1
|
Bockenhauer D, Konrad M. Phosphate transporters, candidate genes, and the prosecutor's fallacy. Pediatr Nephrol 2025; 40:1825-1829. [PMID: 39841236 DOI: 10.1007/s00467-025-06660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/23/2025]
Affiliation(s)
- Detlef Bockenhauer
- Department of Paediatric Nephrology, UZ Leuven and Department of Cellular and Molecular Physiology, KUL, Leuven, Belgium.
- Great Ormond Street Hospital for Children and Center for Genetics and Genomics, UCL Department of Renal Medicine, University College London, London, UK.
| | - Martin Konrad
- Department of General Pediatrics, Pediatric Nephrology, University Hospital Münster, Münster, Germany
| |
Collapse
|
2
|
Baum MA, Mandel M, Somers MJ. Understanding Rare Kidney Stone Diseases: A Review. Am J Kidney Dis 2025:S0272-6386(25)00865-0. [PMID: 40383224 DOI: 10.1053/j.ajkd.2025.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 05/20/2025]
Abstract
Rare kidney stone diseases typically present with nephrolithiasis or nephrocalcinosis in childhood or adolescence. Affected individuals might face kidney injury and even kidney failure related to associated complications. Screening blood and urine tests recommended for patients with nephrolithiasis/nephrocalcinosis help guide further evaluation, and the increased availability and decreased costs of genetic testing can facilitate the diagnosis of hereditary stone conditions. Genetic testing should be considered when there are clinical clues of an increased likelihood of an inherited condition such as consanguinity, nephrolithiasis in young children, nephrolithiasis in multiple family members, repeated episodes of nephrolithiasis, or kidney failure with nephrolithiasis or nephrocalcinosis. Adult and pediatric nephrologists and urologists should have a basic understanding of monogenic rare kidney stone diseases and their associated diagnoses, treatments, and complications. In many disorders, early detection allows for the initiation of tailored therapies that may alter the natural history of the disease, preserve kidney function, and modify extra renal manifestations.
Collapse
Affiliation(s)
- Michelle A Baum
- Division of Nephrology, Boston Children's Hospital, Boston MA 02115; Department of Pediatrics, Harvard Medical School, Boston MA 02115.
| | - Mallory Mandel
- Division of Nephrology, Boston Children's Hospital, Boston MA 02115; Department of Pediatrics, Harvard Medical School, Boston MA 02115
| | - Michael Jg Somers
- Division of Nephrology, Boston Children's Hospital, Boston MA 02115; Department of Pediatrics, Harvard Medical School, Boston MA 02115
| |
Collapse
|
3
|
Bockenhauer D, Sadeghi-Alavijeh O, Gale DP. Phosphate transporters and avoiding the prosecutor's fallacy. Kidney Int 2025; 107:757. [PMID: 40118591 DOI: 10.1016/j.kint.2025.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/01/2025] [Indexed: 03/23/2025]
Affiliation(s)
- Detlef Bockenhauer
- Department of Paediatric Nephrology, University Hospital (UZ) Leuven, Leuven, Belgium; Department of Cellular and Molecular Physiology, Catholic University Leuven (KUL), Leuven, Belgium; Center for Genetics and Genomics, University College London (UCL) Department of Renal Medicine, University College London, London, UK.
| | - Omid Sadeghi-Alavijeh
- Center for Genetics and Genomics, University College London (UCL) Department of Renal Medicine, University College London, London, UK
| | - Daniel P Gale
- Center for Genetics and Genomics, University College London (UCL) Department of Renal Medicine, University College London, London, UK
| |
Collapse
|
4
|
Brunkhorst M, Haffner D, Emma F. The authors reply. Kidney Int 2025; 107:757. [PMID: 40118590 DOI: 10.1016/j.kint.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/01/2025] [Indexed: 03/23/2025]
Affiliation(s)
- Max Brunkhorst
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany.
