1
|
Gorman BL, Shafer CC, Ragi N, Sharma K, Neumann EK, Anderton CR. Imaging and spatially resolved mass spectrometry applications in nephrology. Nat Rev Nephrol 2025; 21:399-416. [PMID: 40148534 DOI: 10.1038/s41581-025-00946-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
The application of spatially resolved mass spectrometry (MS) and MS imaging approaches for studying biomolecular processes in the kidney is rapidly growing. These powerful methods, which enable label-free and multiplexed detection of many molecular classes across omics domains (including metabolites, drugs, proteins and protein post-translational modifications), are beginning to reveal new molecular insights related to kidney health and disease. The complexity of the kidney often necessitates multiple scales of analysis for interrogating biofluids, whole organs, functional tissue units, single cells and subcellular compartments. Various MS methods can generate omics data across these spatial domains and facilitate both basic science and pathological assessment of the kidney. Optimal processes related to sample preparation and handling for different MS applications are rapidly evolving. Emerging technology and methods, improvement of spatial resolution, broader molecular characterization, multimodal and multiomics approaches and the use of machine learning and artificial intelligence approaches promise to make these applications even more valuable in the field of nephology. Overall, spatially resolved MS and MS imaging methods have the potential to fill much of the omics gap in systems biology analysis of the kidney and provide functional outputs that cannot be obtained using genomics and transcriptomic methods.
Collapse
Affiliation(s)
- Brittney L Gorman
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Catelynn C Shafer
- Department of Chemistry, University of California, Davis, Davis, CA, 95695, USA
| | - Nagarjunachary Ragi
- Center for Precision Medicine, The University of Texas Health San Antonio, San Antonio, TX, USA
| | - Kumar Sharma
- Center for Precision Medicine, The University of Texas Health San Antonio, San Antonio, TX, USA
- Division of Nephrology, Department of Medicine, The University of Texas Health San Antonio, San Antonio, TX, USA
| | - Elizabeth K Neumann
- Department of Chemistry, University of California, Davis, Davis, CA, 95695, USA
| | - Christopher R Anderton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
2
|
Hodgin JB, Menon R, Bitzer M. The boundaries of normal kidney tissue for biomedical research. Curr Opin Nephrol Hypertens 2025; 34:218-223. [PMID: 40062478 PMCID: PMC11957444 DOI: 10.1097/mnh.0000000000001069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
PURPOSE OF REVIEW In this review, we highlight the importance of understanding the inherent biological variability in normal kidney, or healthy reference tissue, to establish an accurate reference point for biomedical research. We explore this and the advantages and limitations of various sources of healthy reference tissue suitable for structural and omics-level studies. RECENT FINDINGS Several large consortia are employing omic technologies for diseased and normal kidney tissue, underscoring the importance of utilizing healthy reference tissue in these studies. Emerging approaches, such as artificial intelligence and multiomic analyses, are expanding our understanding of structural and molecular heterogeneity in healthy reference kidney tissue and uncovering new insights. SUMMARY Biological variability in healthy reference tissue at the functional, structural, and molecular level is complex and remains an active area of study. Thoughtful selection of healthy reference tissue sources is critical, providing the greatest potential for producing high-quality research outcomes.
Collapse
Affiliation(s)
- Jeffrey B. Hodgin
- Department of Pathology
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Markus Bitzer
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Pop NS, Dolt KS, Hohenstein P. Understanding developing kidneys and Wilms tumors one cell at a time. Curr Top Dev Biol 2025; 163:129-167. [PMID: 40254343 DOI: 10.1016/bs.ctdb.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Single-cell sequencing-based techniques are revolutionizing all fields of biomedical sciences, including normal kidney development and how this is disturbed in the development of Wilms tumor. The many different techniques and the differences between them can obscure which technique is best used to answer which question. In this review we summarize the techniques currently available, discuss which have been used in kidney development or Wilms tumor context, and which techniques can or should be combined to maximize the increase in biological understanding we can get from them.
Collapse
Affiliation(s)
- Nine Solee Pop
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Karamjit Singh Dolt
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Peter Hohenstein
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
4
|
Beliveau BJ, Akilesh S. A guide to studying 3D genome structure and dynamics in the kidney. Nat Rev Nephrol 2025; 21:97-114. [PMID: 39406927 PMCID: PMC12023896 DOI: 10.1038/s41581-024-00894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
The human genome is tightly packed into the 3D environment of the cell nucleus. Rapidly evolving and sophisticated methods of mapping 3D genome architecture have shed light on fundamental principles of genome organization and gene regulation. The genome is physically organized on different scales, from individual genes to entire chromosomes. Nuclear landmarks such as the nuclear envelope and nucleoli have important roles in compartmentalizing the genome within the nucleus. Genome activity (for example, gene transcription) is also functionally partitioned within this 3D organization. Rather than being static, the 3D organization of the genome is tightly regulated over various time scales. These dynamic changes in genome structure over time represent the fourth dimension of the genome. Innovative methods have been used to map the dynamic regulation of genome structure during important cellular processes including organism development, responses to stimuli, cell division and senescence. Furthermore, disruptions to the 4D genome have been linked to various diseases, including of the kidney. As tools and approaches to studying the 4D genome become more readily available, future studies that apply these methods to study kidney biology will provide insights into kidney function in health and disease.
