controls and to hypertension normoalbuminurics (P<0.01). Similarly, decreased miR-26a levels were found in podocyte-derived exosomes after TGF-β stress. Our results revealed an exosomes miRNA signature associated to albuminuria in hypertension. In particular, exosomes miR-26a seemed to play a key role in the regulation of TGF-β, a relevant effector in podocyte damage. These findings support the use of exosomes miRNAs as biomarkers of cardiovascular risk progression and therapeutic tools in early kidney damage.
Collapse
Affiliation(s)
- Javier Perez-Hernandez
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Angela L Riffo-Campos
- Departamento de Anatomía Patológica, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile (A.L.R.-C.)
| | - Ana Ortega
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Olga Martinez-Arroyo
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Daniel Perez-Gil
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Dolores Olivares
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Elena Solaz
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.).,Internal Medicine Unit, Hospital Clínico Universitario, Valencia, Spain (E.S., F.M., J.R.)
| | - Fernando Martinez
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.).,Internal Medicine Unit, Hospital Clínico Universitario, Valencia, Spain (E.S., F.M., J.R.)
| | - Sergio Martínez-Hervás
- Endocrinology and Nutrition Department Clinic Hospital, Spain (S.M.-H.).,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Minister of Health, Barcelona, Spain (S.M.-H., F.J.C.).,Department of Medicine, Faculty of Medicine and Odontology, University of Valencia, Spain (S.M.-H.)
| | - Felipe J Chaves
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Minister of Health, Barcelona, Spain (S.M.-H., F.J.C.).,Genomics and Diabetes Unit, INCLIVA Biomedical Research Institute, Valencia, Spain (F.J.C.)
| | - Josep Redon
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.).,Internal Medicine Unit, Hospital Clínico Universitario, Valencia, Spain (E.S., F.M., J.R.).,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Minister of Health, Madrid, Spain (J.R.)
| | - Raquel Cortes
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| |
Collapse
|
10
|
Miyawaki I. Application of zebrafish to safety evaluation in drug discovery. J Toxicol Pathol 2020; 33:197-210. [PMID: 33239838 PMCID: PMC7677624 DOI: 10.1293/tox.2020-0021] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Traditionally, safety evaluation at the early stage of drug discovery research has been done using in silico, in vitro, and in vivo systems in this order because of limitations on the amount of compounds available and the throughput ability of the assay systems. While these in vitro assays are very effective tools for detecting particular tissue-specific toxicity phenotypes, it is difficult to detect toxicity based on complex mechanisms involving multiple organs and tissues. Therefore, the development of novel high throughput in vivo evaluation systems has been expected for a long time. The zebrafish (Danio rerio) is a vertebrate with many attractive characteristics for use in drug discovery, such as a small size, transparency, gene and protein similarity with mammals (80% or more), and ease of genetic modification to establish human disease models. Actually, in recent years, the zebrafish has attracted interest as a novel experimental animal. In this article, the author summarized the features of zebrafish that make it a suitable laboratory animal, and introduced and discussed the applications of zebrafish to preclinical toxicity testing, including evaluations of teratogenicity, hepatotoxicity, and nephrotoxicity based on morphological findings, evaluation of cardiotoxicity using functional endpoints, and assessment of seizure and drug abuse liability.
Collapse
Affiliation(s)
- Izuru Miyawaki
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma
Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| |
Collapse
|
11
|
Candelier JJ, Lorenzo HK. Idiopathic nephrotic syndrome and serum permeability factors: a molecular jigsaw puzzle. Cell Tissue Res 2019; 379:231-243. [PMID: 31848752 DOI: 10.1007/s00441-019-03147-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Nephrotic syndrome is traditionally defined using the triad of edema, hypoalbuminemia, and proteinuria, but this syndrome is very heterogeneous and difficult to clarify. Its idiopathic form (INS) is probably the most harmful and essentially comprises two entities: minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS). We will consider some hypotheses regarding the mechanisms underlying INS: (i) the presence of several glomerular permeability factors in the sera of patients that alter the morphology and function of podocytes leading to proteinuria, (ii) the putative role of immune cells. Thanks to recent data, our understanding of these disorders is evolving towards a more multifactorial origin. In this context, circulating factors may be associated according to sequential kinetic mechanisms or micro-environmental changes that need to be determined. In addition, the resulting proteinuria may trigger more proteinuria enhancing the glomerular destabilization.