| | - Francesco Emma
- Division of Nephrology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
5
|
Brunkhorst M, Brunkhorst L, Martens H, Papizh S, Besouw M, Grasemann C, Turan S, Sikora P, Chromek M, Cornelissen E, Fila M, Lilien M, Allgrove J, Neuhaus TJ, Eltan M, Espinosa L, Schnabel D, Gokce I, González-Rodríguez JD, Khandelwal P, Keijzer-Veen MG, Lechner F, Szczepańska M, Zaniew M, Bacchetta J, Emma F, Haffner D. Presentation and outcome in carriers of pathogenic variants in SLC34A1 and SLC34A3 encoding sodium-phosphate transporter NPT 2a and 2c. Kidney Int 2025; 107:116-129. [PMID: 39461557 DOI: 10.1016/j.kint.2024.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 10/29/2024]
Abstract
Pathogenic variants in SLC34A1 and SLC34A3 encoding sodium-phosphate transporter 2a and 2c are rare causes of phosphate wasting. Since data on presentation and outcomes are scarce, we collected clinical, biochemical and genetic data via an online questionnaire and the support of European professional organizations. One hundred thirteen patients (86% children) from 90 families and 17 countries with pathogenic or likely pathogenic variants in SLC34A1 or SLC34A3 and a median follow-up of three years were analyzed. Biallelic SLC34A1 variant carriers showed polyuria, failure to thrive, vomiting, constipation, hypercalcemia and nephrocalcinosis in infancy, while biallelic SLC34A3 carriers presented in childhood or even adulthood with rickets/osteomalacia and/or osteopenia/osteoporosis, hypophosphatemia and, less frequently, nephrocalcinosis, while the prevalences of kidney stones were comparable. Adult biallelic SLC34A3 carriers had a six-fold increase chronic kidney disease (CKD) prevalence compared to the general population. All biallelic variant carriers shared a common biochemical pattern including elevated 1,25(OH)2D and alkaline phosphatase levels, suppressed parathyroid hormone (PTH), and hypercalciuria. Heterozygous carriers showed similar but less pronounced phenotypes. In biallelic SLC34A1 carriers, an attenuation of clinical features was observed after infancy, independent of treatment. Phosphate treatment was given in 55% of patients, median duration two years, and resulted in significant reduction, although not normalization, of alkaline phosphatase and of hypercalciuria but an increase in PTH levels, while 1,25(OH)2D levels remained elevated. Thus, our study indicates that biallelic SLC34A1 and SLC34A3 carriers show distinct, albeit overlapping phenotypes, with the latter having an increased risk of CKD in adulthood. Phosphate treatment may promote kidney phosphate loss and enhance 1,25(OH)2D synthesis via increased PTH production.
Collapse
Affiliation(s)
- Max Brunkhorst
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany
| | - Lena Brunkhorst
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany
| | - Helge Martens
- Department of Human Genetics, Division of Inherited & Acquired Kidney Diseases, Hannover Medical School, Hannover, Germany
| | - Svetlana Papizh
- Department of Hereditary and Acquired Kidney Diseases, Veltishev Research and Clinical Institute for Pediatrics and Children Surgery of Pirogov Russian National Research Medical University, Moscow, Russia
| | - Martine Besouw
- Department of Pediatric Nephrology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Serap Turan
- Department of Pediatric Endocrinology, Marmara University School of Medicine, Istanbul, Turkey
| | - Przemyslaw Sikora
- Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland
| | - Milan Chromek
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden; Division of Pediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska University Hospital, Stockholm, Sweden
| | - Elisabeth Cornelissen
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marc Fila
- Pediatric Nephrology Department, Hôpital Arnaud de Villeneuve, Centre Hospitalier Universitaire (CHU) of Montpellier, Montpellier, France
| | - Marc Lilien
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jeremy Allgrove
- Endocrinology Department, Great Ormond Street Hospital, London, UK
| | - Thomas J Neuhaus
- Department of Pediatrics, Children's Hospital Lucerne, Lucerne, Switzerland
| | - Mehmet Eltan
- Department of Pediatric Endocrinology, Marmara University School of Medicine, Istanbul, Turkey
| | | | - Dirk Schnabel
- Division of Pediatric Endocrinology, Center for Chronically Sick Children, Pediatric Endocrinology, University Medicine, Charitè Berlin, Germany
| | - Ibrahim Gokce
- Department of Pediatric Nephrology, Marmara University School of Medicine, Istanbul, Turkey
| | | | - Priyanka Khandelwal
