1
|
Lang H, Xiang J, Chen X, Tong D, Wang L, Mou A, Liu D, Gao P, Lu Z, Zhu Z. Roux-en-Y gastric bypass alleviates kidney inflammation and improves kidney function in db/db mice by activating TLCA/TGR5 pathway. Am J Physiol Endocrinol Metab 2025; 328:E148-E160. [PMID: 39681344 DOI: 10.1152/ajpendo.00248.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/07/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Diabetic kidney disease (DKD) is a severe diabetic microvascular complication featured by chronic low-grade inflammation. Roux-en-Y gastric bypass (RYGB) surgery has gained importance as a safe and effective surgery to treat DKD. Bile acids significantly change after RYGB, which brings a series of metabolic benefits, but the relationship with the improvement of DKD is unclear. Therefore, this study performed RYGB surgery on db/db mice to observe the beneficial effects of the surgery on the kidneys and performed bile acid-targeted metabolomics analysis to explore bile acid changes. We found that RYGB significantly reduced albuminuria in db/db mice, improved renal function, reversed renal structural lesions, and attenuated podocyte injury and inflammation. Notably, bile acid metabolomic analysis revealed taurolithocholic acid (TLCA) as the most significantly altered bile acid after RYGB. Furthermore, in vitro and in vivo validation experiments revealed that TLCA supplementation improved renal function and reduced renal inflammatory damage in db/db mice. In addition, TLCA inhibited high glucose-induced inflammatory damage in MPC-5 cells, and its mechanism of action may be related to activating Takeda G protein-coupled receptor 5 (TGR5), inhibiting NF-κB phosphorylation, and thus inhibiting inflammatory response. In conclusion, RYGB may play a protective role in the kidneys of diabetic mice by activating the TLCA/TGR5 pathway.NEW & NOTEWORTHY This study determined that the renal protective effect of Roux-en-Y gastric bypass (RYGB) in db/db mice was associated with elevated serum TLCA. Notably, TLCA supplementation improved renal function and alleviated podocyte inflammatory injury in db/db mice, which was associated with the TGR5/NF-κB pathway.
Collapse
Affiliation(s)
- Hongmei Lang
- Department of General Medicine, Chengdu Second People's Hospital, Chengdu, People's Republic of China
| | - Jie Xiang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, People's Republic of China
| | - Xiaorong Chen
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, People's Republic of China
| | - Dan Tong
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, People's Republic of China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, People's Republic of China
| | - Aidi Mou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, People's Republic of China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, People's Republic of China
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, People's Republic of China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, People's Republic of China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, People's Republic of China
- Chongqing Institute for Brain and Intelligence, Chongqing, People's Republic of China
| |
Collapse
|
2
|
Tong J, Yang L, Liu Y, Yu Y, Zhang L, Zhang Z, Yang Z, Qin Q, Niu J, Gu Y. Empagliflozin attenuates renal tubular ferroptosis in preeclampsia via tazarotene-induced gene 1. Eur J Pharmacol 2025; 986:177140. [PMID: 39551334 DOI: 10.1016/j.ejphar.2024.177140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Preeclampsia (PE) is a serious pregnancy complication characterized by elevated blood pressure and a major cause of maternal and perinatal morbidities, also known to increase the risk of chronic kidney disease. Mechanisms underlying PE-induced kidney injury remain unclear. Anti-angiotensin II type 1 receptor agonistic autoantibody (AT1-AA) is reported to participate in the pathogenesis of PE-induced kidney injury. Our previous study replicated the major features of PE in pregnant mice by administration of intravenous injection of AT1-AA and found that podocyte senescence plays a role in PE-induced kidney injury. Elevated levels of N-acetyl-β-D glucosaminidase (NAG) and kidney injury molecule-1 (KIM-1) in the urine of patients with PE have been reported, indicating renal tubular injury. In this study, we identified the role of renal proximal tubular epithelial cells (PTECs) in PE-induced kidney injury and the therapeutic value of empagliflozin, an anti-diabetic agent, in a murine model of AT1-AA-induced PE. In our study, higher tubular injury score (Control vs. PE: P < 0.0001) show that PTECs are damaged in AT1-AA-induced PE. We identified ferroptosis as one of the cause of AT1-AA-induced PTEC injury by RNAseq, and confirmed the involvement of ferroptosis by detecting ferrous iron (Control vs. PE: P < 0.0001), reduced glutathione (GSH) (Control vs. PE: P < 0.0001) and lipid peroxidation (Control vs. PE: P < 0.0001). Empagliflozin ameliorates AT1-AA-induced PTEC ferroptosis and injury in PE. Furthermore, we demonstrated that tazarotene-induced gene 1 is involved in AT1-AA-induced PTEC injury. These findings suggest that renal tubules are injured in PE and empagliflozin has therapeutic potential for PE-induced PTEC injury.