Collapse
Affiliation(s)
- Jean-Jacques Candelier
- INSERM U1197, Hôpital Paul Brousse, 14 Avenue Paul Vaillant Couturier, 94800, Villejuif, France.,Université Paris-Saclay, Campus Universitaire d'Orsay, 91405, Orsay, France
| | - Hans-Kristian Lorenzo
- INSERM U1197, Hôpital Paul Brousse, 14 Avenue Paul Vaillant Couturier, 94800, Villejuif, France. .,Université Paris-Saclay, Campus Universitaire d'Orsay, 91405, Orsay, France. .,Service de Néphrologie, Hôpital Bicêtre, Faculté de Médecine Paris-Saclay, 94270, Le Kremlin-Bicêtre, France.
| |
Collapse
|
12
|
Schenk H, Müller-Deile J, Schroder P, Bolaños-Palmieri P, Beverly-Staggs L, White R, Bräsen JH, Haller H, Schiffer M. Characterizing renal involvement in Hermansky-Pudlak Syndrome in a zebrafish model. Sci Rep 2019; 9:17718. [PMID: 31776394 PMCID: PMC6881439 DOI: 10.1038/s41598-019-54058-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/05/2019] [Indexed: 11/09/2022] Open
Abstract
Hermansky-Pudlak Syndrome (HPS) is a rare disease caused by mutations in the genes coding for various HPS proteins. HPS proteins are part of multi-subunit complexes involved in the biogenesis of organelles from the lysosomal-endosomal-system. In humans, this syndrome is characterized by the presence of albinism, platelet dysfunction and pulmonary fibrosis. The renal component to the disease remains unstudied and untreated in patients with HPS. Here we demonstrate that in humans, HPS proteins have a high renal expression with active transcription of HPS1, 3, 4 and 5 in human podocyte cell culture, suggesting that impaired function of HPS proteins could directly impact renal function. Therefore, we developed a zebrafish model to study the renal involvement of HPS proteins in proteinuric kidney disease. Remarkably, knockdown of HPS genes in zebrafish causes glomerular injury with edema, proteinuria and structural changes of the glomerular filtration barrier. Moreover, reduced expression of HPS proteins in zebrafish recapitulates other important disease hallmarks, like hypopigmentation and accumulation of intracellular debris characteristic of lysosomal disorders. In conclusion, we present a valid zebrafish model that highlights the previously underestimated relevance of renal disease in HPS. This draws attention to the therapeutic options available to manage this component of the syndrome.
Collapse
Affiliation(s)
- H Schenk
- Department of Medicine/Nephrology, Hannover Medical School, 30625, Hannover, Germany. .,Mount Desert Island Biological Laboratory, Salisbury Cove, ME, 04672, USA.
| | - J Müller-Deile
- Department of Medicine/Nephrology, Hannover Medical School, 30625, Hannover, Germany.,Department of Nephrology and Hypertension, University of Erlangen-Nurnberg, Erlangen, Germany
| | - P Schroder
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, 04672, USA
| | - P Bolaños-Palmieri
- Department of Medicine/Nephrology, Hannover Medical School, 30625, Hannover, Germany.,Department of Nephrology and Hypertension, University of Erlangen-Nurnberg, Erlangen, Germany
| | - L Beverly-Staggs
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, 04672, USA
| | - R White
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, 04672, USA
| | - J H Bräsen
- Institute of Pathology, Nephropathology Unit, Hannover Medical School, Hannover, Germany
| | - H Haller
- Department of Medicine/Nephrology, Hannover Medical School, 30625, Hannover, Germany.,Mount Desert Island Biological Laboratory, Salisbury Cove, ME, 04672, USA
| | - M Schiffer
- Department of Medicine/Nephrology, Hannover Medical School, 30625, Hannover, Germany. .,Department of Nephrology and Hypertension, University of Erlangen-Nurnberg, Erlangen, Germany.