- Department of Pediatrics, Division of Pediatric Nephrology, All India Institute of Medical Sciences, New Delhi, India
| | - Mandy G Keijzer-Veen
- Division of Pediatric Nephrology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Felix Lechner
- Department of Pediatrics, Children's Hospital Memmingen, Memmingen, Germany
| | - Maria Szczepańska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, SUM in Katowice, Poland
| | - Marcin Zaniew
- Department of Pediatrics, University of Zielona Góra, Zielona Góra, Poland
| | - Justine Bacchetta
- Department of Pediatric Nephrology, Hospices Civils de Lyon, INSERM 1033 Research Unit, Lyon, France
| | - Francesco Emma
- Division of Nephrology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
6
|
Geraghty R, Lovegrove C, Howles S, Sayer JA. Role of Genetic Testing in Kidney Stone Disease: A Narrative Review. Curr Urol Rep 2024; 25:311-323. [PMID: 39096463 PMCID: PMC11374836 DOI: 10.1007/s11934-024-01225-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 08/05/2024]
Abstract
PURPOSE OF REVIEW Kidney stone disease (KSD) is a common and potentially life-threatening condition, and half of patients experience a repeat kidney stone episode within 5-10 years. Despite the ~50% estimate heritability of KSD, international guidelines have not kept up with the pace of discovery of genetic causes of KSD. The European Association of Urology guidelines lists 7 genetic causes of KSD as 'high risk'. RECENT FINDINGS There are currently 46 known monogenic (single gene) causes of kidney stone disease, with evidence of association in a further 23 genes. There is also evidence for polygenic risk of developing KSD. Evidence is lacking for recurrent disease, and only one genome wide association study has investigated this phenomenon, identifying two associated genes (SLC34A1 and TRPV5). However, in the absence of other evidence, patients with genetic predisposition to KSD should be treated as 'high risk'. Further studies are needed to characterize both monogenic and polygenic associations with recurrent disease, to allow for appropriate risk stratification. Durability of test result must be balanced against cost. This would enable retrospective analysis if no genetic cause was found initially. We recommend genetic testing using a gene panel for all children, adults < 25 years, and older patients who have factors associated with high risk disease within the context of a wider metabolic evaluation. Those with a genetic predisposition should be managed via a multi-disciplinary team approach including urologists, radiologists, nephrologists, clinical geneticists and chemical pathologists. This will enable appropriate follow-up, counselling and potentially prophylaxis.
Collapse
Affiliation(s)
- Robert Geraghty
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- Department of Urology, The Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK.
| | - Catherine Lovegrove
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Department of Urology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sarah Howles
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Department of Urology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - John A Sayer
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Renal Services, The Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
7
|
Anderegg MA, Olinger EG, Bargagli M, Geraghty R, Taylor L, Nater A, Bruggmann R, Sayer JA, Vogt B, Schaller A, Fuster DG. Prevalence and characteristics of genetic disease in adult kidney stone formers. Nephrol Dial Transplant 2024; 39:1426-1441. [PMID: 38544324 PMCID: PMC11483609 DOI: 10.1093/ndt/gfae074] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Indexed: 08/31/2024] Open
Abstract
BACKGROUND Molecular mechanisms of kidney stone formation remain unknown in most patients. Previous studies have shown a high heritability of nephrolithiasis, but data on the prevalence and characteristics of genetic disease in unselected adults with nephrolithiasis are lacking. This study was conducted to fill this important knowledge gap. METHODS We performed whole exome sequencing in 787 participants in the Bern Kidney Stone Registry, an unselected cohort of adults with one or more past kidney stone episodes [kidney stone formers (KSFs)] and 114 non-kidney stone formers (NKSFs). An exome-based panel of 34 established nephrolithiasis genes was analysed and variants assessed according to American College of Medical Genetics and Genomics criteria. Pathogenic (P) or likely pathogenic (LP) variants were considered diagnostic. RESULTS The mean age of KSFs was 47 ± 15 years and 18% were first-time KSFs. A Mendelian kidney stone disease was present in 2.9% (23/787) of KSFs. The most common genetic