Collapse
Affiliation(s)
- Jiahao Tong
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Lin Yang
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yuan Liu
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ying Yu
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Lihong Zhang
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Zengzhen Zhang
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Zhenhao Yang
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qiaojing Qin
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianying Niu
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| | - Yong Gu
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Zhang H, Li S, Deng Z, Wang Y. Molecular Differences in Glomerular Compartment to Distinguish Immunoglobulin A Nephropathy and Lupus Nephritis. J Inflamm Res 2024; 17:11357-11373. [PMID: 39722731 PMCID: PMC11669337 DOI: 10.2147/jir.s496138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Background Immunoglobulin A nephropathy (IgAN) and lupus nephritis (LN) are the most prevalent primary and secondary glomerular diseases, respectively, with several similarities in clinical presentations. Common pathogenic mechanisms in IgAN and LN have been well investigated by previous studies. However, the manifestation mechanism of these two independent diseases carrying distinct immunofluorescent pathological features is still unknown considering the similarities between them. Therefore, differences in pathogenic mechanisms between IgAN and LN were compared in this study. Methods R packages were used for processing the glomerular gene expression datasets acquired from the Gene Expression Omnibus (GEO) database. Least Absolute Selection and Shrinkage Operator (LASSO) and multivariate logistic regression analysis were used to construct models predicting IgAN and LN. Cibersort was used to process the immune cell infiltration analysis. Immunochemistry was used to validate the findings by bioinformatics analysis. Results In the predicting models based on differentially expressed genes (DEG) and weighted correlation network analysis (WGCNA), retinoic acid receptor γ (RARG) and prolactin releasing hormone (PRLH) were independent risk factors for IgAN, and HECT domain and RCC1-like domain-containing protein 5 (HERC5) and interferon stimulated exonuclease gene 20 (ISG20) were independent risk factors for LN. Gene Ontology (GO) analysis revealed that DEGs mostly correlated to IgAN were enriched in ligand-receptor activity-induced cellular growth and development, while DEGs mostly correlated to LN were enriched in nucleic acid/nucleotide binding-induced type I interferon-related activity and response to virus infection. Immune infiltration analysis showed CD4+ T-cells and M2 macrophage abundance in the glomerular compartment in IgAN and LN, respectively. Immunochemistry validated the predicting models for IgAN and LN and revealed different expression patterns of RARG, PRLH, HERC5, and ISG20. Conclusion We investigated key differences in the pathogenesis between IgAN and LN and provided validated predicting models to distinguish IgAN and LN. RARG and PRLH, HERC5 and ISG20 might play an essential role in the formation of IgAN and LN, respectively.
Collapse
Affiliation(s)
- Haidong Zhang
- Department of Nephrology, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Sicong Li
- School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Zhenling Deng
- Department of Nephrology, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Yue Wang
- Department of Nephrology, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| |
Collapse
|
4
|
Feng Y, Sun Z, Fu J, Zhong F, Zhang W, Wei C, Chen A, Liu BC, He JC, Lee K. Podocyte-derived soluble RARRES1 drives kidney disease progression through direct podocyte and proximal tubular injury. Kidney Int 2024; 106:50-66. [PMID: 38697478 PMCID: PMC11193616 DOI: 10.1016/j.kint.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/13/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Retinoic acid receptor responder protein-1 (RARRES1) is a podocyte-enriched transmembrane protein whose increased expression correlates with human glomerular disease progression. RARRES1 promotes podocytopenia and glomerulosclerosis via p53-mediated podocyte apoptosis. Importantly, the cytopathic actions of RARRES1 are entirely dependent on its proteolytic cleavage into a soluble protein (sRARRES1) and subsequent podocyte uptake by endocytosis, as a cleavage mutant RARRES1 exerted no effects in vitro or in vivo. As RARRES1 expression is upregulated in human glomerular diseases, here we investigated the functional consequence of podocyte-specific overexpression of RARRES1 in mice in the experimental focal segmental glomerulosclerosis and diabetic kidney disease. We also examined the effects of long-term RARRES1 overexpression on slowly developing aging-induced kidney injury. As anticipated, the induction of podocyte overexpression of RARRES1 (Pod-RARRES1WT) significantly worsened glomerular injuries and worsened kidney function in all three models, while overexpression of RARRES1 cleavage mutant (Pod-RARRES1MT) did not. Remarkably, direct uptake of sRARRES1 was also seen in proximal tubules of injured Pod-RARRES1WT mice and associated with exacerbated tubular injuries, vacuolation, and lipid accumulation. Single-cell RNA sequence analysis of mouse kidneys demonstrated RARRES1 led to a marked deregulation of lipid metabolism in proximal tubule subsets. We further identified matrix metalloproteinase 23 (MMP23) as a highly podocyte-specific metalloproteinase and responsible for RARRES1 cleavage in disease settings, as adeno-associated virus 9-mediated knockdown of MMP23 abrogated sRARRES1 uptake in tubular cells in vivo. Thus, our study delineates a previously unrecognized mechanism by which a podocyte-derived protein directly facilitates podocyte and tubular injury in glomerular diseases and suggests that podocyte-specific functions of RARRES1 and MMP23 may be targeted to ameliorate glomerular disease progression in vivo.
