Spierenburg G, van der Heijden L, van Langevelde K, Szuhai K, Bovée JVGM, van de Sande MAJ, Gelderblom H. Tenosynovial giant cell tumors (TGCT): molecular biology, drug targets and non-surgical pharmacological approaches.
Expert Opin Ther Targets 2022;
26:333-345. [PMID:
35443852 DOI:
10.1080/14728222.2022.2067040]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION
Tenosynovial giant cell tumor (TGCT) is a mono-articular, benign or locally aggressive and often debilitating neoplasm. Systemic therapies are becoming part of the multimodal armamentarium when surgery alone will not confer improvements. Since TGCT is characterized by colony-stimulating factor-1 (CSF1) rearrangements, the most studied molecular pathway is the CSF1 and CSF1 receptor (CSF1R) axis. Inhibiting CSF1-CSF1R interaction often yields considerable radiological and clinical responses; however, adverse events may cause treatment discontinuation because of an unfavorable risk-benefit ratio in benign disease. Only Pexidartinib is approved by the US FDA; however, the European Medicines Agency has not approved it due to uncertainties on the risk-benefit ratio. Thus, there is a need for safer and effective therapies.
AREAS COVERED
Light is shed on disease mechanisms and potential drug targets. The safety and efficacy of different systemic therapies are evaluated.
EXPERT OPINION
The CSF1-CSF1R axis is the principal drug target; however, the effect of CSF1R inhibition on angiogenesis and the role of macrophages, which are essential in the postoperative course, needs further elucidation. Systemic therapies have a promising role in treating mainly diffuse-type, TGCT patients who are not expected to clinically improve from surgery. Future drug development should focus on targeting neoplastic TGCT cells.
Collapse