diagnoses were cystinuria (SLC3A1, SLC7A9; n = 13), vitamin D-24 hydroxylase deficiency (CYP24A1; n = 5) and primary hyperoxaluria (AGXT, GRHPR, HOGA1; n = 3). Of the KSFs, 8.1% (64/787) were monoallelic for LP/P variants predisposing to nephrolithiasis, most frequently in SLC34A1/A3 or SLC9A3R1 (n = 37), CLDN16 (n = 8) and CYP24A1 (n = 8). KSFs with Mendelian disease had a lower age at the first stone event (30 ± 14 versus 36 ± 14 years; P = .003), were more likely to have cystine stones (23.4% versus 1.4%) and less likely to have calcium oxalate monohydrates stones (31.9% versus 52.5%) compared with KSFs without a genetic diagnosis. The phenotype of KSFs with variants predisposing to nephrolithiasis was subtle and showed significant overlap with KSFs without diagnostic variants. In NKSFs, no Mendelian disease was detected and LP/P variants were significantly less prevalent compared with KSFs (1.8% versus 8.1%). CONCLUSION Mendelian disease is uncommon in unselected adult KSFs, yet variants predisposing to nephrolithiasis are significantly enriched in adult KSFs.
Collapse
Affiliation(s)
- Manuel A Anderegg
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Swiss National Centre of Competence in Research Kidney.CH, University of Zürich, Zürich, Switzerland
| | - Eric G Olinger
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Swiss National Centre of Competence in Research Kidney.CH, University of Zürich, Zürich, Switzerland
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Center for Human Genetics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Matteo Bargagli
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Swiss National Centre of Competence in Research Kidney.CH, University of Zürich, Zürich, Switzerland
| | - Rob Geraghty
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Lea Taylor
- Interfaculty Bioinformatics Unit, University of Bern and Swiss Institute of Bioinformatics, Bern, Switzerland
| | - Alexander Nater
- Interfaculty Bioinformatics Unit, University of Bern and Swiss Institute of Bioinformatics, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern and Swiss Institute of Bioinformatics, Bern, Switzerland
| | - John A Sayer
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Renal Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle Upon Tyne, UK
| | - Bruno Vogt
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - André Schaller
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daniel G Fuster
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Swiss National Centre of Competence in Research Kidney.CH, University of Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
Sadeghi-Alavijeh O, Chan MM, Doctor GT, Voinescu CD, Stuckey A, Kousathanas A, Ho AT, Stanescu HC, Bockenhauer D, Sandford RN, Levine AP, Gale DP. Quantifying variant contributions in cystic kidney disease using national-scale whole-genome sequencing. J Clin Invest 2024; 134:e181467. [PMID: 39190624 PMCID: PMC11444187 DOI: 10.1172/jci181467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUNDCystic kidney disease (CyKD) is a predominantly familial disease in which gene discovery has been led by family-based and candidate gene studies, an approach that is susceptible to ascertainment and other biases.METHODSUsing whole-genome sequencing data from 1,209 cases and 26,096 ancestry-matched controls participating in the 100,000 Genomes Project, we adopted hypothesis-free approaches to generate quantitative estimates of disease risk for each genetic contributor to CyKD, across genes, variant types and allelic frequencies.RESULTSIn 82.3% of cases, a qualifying potentially disease-causing rare variant in an established gene was found. There was an enrichment of rare coding, splicing, and structural variants in known CyKD genes, with statistically significant gene-based signals in COL4A3 and (monoallelic) PKHD1. Quantification of disease risk for each gene (with replication in the separate UK Biobank study) revealed substantially lower risk associated with genes more recently associated with autosomal dominant polycystic kidney disease, with odds ratios for some below what might usually be regarded as necessary for classical Mendelian inheritance. Meta-analysis of common variants did not reveal significant associations, but suggested this category of variation contributes 3%-9% to the heritability of CyKD across European ancestries.CONCLUSIONBy providing unbiased quantification of risk effects per gene, this research suggests that not all rare variant genetic contributors to CyKD are equally likely to manifest as a Mendelian trait in families. This information may inform genetic testing and counseling in the clinic.