Collapse
Affiliation(s)
- Ye Feng
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA
| | - Zeguo Sun
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA
| | - Jia Fu
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA
| | - Fang Zhong
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA
| | - Weijia Zhang
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA
| | - Chengguo Wei
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA
| | - Anqun Chen
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - John C He
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA; Renal Section, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA.
| | - Kyung Lee
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York USA.
| |
Collapse
|
5
|
Medina Rangel PX, Ishibe S. Preventing MMP23-mediated cleavage of podocyte RARRES1: a novel strategy to halt chronic kidney disease progression? Kidney Int 2024; 106:16-18. [PMID: 38906649 DOI: 10.1016/j.kint.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 06/23/2024]
Abstract
Glomerular issues and affected podocytes are at the origin of 80% of chronic kidney disease cases. Thus, acquiring a deeper understanding in this domain is necessary to halt progressive kidney damage. In this study, the authors investigated the harmful impact of podocyte-cleaved soluble retinoic acid receptor responder protein-1 on podocytes and proximal tubular cells and identified matrix metalloprotease 23 as the enzyme responsible for cleaving retinoic acid receptor responder protein-1. These findings provide new insights into chronic kidney disease progression, suggesting innovative treatment avenues.
Collapse
Affiliation(s)
- Paulina X Medina Rangel
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shuta Ishibe
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
6
|
Cui S, Chen X, Li J, Wang W, Meng D, Zhu S, Shen S. Endothelial CXCR2 deficiency attenuates renal inflammation and glycocalyx shedding through NF-κB signaling in diabetic kidney disease. Cell Commun Signal 2024; 22:191. [PMID: 38528533 PMCID: PMC10964613 DOI: 10.1186/s12964-024-01565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/07/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The incidence of diabetic kidney disease (DKD) continues to rapidly increase, with limited available treatment options. One of the hallmarks of DKD is persistent inflammation, but the underlying molecular mechanisms of early diabetic kidney injury remain poorly understood. C-X-C chemokine receptor 2 (CXCR2), plays an important role in the progression of inflammation-related vascular diseases and may bridge between glomerular endothelium and persistent inflammation in DKD. METHODS Multiple methods were employed to assess the expression levels of CXCR2 and its ligands, as well as renal inflammatory response and endothelial glycocalyx shedding in patients with DKD. The effects of CXCR2 on glycocalyx shedding, and persistent renal inflammation was examined in a type 2 diabetic mouse model with Cxcr2 knockout specifically in endothelial cells (DKD-Cxcr2 eCKO mice), as well as in glomerular endothelial cells (GECs), cultured in high glucose conditions. RESULTS CXCR2 was associated with early renal decline in DKD patients, and endothelial-specific knockout of CXCR2 significantly improved renal function in DKD mice, reduced inflammatory cell infiltration, and simultaneously decreased the expression of proinflammatory factors and chemokines in renal tissue. In DKD conditions, glycocalyx shedding was suppressed in endothelial Cxcr2 knockout mice compared to Cxcr2 L/L mice. Modulating CXCR2 expression also affected high glucose-induced inflammation and glycocalyx shedding in GECs. Mechanistically, CXCR2 deficiency inhibited the activation of NF-κB signaling, thereby regulating inflammation, restoring the endothelial glycocalyx, and alleviating DKD. CONCLUSIONS Taken together, under DKD conditions, activation of CXCR2 exacerbates inflammation through regulation of the NF-κB pathway, leading to endothelial glycocalyx shedding and deteriorating renal function. Endothelial CXCR2 deficiency has a protective role in inflammation and glycocalyx dysfunction, suggesting its potential as a promising therapeutic target for DKD treatment.
Collapse
Affiliation(s)
- Siyuan Cui
- Department of Endocrinology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
- Department of Endocrinology, Jiangnan University Medical Center, Wuxi, China
| | - Xin Chen
- Department of Endocrinology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
- Department of Endocrinology, Jiangnan University Medical Center, Wuxi, China
- Nanjing Medical University, Nanjing, China
| | - Jiayu Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Deqi Meng
- Department of Endocrinology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
- Department of Endocrinology, Jiangnan University Medical Center, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Shiwei Shen
- Department of Endocrinology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.
- Department of Endocrinology, Jiangnan University Medical Center, Wuxi, China.
| |
Collapse
|
7
|
Hu S, Hang X, Wei Y, Wang H, Zhang L, Zhao L. Crosstalk among podocytes, glomerular endothelial cells and mesangial cells in diabetic kidney disease: an updated review. Cell Commun Signal 2024; 22:136. [PMID: 38374141 PMCID: PMC10875896 DOI: 10.1186/s12964-024-01502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/28/2024] [Indexed: 02/21/2024] Open
Abstract
Diabetic kidney disease (DKD) is a long-term and serious complication of diabetes that affects millions of people worldwide. It is characterized by proteinuria, glomerular damage, and renal fibrosis, leading to end-stage renal disease, and the pathogenesis is complex and involves multiple cellular and molecular mechanisms. Among three kinds of intraglomerular cells including podocytes, glomerular endothelial cells (GECs) and mesangial cells (MCs), the alterations in one cell type can produce changes in the others. The cell-to-cell crosstalk plays a crucial role in maintaining the glomerular filtration barrier (GFB) and homeostasis. In this review, we summarized the recent advances in understanding the pathological changes and interactions of these three types of cells in DKD and then focused on the signaling pathways and factors that mediate the crosstalk, such as angiopoietins, vascular endothelial growth factors, transforming growth factor-β, Krüppel-like factors, retinoic acid receptor response protein 1 and exosomes, etc. Furthermore, we also simply introduce the application of the latest technologies in studying cell interactions within glomerular cells and new promising mediators for cell crosstalk in DKD. In conclusion, this review provides a comprehensive and updated overview of the glomerular crosstalk in DKD and highlights its importance for the development of novel intervention approaches.