| |
Collapse
|
13
|
Lorenzo HK, Candelier JJ. [Idiopathic nephrotic syndrome: une Arlésienne?]. Med Sci (Paris) 2019; 35:659-666. [PMID: 31532378 DOI: 10.1051/medsci/2019128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The renal filtration is ensured by the kidney glomeruli selective for filtering the blood. The main actor of the glomerular filter is the podocyte whose interlaced pedicels bear protein complexes (nephrin, podocin, etc.) creating a molecular sieve (slit diaphragm) to achieve the filtration. Alterations of these podocytes lead to massive proteinuria, which characterizes the nephrotic syndrome. The idiopathic form is one of the most malignant and essentially comprises two entities: minimal change disease and focal segmental glomerulosclerosis. Many observations indicated that (1) immune cells are involved and that (2) there are several permeability factors in the blood that affect the morphology and function of podocytes (slit diaphragm with fractional foot processes fusion/effacement). Evidence for a permeability factor was chiefly derived from remission of proteinuria observed after implantation of a kidney with FSGS in healthy recipients or with other kidney diseases. Today, we are moving towards a multifactorial conception of the nephrotic syndrome where all these barely known factors could be associated according to a sequential kinetic mechanism that needs to be determined.
Collapse
Affiliation(s)
- Hans-Kristian Lorenzo
- Inserm U1197, Interactions cellules souches-niches-physiologie, tumeurs et réparations tissulaires, Hôpital Paul Brousse, Bâtiment Lavoisier, 14, avenue Paul-Vaillant Couturier, 94800 Villejuif, France. - Université Paris-Saclay, Campus universitaire d'Orsay, 91 405 Orsay, France. - Service de néphrologie, CHU Bicêtre, 94270 Le Kremlin Bicêtre, France
| | - Jean-Jacques Candelier
- Inserm U1197, Interactions cellules souches-niches-physiologie, tumeurs et réparations tissulaires, Hôpital Paul Brousse, Bâtiment Lavoisier, 14, avenue Paul-Vaillant Couturier, 94800 Villejuif, France. - Université Paris-Saclay, Campus universitaire d'Orsay, 91 405 Orsay, France
| |
Collapse
|
14
|
A zebrafish tale of parabiosis, podocytes, and proteinuria. Kidney Int 2019; 96:272-275. [PMID: 31331464 DOI: 10.1016/j.kint.2019.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/03/2019] [Accepted: 04/23/2019] [Indexed: 11/21/2022]
Abstract
Glomerular damage is a harbinger of kidney dysfunction. Circulating permeability factors are implicated in causing primary and secondary damage to podocytes, leading to proteinuria and eventual progression to the nephrotic syndrome, but the mechanisms are not well understood. Müller-Deile et al. employed parabiosis with zebrafish embryos and found that a damaged glomerulus can impact a healthy one in a shared circulatory system. This methodology shows promise for elucidating kidney injury pathways in response to systemic disease.
Collapse
|
15
|
Sulfatases, in Particular Sulf1, Are Important for the Integrity of the Glomerular Filtration Barrier in Zebrafish. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4508048. [PMID: 31428635 PMCID: PMC6679890 DOI: 10.1155/2019/4508048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022]
Abstract
The 6-O-endosulfatases (sulfs) are important enzymatic components involved in the regulation of heparan sulfate by altering the sulfatation pattern. Specifically in the kidney, sulfs have been implicated in the glomerular podocyte-endothelial cell crosstalk and in the preservation of the glomerular filtration barrier (GFB) in different mouse models. Since it has been shown that in zebrafish larvae, Sulf1, Sulf2a, and Sulf2b are expressed in the pronephric kidney we set out to establish if a reduction in sulf expression leads to GFB dysfunction. Here, we show that a reduced sulf expression following morpholino (MO) induced knockdown in zebrafish larvae promotes damage to the GFB leading to renal plasma protein loss from the circulation. Moreover, a combined knockdown of Sulf1, Sulf2a, and Sulf2b is associated with severe morphologic changes including narrowing of the fenestration between glomerular endothelial cells as well as thickening of the glomerular basement membrane and podocyte foot process effacement, suggesting that glomerular damage is an underlying cause of the circulatory protein loss observed after MO injection. Additionally, we show that a decrease in sulf expression reduces the bioavailability of VegfA in the glomerulus of the pronephros, which may contribute to the structural changes observed in the glomeruli of morphant fish. Furthermore, consistent with previous results, knockdown of the sulfs is associated with arteriovenous malformations in particular in the tail region of the larvae. Overall, taken together our results suggest that 6-O-endosulfatases are important in the preservation of GFB integrity and a reduction in their expression levels induces phenotypic changes that are indicative of renal protein loss.
Collapse
|