Collapse
Affiliation(s)
- Omid Sadeghi-Alavijeh
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
| | - Melanie My Chan
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
| | - Gabriel T Doctor
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
| | - Catalin D Voinescu
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
| | - Alexander Stuckey
- Genomics England, Queen Mary University of London, London, United Kingdom
| | | | - Alexander T Ho
- Genomics England, Queen Mary University of London, London, United Kingdom
| | - Horia C Stanescu
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
| | - Detlef Bockenhauer
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
- University Hospital and Katholic University Leuven, Leuven, Belgium
| | - Richard N Sandford
- Academic Department of Medical Genetics, Cambridge University, Cambridge, United Kingdom
| | - Adam P Levine
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
- Research Department of Pathology, University College London, London, United Kingdom
| | - Daniel P Gale
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
| |
Collapse
|
9
|
Zhu Z, Bo-Ran Ho B, Chen A, Amrhein J, Apetrei A, Carpenter TO, Lazaretti-Castro M, Colazo JM, McCrystal Dahir K, Geßner M, Gurevich E, Heier CA, Simmons JH, Hunley TE, Hoppe B, Jacobsen C, Kouri A, Ma N, Majumdar S, Molin A, Nokoff N, Ott SM, Peña HG, Santos F, Tebben P, Topor LS, Deng Y, Bergwitz C. An update on clinical presentation and responses to therapy of patients with hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Kidney Int 2024; 105:1058-1076. [PMID: 38364990 PMCID: PMC11106756 DOI: 10.1016/j.kint.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
Pathogenic variants in solute carrier family 34, member 3 (SLC34A3), the gene encoding the sodium-dependent phosphate cotransporter 2c (NPT2c), cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Here, we report a pooled analysis of clinical and laboratory records of 304 individuals from 145 kindreds, including 20 previously unreported HHRH kindreds, in which two novel SLC34A3 pathogenic variants were identified. Compound heterozygous/homozygous carriers show above 90% penetrance for kidney and bone phenotypes. The biochemical phenotype for heterozygous carriers is intermediate with decreased serum phosphate, tubular reabsorption of phosphate (TRP (%)), fibroblast growth factor 23, and intact parathyroid hormone, but increased serum 1,25-dihydroxy vitamin D, and urine calcium excretion causing idiopathic hypercalciuria in 38%, with bone phenotypes still observed in 23% of patients. Oral phosphate supplementation is the current standard of care, which typically normalizes serum phosphate. However, although in more than half of individuals this therapy achieves correction of hypophosphatemia it fails to resolve the other outcomes. The American College of Medical Genetics and Genomics score correlated with functional analysis of frequent SLC34A3 pathogenic variants in vitro and baseline disease severity. The number of mutant alleles and baseline TRP (%) were identified as predictors for kidney and bone phenotypes, baseline TRP (%) furthermore predicted response to therapy. Certain SLC34A3/NPT2c pathogenic variants can be identified with partial responses to therapy, whereas with some overlap, others present only with kidney phenotypes and a third group present only with bone phenotypes. Thus, our report highlights important novel clinical aspects of HHRH and heterozygous carriers, raises awareness to this rare group of disorders and can be a foundation for future studies urgently needed to guide therapy of HHRH.