Collapse
Affiliation(s)
- Shiwan Hu
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xing Hang
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yu Wei
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Han Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Lili Zhang
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
8
|
Lang Y, Wang Q, Sheng Q, Lu S, Yang M, Kong Z, Gao Y, Fan X, Shen N, Wang R, Lv Z. FTO-mediated m6A modification of serum amyloid A2 mRNA promotes podocyte injury and inflammation by activating the NF-κB signaling pathway. FASEB J 2024; 38:e23409. [PMID: 38193628 DOI: 10.1096/fj.202301419rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Diabetic kidney disease (DKD) is one of the severe complications of diabetes mellitus, yet there is no effective treatment. Exploring the development of DKD is essential to treatment. Podocyte injury and inflammation are closely related to the development of DKD. However, the mechanism of podocyte injury and progression in DKD remains largely unclear. Here, we observed that FTO expression was significantly upregulated in high glucose-induced podocytes and that overexpression of FTO promoted podocyte injury and inflammation. By performing RNA-seq and MeRIP-seq with control podocytes and high glucose-induced podocytes with or without FTO knockdown, we revealed that serum amyloid A2 (SAA2) is a target of FTO-mediated m6A modification. Knockdown of FTO markedly increased SAA2 mRNA m6A modification and decreased SAA2 mRNA expression. Mechanistically, we demonstrated that SAA2 might participate in podocyte injury and inflammation through activation of the NF-κB signaling pathway. Furthermore, by generating podocyte-specific adeno-associated virus 9 (AAV9) to knockdown SAA2 in mice, we discovered that the depletion of SAA2 significantly restored podocyte injury and inflammation. Together, our results suggested that upregulation of SAA2 promoted podocyte injury through m6A-dependent regulation, thus suggesting that SAA2 may be a therapeutic target for diabetic kidney disease.
Collapse
Affiliation(s)
- Yating Lang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qimeng Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Ning Shen
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
9
|
Ren N, Wang WF, Zou L, Zhao YL, Miao H, Zhao YY. The nuclear factor kappa B signaling pathway is a master regulator of renal fibrosis. Front Pharmacol 2024; 14:1335094. [PMID: 38293668 PMCID: PMC10824958 DOI: 10.3389/fphar.2023.1335094] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Renal fibrosis is increasingly recognized as a global public health problem. Acute kidney injury (AKI) and chronic kidney disease (CKD) both result in renal fibrosis. Oxidative stress and inflammation play central roles in progressive renal fibrosis. Oxidative stress and inflammation are closely linked and form a vicious cycle in which oxidative stress induces inflammation through various molecular mechanisms. Ample evidence has indicated that a hyperactive nuclear factor kappa B (NF-ƙB) signaling pathway plays a pivotal role in renal fibrosis. Hyperactive NF-ƙB causes the activation and recruitment of immune cells. Inflammation, in turn, triggers oxidative stress through the production of reactive oxygen species and nitrogen species by activating leukocytes and resident cells. These events mediate organ injury through apoptosis, necrosis, and fibrosis. Therefore, developing a strategy to target the NF-ƙB signaling pathway is important for the effective treatment of renal fibrosis. This Review summarizes the effect of the NF-ƙB signaling pathway on renal fibrosis in the context of AKI and CKD (immunoglobulin A nephropathy, membranous nephropathy, diabetic nephropathy, hypertensive nephropathy, and kidney transplantation). Therapies targeting the NF-ƙB signaling pathway, including natural products, are also discussed. In addition, NF-ƙB-dependent non-coding RNAs are involved in renal inflammation and fibrosis and are crucial targets in the development of effective treatments for kidney disease. This Review provides a clear pathophysiological rationale and specific concept-driven therapeutic strategy for the treatment of renal fibrosis by targeting the NF-ƙB signaling pathway.