Collapse
Affiliation(s)
- Brian J Beliveau
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Zhang Y, Arzaghi H, Ma Z, Roye Y, Musah S. Epigenetics of Hypertensive Nephropathy. Biomedicines 2024; 12:2622. [PMID: 39595187 PMCID: PMC11591919 DOI: 10.3390/biomedicines12112622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Hypertensive nephropathy (HN) is a leading cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD), contributing to significant morbidity, mortality, and rising healthcare costs. In this review article, we explore the role of epigenetic mechanisms in HN progression and their potential therapeutic implications. We begin by examining key epigenetic modifications-DNA methylation, histone modifications, and non-coding RNAs-observed in kidney disease. Next, we discuss the underlying pathophysiology of HN and highlight current in vitro and in vivo models used to study the condition. Finally, we compare various types of HN-induced renal injury and their associated epigenetic mechanisms with those observed in other kidney injury models, drawing inferences on potential epigenetic therapies for HN. The information gathered in this work indicate that epigenetic mechanisms can drive the progression of HN by regulating key molecular signaling pathways involved in renal damage and fibrosis. The limitations of Renin-Angiotensin-Aldosterone System (RAAS) inhibitors underscore the need for alternative treatments targeting epigenetic pathways. This review emphasizes the importance of further research into the epigenetic regulation of HN to develop more effective therapies and preventive strategies. Identifying novel epigenetic markers could provide new therapeutic opportunities for managing CKD and reducing the burden of ESRD.
Collapse
Affiliation(s)
- Yize Zhang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Hamidreza Arzaghi
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Zhehan Ma
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Yasmin Roye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27708, USA
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
- Affiliate Faculty of the Developmental and Stem Cell Biology Program, Duke Regeneration Center, and Duke MEDx Initiative, Duke University, Durham, NC 27710, USA
| |
Collapse
|
6
|
Saliba A, Du Y, Feng T, Garmire L. Multi-Omics Integration in Nephrology: Advances, Challenges, and Future Directions. Semin Nephrol 2024; 44:151584. [PMID: 40216576 DOI: 10.1016/j.semnephrol.2025.151584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
Omics technologies have transformed nephrology, providing deep insights into molecular mechanisms of kidney disease and enabling more precise diagnostic tools, therapeutic strategies, and prognostic markers. Multi-omics data integration, spanning bulk, single-cell, and spatial omics, offers a comprehensive view of kidney biology in health and disease. In this review, we explore methods and challenges for integrating transcriptomic, epigenomic, and spatial data. By combining omics layers, researchers can uncover novel molecular interactions and spatial tissue organization, advancing our understanding of diseases like diabetic kidney disease and autosomal polycystic kidney disease. This integrated approach is reshaping diagnostic and therapeutic strategies in nephrology and is critical for optimizing insights available from spatial and multi-omics analysis.
Collapse
Affiliation(s)
- Afaf Saliba
- Center for Precision Medicine, Department of Medicine, University of Texas Health Science Center at San Antonio
| | - Yuheng Du
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School
| | - Tianqing Feng
- Center for Precision Medicine, Department of Medicine, University of Texas Health Science Center at San Antonio
| | - Lana Garmire
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School.
| |
Collapse
|
7
|
Li H, Li D, Ledru N, Xuanyuan Q, Wu H, Asthana A, Byers LN, Tullius SG, Orlando G, Waikar SS, Humphreys BD. Transcriptomic, epigenomic, and spatial metabolomic cell profiling redefines regional human kidney anatomy. Cell Metab 2024; 36:1105-1125.e10. [PMID: 38513647 PMCID: PMC11081846 DOI: 10.1016/j.cmet.2024.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
A large-scale multimodal atlas that includes major kidney regions is lacking. Here, we employed simultaneous high-throughput single-cell ATAC/RNA sequencing (SHARE-seq) and spatially resolved metabolomics to profile 54 human samples from distinct kidney anatomical regions. We generated transcriptomes of 446,267 cells and chromatin accessibility profiles of 401,875 cells and developed a package to analyze 408,218 spatially resolved metabolomes. We find that the same cell type, including thin limb, thick ascending limb loop of Henle and principal cells, display distinct transcriptomic, chromatin accessibility, and metabolomic signatures, depending on anatomic location. Surveying metabolism-associated gene profiles revealed non-overlapping metabolic signatures between nephron segments and dysregulated lipid metabolism in diseased proximal tubule (PT) cells. Integrating multimodal omics with clinical data identified PLEKHA1 as a disease marker, and its in vitro knockdown increased gene expression in PT differentiation, suggesting possible pathogenic roles. This study highlights previously underrepresented cellular heterogeneity underlying the human kidney anatomy.
Collapse
Affiliation(s)
- Haikuo Li
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Dian Li
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicolas Ledru
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Qiao Xuanyuan
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Amish Asthana
- Department of Surgery, Atrium Health Wake Forest Baptist, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Lori N Byers
- Department of Surgery, Atrium Health Wake Forest Baptist, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Stefan G Tullius
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Giuseppe Orlando
- Department of Surgery, Atrium Health Wake Forest Baptist, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Sushrut S Waikar
- Section of Nephrology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA; Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
8
|
Hodgin JB, Smith C, Kretzler M. Multi-omics data integration shines a light on the renal medulla. Kidney Int 2024; 105:242-244. [PMID: 38245213 DOI: 10.1016/j.kint.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 01/22/2024]
Abstract
The renal medulla maintains salt and water balance and is prone to dysregulation because of high oxygen demand. Challenges in obtaining high-quality tissue have limited characterization of molecular programs regulating the medulla. Haug et al. leveraged gene expression, chromatin accessibility, long-range chromosomal interactions, and spatial transcriptomics to build a reference set of medullary tissue marker genes to define the medullary role in kidney function, exemplifying the strength and utility of multi-omic data integration.
Collapse
Affiliation(s)
- Jeffrey B Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA.
| | - Cathy Smith
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|