Collapse
Affiliation(s)
- Zewu Zhu
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bryan Bo-Ran Ho
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alyssa Chen
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA
| | - James Amrhein
- Pediatric Endocrinology and Diabetes, School of Medicine Greenville Campus, University of South Carolina, Greenville, South Carolina, USA
| | - Andreea Apetrei
- Caen University Hospital, Department of Genetics, UR7450 Biotargen, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, OSCAR Network, Caen, France
| | - Thomas Oliver Carpenter
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marise Lazaretti-Castro
- Division of Endocrinology, Escola Paulista de Medicina-Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, Brazil
| | - Juan Manuel Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Kathryn McCrystal Dahir
- Division of Endocrinology, Program for Metabolic Bone Disorders, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michaela Geßner
- Pediatric Nephrology, Children's and Adolescents' Hospital, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Evgenia Gurevich
- Schneider Children's Medical Center of Israel, Pediatric Nephrology Institute, Petach Tikva, Israel; Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | - Jill Hickman Simmons
- Department of Pediatrics, Division of Endocrinology and Diabetes, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Tracy Earl Hunley
- Division of Pediatric Nephrology, Vanderbilt University Medical Center, Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Bernd Hoppe
- Division of Pediatric Nephrology, Department of Pediatrics, University of Bonn, Bonn, Germany
| | - Christina Jacobsen
- Division of Endocrinology, Harvard Medical School, Boston, Massachusetts, USA
| | - Anne Kouri
- Pediatric Nephrology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nina Ma
- Section of Pediatric Endocrinology, Children's Hospital Colorado, Aurora, Colorado, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sachin Majumdar
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Arnaud Molin
- Caen University Hospital, Department of Genetics, UR7450 Biotargen, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, OSCAR Network, Caen, France
| | - Natalie Nokoff
- Department of Pediatrics, Section of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan M Ott
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Helena Gil Peña
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Fernando Santos
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Peter Tebben
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA; Division of Pediatric Endocrinology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lisa Swartz Topor
- Division of Pediatric Endocrinology, Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Yanhong Deng
- Yale School of Public Health, New Haven, Connecticut, USA
| | - Clemens Bergwitz
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
10
|
Walker E, Hayes W, Bockenhauer D. Inherited non-FGF23-mediated phosphaturic disorders: A kidney-centric review. Best Pract Res Clin Endocrinol Metab 2024; 38:101843. [PMID: 38042745 DOI: 10.1016/j.beem.2023.101843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
Phosphate is freely filtered by the glomerulus and reabsorbed exclusively in the proximal tubule by two key transporters, NaPiIIA and NaPiIIC, encoded by SLC34A1 and SLC34A3, respectively. Regulation of these transporters occurs primarily through the hormone FGF23 and, to a lesser degree, PTH. Consequently, inherited non-FGF23 mediated phosphaturic disorders are due to generalised proximal tubular dysfunction, loss-of-function variants in SLC34A1 or SLC34A3 or excess PTH signalling. The corresponding disorders are Renal Fanconi Syndrome, Infantile Hypercalcaemia type 2, Hereditary Hypophosphataemic Rickets with Hypercalciuria and Familial Hyperparathyroidism. Several inherited forms of Fanconi renotubular syndrome (FRTS) have also been described with the underlying genes encoding for GATM, EHHADH, HNF4A and NDUFAF6. Here, we will review their pathophysiology, clinical manifestations and the implications for treatment from a kidney-centric perspective, focussing on those disorders caused by dysfunction of renal phosphate transporters. Moreover, we will highlight specific genetic aspects, as the availability of large population genetic databases has raised doubts about some of the originally proposed gene-disease associations concerning phosphate transporters or their associated proteins.
Collapse
Affiliation(s)
- Emma Walker
- Nephrology Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Wesley Hayes
- Nephrology Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Detlef Bockenhauer
- Nephrology Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; Department of Renal Medicine, University College London, London, UK.
| |
Collapse
|
11
|
Halbritter J. Urinary stone disease: closing the heritability gap by challenging conventional Mendelian inheritance. Kidney Int 2023; 104:882-885. [PMID: 37863636 DOI: 10.1016/j.kint.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 10/22/2023]
Abstract
Urinary stone disease is based on gene-environment interaction with an almost 50% heritability. Despite all efforts from exome-sequencing and genome-wide association studies, the genetic factors making up for observed heritability have been incompletely characterized. The study by Sadeghi-Alavijeh et al. leverages the invaluable resources of the 100,000 Genomes Project and the UK Biobank to identify heterozygous rare variants in the phosphate transporter SLC34A3 as a significant factor of urinary stone disease, challenging the traditional concept of Mendelian inheritance.
Collapse
Affiliation(s)
- Jan Halbritter
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|