Collapse
Affiliation(s)
- Na Ren
- The First School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wen-Feng Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Yan-Long Zhao
- Dialysis Department of Nephrology Hospital, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, Shaanxi, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Lv H, Sun H, Wang L, Yao S, Liu D, Zhang X, Pei Z, Zhou J, Wang H, Dai J, Yan G, Ding L, Wang Z, Cao C, Zhao G, Hu Y. Targeting CD301 + macrophages inhibits endometrial fibrosis and improves pregnancy outcome. EMBO Mol Med 2023; 15:e17601. [PMID: 37519221 PMCID: PMC10493587 DOI: 10.15252/emmm.202317601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
Macrophages are a key and heterogeneous cell population involved in endometrial repair and regeneration during the menstrual cycle, but their role in the development of intrauterine adhesion (IUA) and sequential endometrial fibrosis remains unclear. Here, we reported that CD301+ macrophages were significantly increased and showed their most active interaction with profibrotic cells in the endometria of IUA patients compared with the normal endometria by single-cell RNA sequencing, bulk RNA sequencing, and experimental verification. Increasing CD301+ macrophages promoted the differentiation of endometrial stromal cells into myofibroblasts and resulted in extracellular matrix accumulation, which destroyed the physiological architecture of endometrial tissue, drove endometrial fibrosis, and ultimately led to female infertility or adverse pregnancy outcomes. Mechanistically, CD301+ macrophages secreted GAS6 to activate the AXL/NF-κB pathway, upregulating the profibrotic protein synthesis. Targeted deletion of CD301+ macrophages or inhibition of AXL by Bemcentinib blunted the pathology and improved the outcomes of pregnancy in mice, supporting the therapeutic potential of targeting CD301+ macrophages for treating endometrial fibrosis.
Collapse
Affiliation(s)
- Haining Lv
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Limin Wang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Simin Yao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Dan Liu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xiwen Zhang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Zhongrui Pei
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Jianjun Zhou
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Huiyan Wang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Jianwu Dai
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Zhiyin Wang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Chenrui Cao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingChina
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingChina
| |
Collapse
|
11
|
Yu K, Ding L, An X, Yang Y, Zhang X, Li L, Wang C, Bai F, Yang X. APOC1 exacerbates renal fibrosis through the activation of the NF-κB signaling pathway in IgAN. Front Pharmacol 2023; 14:1181435. [PMID: 37305534 PMCID: PMC10248024 DOI: 10.3389/fphar.2023.1181435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction: IgA nephropathy (IgAN) is the most common disease leading to end-stage renal disease, and tubular fibrosis represents an important risk factor for disease progression. However, research on early molecular diagnostic indicators of tubular fibrosis and the mechanisms underlying disease progression is still lacking. Methods: The GSE93798 dataset was downloaded from the GEO database. DEGs were screened and analyzed for GO and KEGG enrichment in IgAN. The least absolute shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE) algorithms were applied to screen for hub secretory genes. The expression and diagnostic efficacy of hub genes were confirmed by the GSE35487 dataset. ELISA was applied to detect the expression of APOC1 in serum. The expression and localization of hub genes in IgAN were verified by the expression of IHC and IF in human kidney tissues, and the correlation of expression with clinical data was verified in the Nephroseq database. Finally, cellular experiments clarified the role of hub genes in the signaling pathway. Results: A total of 339 DEGs were identified in IgAN, of which 237 were upregulated and 102 downregulated. The KEGG signaling pathway is enriched in the ECM-receptor interaction and AGE-RAGE signaling pathway. APOC1, ALB, CCL8, CXCL2, SRPX2, and TGFBI identified six hub secretory genes using the LASSO and SVM-RFE algorithms. In vivo and in vitro experiments demonstrated that APOC1 expression was elevated in IgAN. The serum concentration of APOC1 was 1.232 ± 0.1812 μg/ml in IgAN patients, whereas it was 0.3956 ± 0.1233 μg/ml in healthy individuals. APOC1 exhibited high diagnostic efficacy for IgAN (AUC of 99.091%, specificity of 95.455%, and sensitivity of 99.141%) in the GSE93798 dataset. APOC1 expression negatively correlated with eGFR (R 2 = 0.2285, p = 0.0385) and positively correlated with serum creatinine (R 2 = 0.41, p = 0.000567) in IgAN. APOC1 exacerbated renal fibrosis, possibly in part by activating the NF-κB pathway in IgAN. Conclusion: APOC1 was identified as the core secretory gene of IgAN, which was closely associated with blood creatinine and eGFR and had significant efficacy in the diagnosis of IgAN. Mechanistic studies revealed that the knockdown of APOC1 could improve IgAN renal fibrosis by inhibiting the NF pathway, which may be a potential therapeutic target for improving renal fibrosis in IgAN.
Collapse
Affiliation(s)
- Kuipeng Yu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Blood Purification, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lin Ding
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin An
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yanjiang Yang
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoning Zhang
- Department of Nephrology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Luyao Li
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chunjie Wang
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fang Bai
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiangdong Yang
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Blood Purification, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
12
|
Soluble Klotho protects against glomerular injury through regulation of ER stress response. Commun Biol 2023; 6:208. [PMID: 36813870 PMCID: PMC9947099 DOI: 10.1038/s42003-023-04563-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
αKlotho (Klotho) has well established renoprotective effects; however, the molecular pathways mediating its glomerular protection remain incompletely understood. Recent studies have reported that Klotho is expressed in podocytes and protects glomeruli through auto- and paracrine effects. Here, we examined renal expression of Klotho in detail and explored its protective effects in podocyte-specific Klotho knockout mice, and by overexpressing human Klotho in podocytes and hepatocytes. We demonstrate that Klotho is not significantly expressed in podocytes, and transgenic mice with either a targeted deletion or overexpression of Klotho in podocytes lack a glomerular phenotype and have no altered susceptibility to glomerular injury. In contrast, mice with hepatocyte-specific overexpression of Klotho have high circulating levels of soluble Klotho, and when challenged with nephrotoxic serum have less albuminuria and less severe kidney injury compared to wildtype mice. RNA-seq analysis suggests an adaptive response to increased endoplasmic reticulum stress as a putative mechanism of action. To evaluate the clinical relevance of our findings, the results were validated in patients with diabetic nephropathy, and in precision cut kidney slices from human nephrectomies. Together, our data reveal that the glomeruloprotective effects of Klotho is mediated via endocrine actions, which increases its therapeutic potential for patients with glomerular diseases.
Collapse
|
13
|
Toll-like receptors 2 and 4 stress signaling and sodium-glucose cotransporter-2 in kidney disease. Mol Cell Biochem 2022:10.1007/s11010-022-04652-5. [PMID: 36586092 DOI: 10.1007/s11010-022-04652-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
Kidney disease is the 6th fastest-growing cause of death and a serious global health concern that urges effective therapeutic options. The inflammatory response is an initial reaction from immune and parenchymal cells in kidney diseases. Toll-like receptors (TLR) 2 and 4 are highly expressed by various kidney cells and respond to 'signaling danger' proteins, such as high mobility group box binding protein 1 (HMGB1) and prompt the progression of kidney disease by releasing inflammatory mediators. Burgeoning reports suggest that both SGLT2 and ER stress elevates TLR2/4 signaling via different axis. Moreover, SGLT2 signaling aggravates inflammation under the disease condition by promoting the NLR family pyrin domain-containing three inflammasomes and ER stress. Intriguingly, TLR2/4 downstream adaptors activate ER stress regulators. The above-discussed interactions imply that TLR2/4 does more than immune response during kidney disease. Here, we discuss in detail evidence of the roles and regulation of TLR2/4 in the context of a relationship between ER stress and SGLT2. Also, we highlighted different preclinical studies of SGLT2 inhibitors against TLR2/4 signaling in various kidney diseases. Moreover, we discuss the observational and interventional evidence about the relation between TLR2/4, ER stress, and SGLT2, which may represent the TLR2/4 as a potential therapeutic target for kidney disease.
Collapse
|
14
|
Ellermann SF, Jongman RM, Luxen M, Kuiper T, Plantinga J, Moser J, Scheeren TWL, Theilmeier G, Molema G, Van Meurs M. Pharmacological inhibition of protein tyrosine kinases axl and fyn reduces TNF-α-induced endothelial inflammatory activation in vitro. Front Pharmacol 2022; 13:992262. [PMID: 36532777 PMCID: PMC9750991 DOI: 10.3389/fphar.2022.992262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/17/2022] [Indexed: 09/19/2023] Open
Abstract
Major surgery induces systemic inflammation leading to pro-inflammatory activation of endothelial cells. Endothelial inflammation is one of the drivers of postoperative organ damage, including acute kidney injury Tumour Necrosis Factor alpha (TNF-α) is an important component of surgery-induced pro-inflammatory activation of endothelial cells. Kinases, the backbone of signalling cascades, can be targeted by pharmacological inhibition. This is a promising treatment option to interfere with excessive endothelial inflammation. In this study, we identified activated kinases as potential therapeutic targets. These targets were pharmacologically inhibited to reduce TNF-α-induced pro-inflammatory signalling in endothelial cells. Kinome profiling using PamChip arrays identified 64 protein tyrosine kinases and 88 serine-threonine kinases, the activity of which was determined at various timepoints (5-240 min) following stimulation with 10 ng/ml TNF-α in Human umbilical vein endothelial cells in vitro. The PTKs Axl and Fyn were selected based on high kinase activity profiles. Co-localisation experiments with the endothelial-specific protein CD31 showed Axl expression in endothelial cells of glomeruli and Fyn in arterioles and glomeruli of both control and TNF-α-exposed mice. Pharmacological inhibition with Axl inhibitor BMS-777607 and Fyn inhibitor PP2 significantly reduced TNF-α-induced pro-inflammatory activation of E-selectin, VCAM-1, ICAM-1, IL-6 and IL-8 at mRNA and VCAM-1, ICAM-1, and IL-6 at protein level in HUVEC in vitro. Upon pharmacological inhibition with each inhibitor, leukocyte adhesion to HUVEC was also significantly reduced, however to a minor extent. In conclusion, pre-treatment of endothelial cells with kinase inhibitors BMS-777607 and PP2 reduces TNF-α-induced endothelial inflammation in vitro.
Collapse
Affiliation(s)
- Sophie F. Ellermann
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Perioperative Inflammation and Infection, Department of Human Medicine, Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Rianne M. Jongman
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Matthijs Luxen
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Timara Kuiper
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Josee Plantinga
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jill Moser
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Thomas W. L. Scheeren
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gregor Theilmeier
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Perioperative Inflammation and Infection, Department of Human Medicine, Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Grietje Molema
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Matijs Van Meurs
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
15
|
Li J, Zhang J, Yang M, Huang X, Zhang M, Fang X, Wu S. Kirenol alleviates diabetic nephropathy via regulating TGF-β/Smads and the NF-κB signal pathway. PHARMACEUTICAL BIOLOGY 2022; 60:1690-1700. [PMID: 36073930 PMCID: PMC9467559 DOI: 10.1080/13880209.2022.2112239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/20/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Kirenol possesses anti-inflammatory, antifibrotic and anti-arthritic effects. However, its reno-protective effects against diabetic nephropathy (DN) have not been evaluated. OBJECTIVE This study explores the reno-protective effects of kirenol against DN and clarifies the potential mechanisms. MATERIALS AND METHODS The mesangial cells were treated with 20 µM kirenol and 10 ng/mL human recombinant TGF-β1 or 30 mM glucose for 24 h. Then the cells were harvested to assay the expression of the target genes or proteins. Thirty C57BL/6J male mice were given high-fat diet with streptozotocin injection to induce diabetes and then were randomized into three groups (n = 10): vehicle administration (DM group), 2 mg/kg kirenol (DM + kirenol group) and 200 mg/kg metformin (Met group) for 3 months, orally. A healthy group (Con, n = 10) was included as the control. RESULTS Compared to the DM group, kirenol treatment decreased the phosphorylation of Smad2/3 and NF-κB (0.64- and 0.43-fold) as well as the accumulation of FN and Col IV (0.58- and 0.35-fold); moreover, the expression of IκBα was restored to normal level by kirenol treatment both in vivo and in vitro. After kirenol treatment, IL-6 expression was decreased 0.35- and 0.57-fold, and TNF-α expression was decreased 0.34- and 0.46-fold, in vitro and in vivo, respectively. Furthermore, kirenol alleviated the glomerular basement membrane thickness and foot process fusion. DISCUSSION AND CONCLUSIONS Kirenol could alleviate DN by downregulating the TGF-β/Smads and the NF-κB signal pathway. Our study provides a potential mechanism for the treatment of DN with kirenol.
Collapse
Affiliation(s)
- Jialin Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jiawen Zhang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Meng Yang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Xiaocui Huang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Meng Zhang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Xiansong Fang
- First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Suzhen Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
16
|
Van den Eynde J, Jacquemyn X, Cloet N, Noé D, Gillijns H, Lox M, Gsell W, Himmelreich U, Luttun A, McCutcheon K, Janssens S, Oosterlinck W. Arteriovenous Fistulae in Chronic Kidney Disease and the Heart: Physiological, Histological, and Transcriptomic Characterization of a Novel Rat Model. J Am Heart Assoc 2022; 11:e027593. [PMID: 36205249 DOI: 10.1161/jaha.122.027593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Arteriovenous fistulae (AVFs) are the gold standard for vascular access in those requiring hemodialysis but may put an extra hemodynamic stress on the cardiovascular system. The complex interactions between the heart, kidney, and AVFs remain incompletely understood. Methods and Results We characterized a novel rat model of five-sixths partial nephrectomy (NX) and AVFs. NX induced increases in urea, creatinine, and hippuric acid. The addition of an AVF (AVF+NX) further increased urea and a number of uremic toxins such as trimethylamine N-oxide and led to increases in cardiac index, left and right ventricular volumes, and right ventricular mass. Plasma levels of uremic toxins correlated well with ventricular morphology and function. Heart transcriptomes identified altered expression of 8 genes following NX and 894 genes following AVF+NX, whereas 290 and 1431 genes were altered in the kidney transcriptomes, respectively. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed gene expression changes related to cell division and immune activation in both organs, suppression of ribosomes and transcriptional activity in the heart, and altered renin-angiotensin signaling as well as chronodisruption in the kidney. All except the latter were worsened in AVF+NX compared with NX. Conclusions Inflammation and organ dysfunction in chronic kidney disease are exacerbated following AVF creation. Furthermore, our study provides important information for the discovery of novel biomarkers and therapeutic targets in the management of cardiorenal syndrome.
Collapse
Affiliation(s)
| | | | - Nicolas Cloet
- Department of Cardiovascular Sciences KU Leuven Leuven Belgium
| | - Dries Noé
- Department of Cardiovascular Sciences KU Leuven Leuven Belgium
| | - Hilde Gillijns
- Department of Cardiovascular Sciences KU Leuven Leuven Belgium
| | - Marleen Lox
- Department of Cardiovascular Sciences KU Leuven Leuven Belgium
| | - Willy Gsell
- MoSAIC, Biomedical MRI, Department of Imaging and Pathology KU Leuven Leuven Belgium
| | - Uwe Himmelreich
- MoSAIC, Biomedical MRI, Department of Imaging and Pathology KU Leuven Leuven Belgium
| | - Aernout Luttun
- Department of Cardiovascular Sciences KU Leuven Leuven Belgium.,Endothelial Cell Biology Unit, Center for Molecular and Vascular Biology KU Leuven Leuven Belgium
| | - Keir McCutcheon
- Department of Cardiology Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle University Newcastle United Kingdom
| | - Stefan Janssens
- Department of Cardiovascular Sciences KU Leuven Leuven Belgium.,Department of Cardiovascular Diseases University Hospitals Leuven Leuven Belgium
| | - Wouter Oosterlinck
- Department of Cardiovascular Sciences KU Leuven Leuven Belgium.,Department of Cardiovascular Diseases University Hospitals Leuven Leuven Belgium
| |
Collapse
|
17
|
Chwastek J, Kędziora M, Borczyk M, Korostyński M, Starowicz K. Inflammation-Driven Secretion Potential Is Upregulated in Osteoarthritic Fibroblast-Like Synoviocytes. Int J Mol Sci 2022; 23:ijms231911817. [PMID: 36233118 PMCID: PMC9570304 DOI: 10.3390/ijms231911817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common joint pathologies and a major cause of disability among the population of developed countries. It manifests as a gradual degeneration of the cartilage and subchondral part of the bone, leading to joint damage. Recent studies indicate that not only the cells that make up the articular cartilage but also the synoviocytes, which build the membrane surrounding the joint, contribute to the development of OA. Therefore, the aim of the study was to determine the response to inflammatory factors of osteoarthritic synoviocytes and to identify proteins secreted by them that may influence the progression of OA. This study demonstrated that fibroblast-like synoviocytes of OA patients (FLS-OA) respond more strongly to pro-inflammatory stimulation than cells obtained from control patients (FLS). These changes were observed at the transcriptome level and subsequently confirmed by protein analysis. FLS-OA stimulated by pro-inflammatory factors [such as lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) were shown to secrete significantly more chemokines (CXCL6, CXCL10, and CXCL16) and growth factors [angiopoietin-like protein 1 (ANGPTL1), fibroblast growth factor 5 (FGF5), and insulin-like growth factor 2 (IGF2)] than control cells. Moreover, the translation of proteolytic enzymes [matrix metalloprotease 3 (MMP3), cathepsin K (CTSK), and cathepsin S (CTSS)] by FLS-OA is increased under inflammatory conditions. Our data indicate that the FLS of OA patients are functionally altered, resulting in an enhanced response to the presence of pro-inflammatory factors in the environment, manifested by the increased production of the previously mentioned proteins, which may promote further disease progression.
Collapse
Affiliation(s)
- Jakub Chwastek
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Marta Kędziora
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Małgorzata Borczyk
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Michał Korostyński
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
- Correspondence:
| |
Collapse
|
18
|
Chen A, Lee K, He JC. Autocrine and paracrine effects of a novel podocyte gene, RARRES1. Kidney Int 2021; 100:745-747. [PMID: 34556297 PMCID: PMC9037532 DOI: 10.1016/j.kint.2021.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/12/2023]
Abstract
Retinoic acid receptor responder protein 1 (RARRES1) has been identified as a novel gene for the regulation of podocyte function, and its expression is increased in glomerular disease and associated with disease progression. Increased expression of RARRES1 in podocytes leads to apoptosis through an autocrine effect. Möller-Hackbarth et al. recently found that RARRES1 expression is increased in the endothelial cells in some diseased kidneys to promote podocyte injury, likely through a paracrine effect.
Collapse
Affiliation(s)
- Anqun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China.
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Program, James J. Peters Veterans Affairs Medical Center at Bronx, Bronx, New York, USA.
| |
Collapse
|
19
|
Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis. Clin Sci (Lond) 2021; 135:1999-2029. [PMID: 34427291 DOI: 10.1042/cs20201016] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is characterized by pathological accumulation of extracellular matrix (ECM) proteins in renal structures. Tubulointerstitial fibrosis is observed in glomerular diseases as well as in the regeneration failure of acute kidney injury (AKI). Therefore, finding antifibrotic therapies comprises an intensive research field in Nephrology. Nowadays, ECM is not only considered as a cellular scaffold, but also exerts important cellular functions. In this review, we describe the cellular and molecular mechanisms involved in kidney fibrosis, paying particular attention to ECM components, profibrotic factors and cell-matrix interactions. In response to kidney damage, activation of glomerular and/or tubular cells may induce aberrant phenotypes characterized by overproduction of proinflammatory and profibrotic factors, and thus contribute to CKD progression. Among ECM components, matricellular proteins can regulate cell-ECM interactions, as well as cellular phenotype changes. Regarding kidney fibrosis, one of the most studied matricellular proteins is cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), currently considered as a fibrotic marker and a potential therapeutic target. Integrins connect the ECM proteins to the actin cytoskeleton and several downstream signaling pathways that enable cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. In kidney fibrosis, there is an increase in ECM deposition, lower ECM degradation and ECM proteins cross-linking, leading to an alteration in the tissue mechanical properties and their responses to injurious stimuli. A better understanding of these complex cellular and molecular events could help us to improve the antifibrotic therapies for CKD.
Collapse
|